linux/drivers/net/wireless/ath/ath5k/desc.c
Bruno Randolf 2111ac0d88 ath5k: Adaptive Noise Immunity (ANI) Implementation
This is an Adaptive Noise Imunity (ANI) implementation for ath5k. I have looked
at both ath9k and HAL sources (they are nearly the same), and even though i
have implemented some things differently, the basic algorithm is practically
the same, for now. I hope that this can serve as a clean start to improve the
algorithm later.

This also adds a possibility to manually control ANI settings, right now only
thru a debugfs file:
  * set lowest sensitivity (=highest noise immunity):
	echo sens-low > /sys/kernel/debug/ath5k/phy0/ani
  * set highest sensitivity (=lowest noise immunity):
	echo sens-high > /sys/kernel/debug/ath5k/phy0/ani
  * automatically control immunity (default):
	echo ani-on > /sys/kernel/debug/ath5k/phy0/ani
  * to see the parameters in use and watch them change:
	cat /sys/kernel/debug/ath5k/phy0/ani

Manually setting sensitivity will turn the automatic control off. You can also
control each of the five immunity parameters (noise immunity, spur immunity,
firstep, ofdm weak signal detection, cck weak signal detection) manually thru
the debugfs file.

This is tested on AR5414 and nearly doubles the thruput in a noisy 2GHz band.

Signed-off-by: Bruno Randolf <br1@einfach.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-04-07 14:37:53 -04:00

694 lines
19 KiB
C

/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/******************************\
Hardware Descriptor Functions
\******************************/
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*
* TX Descriptors
*/
/*
* Initialize the 2-word tx control descriptor on 5210/5211
*/
static int
ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int pkt_len, unsigned int hdr_len, int padsize,
enum ath5k_pkt_type type,
unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
unsigned int rtscts_rate, unsigned int rtscts_duration)
{
u32 frame_type;
struct ath5k_hw_2w_tx_ctl *tx_ctl;
unsigned int frame_len;
tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
/*
* Validate input
* - Zero retries don't make sense.
* - A zero rate will put the HW into a mode where it continously sends
* noise on the channel, so it is important to avoid this.
*/
if (unlikely(tx_tries0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero retries\n");
WARN_ON(1);
return -EINVAL;
}
if (unlikely(tx_rate0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
/* Clear descriptor */
memset(&desc->ud.ds_tx5210, 0, sizeof(struct ath5k_hw_5210_tx_desc));
/* Setup control descriptor */
/* Verify and set frame length */
/* remove padding we might have added before */
frame_len = pkt_len - padsize + FCS_LEN;
if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
return -EINVAL;
tx_ctl->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
/* Verify and set buffer length */
/* NB: beacon's BufLen must be a multiple of 4 bytes */
if (type == AR5K_PKT_TYPE_BEACON)
pkt_len = roundup(pkt_len, 4);
if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
return -EINVAL;
tx_ctl->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
/*
* Verify and set header length
* XXX: I only found that on 5210 code, does it work on 5211 ?
*/
if (ah->ah_version == AR5K_AR5210) {
if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
return -EINVAL;
tx_ctl->tx_control_0 |=
AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
}
/*Differences between 5210-5211*/
if (ah->ah_version == AR5K_AR5210) {
switch (type) {
case AR5K_PKT_TYPE_BEACON:
case AR5K_PKT_TYPE_PROBE_RESP:
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
case AR5K_PKT_TYPE_PIFS:
frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
default:
frame_type = type /*<< 2 ?*/;
}
tx_ctl->tx_control_0 |=
AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
} else {
tx_ctl->tx_control_0 |=
AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
AR5K_REG_SM(antenna_mode,
AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
tx_ctl->tx_control_1 |=
AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
}
#define _TX_FLAGS(_c, _flag) \
if (flags & AR5K_TXDESC_##_flag) { \
tx_ctl->tx_control_##_c |= \
AR5K_2W_TX_DESC_CTL##_c##_##_flag; \
}
_TX_FLAGS(0, CLRDMASK);
_TX_FLAGS(0, VEOL);
_TX_FLAGS(0, INTREQ);
_TX_FLAGS(0, RTSENA);
_TX_FLAGS(1, NOACK);
#undef _TX_FLAGS
/*
* WEP crap
*/
if (key_index != AR5K_TXKEYIX_INVALID) {
tx_ctl->tx_control_0 |=
AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
tx_ctl->tx_control_1 |=
AR5K_REG_SM(key_index,
AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
}
/*
* RTS/CTS Duration [5210 ?]
*/
if ((ah->ah_version == AR5K_AR5210) &&
(flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
tx_ctl->tx_control_1 |= rtscts_duration &
AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
return 0;
}
/*
* Initialize the 4-word tx control descriptor on 5212
*/
static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
int padsize,
enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
unsigned int tx_tries0, unsigned int key_index,
unsigned int antenna_mode, unsigned int flags,
unsigned int rtscts_rate,
unsigned int rtscts_duration)
{
struct ath5k_hw_4w_tx_ctl *tx_ctl;
unsigned int frame_len;
ATH5K_TRACE(ah->ah_sc);
tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
/*
* Validate input
* - Zero retries don't make sense.
* - A zero rate will put the HW into a mode where it continously sends
* noise on the channel, so it is important to avoid this.
*/
if (unlikely(tx_tries0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero retries\n");
WARN_ON(1);
return -EINVAL;
}
if (unlikely(tx_rate0 == 0)) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
tx_power += ah->ah_txpower.txp_offset;
if (tx_power > AR5K_TUNE_MAX_TXPOWER)
tx_power = AR5K_TUNE_MAX_TXPOWER;
/* Clear descriptor */
memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc));
/* Setup control descriptor */
/* Verify and set frame length */
/* remove padding we might have added before */
frame_len = pkt_len - padsize + FCS_LEN;
if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
return -EINVAL;
tx_ctl->tx_control_0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
/* Verify and set buffer length */
/* NB: beacon's BufLen must be a multiple of 4 bytes */
if (type == AR5K_PKT_TYPE_BEACON)
pkt_len = roundup(pkt_len, 4);
if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
return -EINVAL;
tx_ctl->tx_control_1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
tx_ctl->tx_control_0 |=
AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
tx_ctl->tx_control_1 |= AR5K_REG_SM(type,
AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
tx_ctl->tx_control_2 = AR5K_REG_SM(tx_tries0,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
tx_ctl->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
#define _TX_FLAGS(_c, _flag) \
if (flags & AR5K_TXDESC_##_flag) { \
tx_ctl->tx_control_##_c |= \
AR5K_4W_TX_DESC_CTL##_c##_##_flag; \
}
_TX_FLAGS(0, CLRDMASK);
_TX_FLAGS(0, VEOL);
_TX_FLAGS(0, INTREQ);
_TX_FLAGS(0, RTSENA);
_TX_FLAGS(0, CTSENA);
_TX_FLAGS(1, NOACK);
#undef _TX_FLAGS
/*
* WEP crap
*/
if (key_index != AR5K_TXKEYIX_INVALID) {
tx_ctl->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
tx_ctl->tx_control_1 |= AR5K_REG_SM(key_index,
AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
}
/*
* RTS/CTS
*/
if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
if ((flags & AR5K_TXDESC_RTSENA) &&
(flags & AR5K_TXDESC_CTSENA))
return -EINVAL;
tx_ctl->tx_control_2 |= rtscts_duration &
AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
tx_ctl->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
}
return 0;
}
/*
* Initialize a 4-word multi rate retry tx control descriptor on 5212
*/
static int
ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2,
u_int tx_tries2, unsigned int tx_rate3, u_int tx_tries3)
{
struct ath5k_hw_4w_tx_ctl *tx_ctl;
/*
* Rates can be 0 as long as the retry count is 0 too.
* A zero rate and nonzero retry count will put the HW into a mode where
* it continously sends noise on the channel, so it is important to
* avoid this.
*/
if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
(tx_rate2 == 0 && tx_tries2 != 0) ||
(tx_rate3 == 0 && tx_tries3 != 0))) {
ATH5K_ERR(ah->ah_sc, "zero rate\n");
WARN_ON(1);
return -EINVAL;
}
if (ah->ah_version == AR5K_AR5212) {
tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
#define _XTX_TRIES(_n) \
if (tx_tries##_n) { \
tx_ctl->tx_control_2 |= \
AR5K_REG_SM(tx_tries##_n, \
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
tx_ctl->tx_control_3 |= \
AR5K_REG_SM(tx_rate##_n, \
AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
}
_XTX_TRIES(1);
_XTX_TRIES(2);
_XTX_TRIES(3);
#undef _XTX_TRIES
return 1;
}
return 0;
}
/* no mrr support for cards older than 5212 */
static int
ath5k_hw_setup_no_mrr(struct ath5k_hw *ah, struct ath5k_desc *desc,
unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2,
u_int tx_tries2, unsigned int tx_rate3, u_int tx_tries3)
{
return 0;
}
/*
* Proccess the tx status descriptor on 5210/5211
*/
static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_tx_status *ts)
{
struct ath5k_hw_2w_tx_ctl *tx_ctl;
struct ath5k_hw_tx_status *tx_status;
ATH5K_TRACE(ah->ah_sc);
tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
tx_status = &desc->ud.ds_tx5210.tx_stat;
/* No frame has been send or error */
if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
return -EINPROGRESS;
/*
* Get descriptor status
*/
ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
/*TODO: ts->ts_virtcol + test*/
ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_SEQ_NUM);
ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
ts->ts_antenna = 1;
ts->ts_status = 0;
ts->ts_rate[0] = AR5K_REG_MS(tx_ctl->tx_control_0,
AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
ts->ts_retry[0] = ts->ts_longretry;
ts->ts_final_idx = 0;
if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) {
if (tx_status->tx_status_0 &
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
ts->ts_status |= AR5K_TXERR_XRETRY;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
ts->ts_status |= AR5K_TXERR_FIFO;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
ts->ts_status |= AR5K_TXERR_FILT;
}
return 0;
}
/*
* Proccess a tx status descriptor on 5212
*/
static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_tx_status *ts)
{
struct ath5k_hw_4w_tx_ctl *tx_ctl;
struct ath5k_hw_tx_status *tx_status;
ATH5K_TRACE(ah->ah_sc);
tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
tx_status = &desc->ud.ds_tx5212.tx_stat;
/* No frame has been send or error */
if (unlikely(!(tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE)))
return -EINPROGRESS;
/*
* Get descriptor status
*/
ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_SEQ_NUM);
ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
ts->ts_antenna = (tx_status->tx_status_1 &
AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
ts->ts_status = 0;
ts->ts_final_idx = AR5K_REG_MS(tx_status->tx_status_1,
AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX);
/* The longretry counter has the number of un-acked retries
* for the final rate. To get the total number of retries
* we have to add the retry counters for the other rates
* as well
*/
ts->ts_retry[ts->ts_final_idx] = ts->ts_longretry;
switch (ts->ts_final_idx) {
case 3:
ts->ts_rate[3] = AR5K_REG_MS(tx_ctl->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
ts->ts_retry[2] = AR5K_REG_MS(tx_ctl->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
ts->ts_longretry += ts->ts_retry[2];
/* fall through */
case 2:
ts->ts_rate[2] = AR5K_REG_MS(tx_ctl->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
ts->ts_retry[1] = AR5K_REG_MS(tx_ctl->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
ts->ts_longretry += ts->ts_retry[1];
/* fall through */
case 1:
ts->ts_rate[1] = AR5K_REG_MS(tx_ctl->tx_control_3,
AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
ts->ts_retry[0] = AR5K_REG_MS(tx_ctl->tx_control_2,
AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
ts->ts_longretry += ts->ts_retry[0];
/* fall through */
case 0:
ts->ts_rate[0] = tx_ctl->tx_control_3 &
AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
break;
}
/* TX error */
if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) {
if (tx_status->tx_status_0 &
AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
ts->ts_status |= AR5K_TXERR_XRETRY;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
ts->ts_status |= AR5K_TXERR_FIFO;
if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
ts->ts_status |= AR5K_TXERR_FILT;
}
return 0;
}
/*
* RX Descriptors
*/
/*
* Initialize an rx control descriptor
*/
static int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
u32 size, unsigned int flags)
{
struct ath5k_hw_rx_ctl *rx_ctl;
ATH5K_TRACE(ah->ah_sc);
rx_ctl = &desc->ud.ds_rx.rx_ctl;
/*
* Clear the descriptor
* If we don't clean the status descriptor,
* while scanning we get too many results,
* most of them virtual, after some secs
* of scanning system hangs. M.F.
*/
memset(&desc->ud.ds_rx, 0, sizeof(struct ath5k_hw_all_rx_desc));
/* Setup descriptor */
rx_ctl->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
if (unlikely(rx_ctl->rx_control_1 != size))
return -EINVAL;
if (flags & AR5K_RXDESC_INTREQ)
rx_ctl->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
return 0;
}
/*
* Proccess the rx status descriptor on 5210/5211
*/
static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_rx_status *rs)
{
struct ath5k_hw_rx_status *rx_status;
rx_status = &desc->ud.ds_rx.u.rx_stat;
/* No frame received / not ready */
if (unlikely(!(rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_DONE)))
return -EINPROGRESS;
/*
* Frame receive status
*/
rs->rs_datalen = rx_status->rx_status_0 &
AR5K_5210_RX_DESC_STATUS0_DATA_LEN;
rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL);
rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE);
rs->rs_antenna = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA);
rs->rs_more = !!(rx_status->rx_status_0 &
AR5K_5210_RX_DESC_STATUS0_MORE);
/* TODO: this timestamp is 13 bit, later on we assume 15 bit */
rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5210_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
rs->rs_status = 0;
rs->rs_phyerr = 0;
/*
* Key table status
*/
if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_KEY_INDEX_VALID)
rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5210_RX_DESC_STATUS1_KEY_INDEX);
else
rs->rs_keyix = AR5K_RXKEYIX_INVALID;
/*
* Receive/descriptor errors
*/
if (!(rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) {
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_CRC;
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_FIFO_OVERRUN)
rs->rs_status |= AR5K_RXERR_FIFO;
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_PHY_ERROR) {
rs->rs_status |= AR5K_RXERR_PHY;
rs->rs_phyerr |= AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5210_RX_DESC_STATUS1_PHY_ERROR);
}
if (rx_status->rx_status_1 &
AR5K_5210_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_DECRYPT;
}
return 0;
}
/*
* Proccess the rx status descriptor on 5212
*/
static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah,
struct ath5k_desc *desc, struct ath5k_rx_status *rs)
{
struct ath5k_hw_rx_status *rx_status;
struct ath5k_hw_rx_error *rx_err;
ATH5K_TRACE(ah->ah_sc);
rx_status = &desc->ud.ds_rx.u.rx_stat;
/* Overlay on error */
rx_err = &desc->ud.ds_rx.u.rx_err;
/* No frame received / not ready */
if (unlikely(!(rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_DONE)))
return -EINPROGRESS;
/*
* Frame receive status
*/
rs->rs_datalen = rx_status->rx_status_0 &
AR5K_5212_RX_DESC_STATUS0_DATA_LEN;
rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL);
rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5212_RX_DESC_STATUS0_RECEIVE_RATE);
rs->rs_antenna = AR5K_REG_MS(rx_status->rx_status_0,
AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA);
rs->rs_more = !!(rx_status->rx_status_0 &
AR5K_5212_RX_DESC_STATUS0_MORE);
rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5212_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
rs->rs_status = 0;
rs->rs_phyerr = 0;
/*
* Key table status
*/
if (rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_KEY_INDEX_VALID)
rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
AR5K_5212_RX_DESC_STATUS1_KEY_INDEX);
else
rs->rs_keyix = AR5K_RXKEYIX_INVALID;
/*
* Receive/descriptor errors
*/
if (!(rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) {
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_CRC;
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_PHY_ERROR) {
rs->rs_status |= AR5K_RXERR_PHY;
rs->rs_phyerr |= AR5K_REG_MS(rx_err->rx_error_1,
AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
ath5k_ani_phy_error_report(ah, rs->rs_phyerr);
}
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
rs->rs_status |= AR5K_RXERR_DECRYPT;
if (rx_status->rx_status_1 &
AR5K_5212_RX_DESC_STATUS1_MIC_ERROR)
rs->rs_status |= AR5K_RXERR_MIC;
}
return 0;
}
/*
* Init function pointers inside ath5k_hw struct
*/
int ath5k_hw_init_desc_functions(struct ath5k_hw *ah)
{
if (ah->ah_version != AR5K_AR5210 &&
ah->ah_version != AR5K_AR5211 &&
ah->ah_version != AR5K_AR5212)
return -ENOTSUPP;
if (ah->ah_version == AR5K_AR5212) {
ah->ah_setup_rx_desc = ath5k_hw_setup_rx_desc;
ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
ah->ah_setup_mrr_tx_desc = ath5k_hw_setup_mrr_tx_desc;
ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
} else {
ah->ah_setup_rx_desc = ath5k_hw_setup_rx_desc;
ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
ah->ah_setup_mrr_tx_desc = ath5k_hw_setup_no_mrr;
ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
}
if (ah->ah_version == AR5K_AR5212)
ah->ah_proc_rx_desc = ath5k_hw_proc_5212_rx_status;
else if (ah->ah_version <= AR5K_AR5211)
ah->ah_proc_rx_desc = ath5k_hw_proc_5210_rx_status;
return 0;
}