linux/arch/powerpc/include/asm/xive-regs.h
Benjamin Herrenschmidt 12c1f339cd powerpc/xive: Move definition of ESB bits
From xive.h to xive-regs.h since it's a HW register definition
and it can be used from assembly

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-12 15:24:41 +11:00

133 lines
5.0 KiB
C

/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_POWERPC_XIVE_REGS_H
#define _ASM_POWERPC_XIVE_REGS_H
/*
* "magic" Event State Buffer (ESB) MMIO offsets.
*
* Each interrupt source has a 2-bit state machine called ESB
* which can be controlled by MMIO. It's made of 2 bits, P and
* Q. P indicates that an interrupt is pending (has been sent
* to a queue and is waiting for an EOI). Q indicates that the
* interrupt has been triggered while pending.
*
* This acts as a coalescing mechanism in order to guarantee
* that a given interrupt only occurs at most once in a queue.
*
* When doing an EOI, the Q bit will indicate if the interrupt
* needs to be re-triggered.
*
* The following offsets into the ESB MMIO allow to read or
* manipulate the PQ bits. They must be used with an 8-bytes
* load instruction. They all return the previous state of the
* interrupt (atomically).
*
* Additionally, some ESB pages support doing an EOI via a
* store at 0 and some ESBs support doing a trigger via a
* separate trigger page.
*/
#define XIVE_ESB_STORE_EOI 0x400 /* Store */
#define XIVE_ESB_LOAD_EOI 0x000 /* Load */
#define XIVE_ESB_GET 0x800 /* Load */
#define XIVE_ESB_SET_PQ_00 0xc00 /* Load */
#define XIVE_ESB_SET_PQ_01 0xd00 /* Load */
#define XIVE_ESB_SET_PQ_10 0xe00 /* Load */
#define XIVE_ESB_SET_PQ_11 0xf00 /* Load */
#define XIVE_ESB_VAL_P 0x2
#define XIVE_ESB_VAL_Q 0x1
/*
* Thread Management (aka "TM") registers
*/
/* TM register offsets */
#define TM_QW0_USER 0x000 /* All rings */
#define TM_QW1_OS 0x010 /* Ring 0..2 */
#define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */
#define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */
/* Byte offsets inside a QW QW0 QW1 QW2 QW3 */
#define TM_NSR 0x0 /* + + - + */
#define TM_CPPR 0x1 /* - + - + */
#define TM_IPB 0x2 /* - + + + */
#define TM_LSMFB 0x3 /* - + + + */
#define TM_ACK_CNT 0x4 /* - + - - */
#define TM_INC 0x5 /* - + - + */
#define TM_AGE 0x6 /* - + - + */
#define TM_PIPR 0x7 /* - + - + */
#define TM_WORD0 0x0
#define TM_WORD1 0x4
/*
* QW word 2 contains the valid bit at the top and other fields
* depending on the QW.
*/
#define TM_WORD2 0x8
#define TM_QW0W2_VU PPC_BIT32(0)
#define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1,31) // XX 2,31 ?
#define TM_QW1W2_VO PPC_BIT32(0)
#define TM_QW1W2_OS_CAM PPC_BITMASK32(8,31)
#define TM_QW2W2_VP PPC_BIT32(0)
#define TM_QW2W2_POOL_CAM PPC_BITMASK32(8,31)
#define TM_QW3W2_VT PPC_BIT32(0)
#define TM_QW3W2_LP PPC_BIT32(6)
#define TM_QW3W2_LE PPC_BIT32(7)
#define TM_QW3W2_T PPC_BIT32(31)
/*
* In addition to normal loads to "peek" and writes (only when invalid)
* using 4 and 8 bytes accesses, the above registers support these
* "special" byte operations:
*
* - Byte load from QW0[NSR] - User level NSR (EBB)
* - Byte store to QW0[NSR] - User level NSR (EBB)
* - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
* - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
* otherwise VT||0000000
* - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
*
* Then we have all these "special" CI ops at these offset that trigger
* all sorts of side effects:
*/
#define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/
#define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */
#define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */
#define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user context */
#define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */
#define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS context to reg */
#define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool context to reg*/
#define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */
#define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd line */
#define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */
#define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even line */
#define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */
/* XXX more... */
/* NSR fields for the various QW ack types */
#define TM_QW0_NSR_EB PPC_BIT8(0)
#define TM_QW1_NSR_EO PPC_BIT8(0)
#define TM_QW3_NSR_HE PPC_BITMASK8(0,1)
#define TM_QW3_NSR_HE_NONE 0
#define TM_QW3_NSR_HE_POOL 1
#define TM_QW3_NSR_HE_PHYS 2
#define TM_QW3_NSR_HE_LSI 3
#define TM_QW3_NSR_I PPC_BIT8(2)
#define TM_QW3_NSR_GRP_LVL PPC_BIT8(3,7)
/* Utilities to manipulate these (originaly from OPAL) */
#define MASK_TO_LSH(m) (__builtin_ffsl(m) - 1)
#define GETFIELD(m, v) (((v) & (m)) >> MASK_TO_LSH(m))
#define SETFIELD(m, v, val) \
(((v) & ~(m)) | ((((typeof(v))(val)) << MASK_TO_LSH(m)) & (m)))
#endif /* _ASM_POWERPC_XIVE_REGS_H */