linux/drivers/gpu/drm/i915/i915_scheduler.c
Chris Wilson 253a774bb0 drm/i915/execlists: Don't merely skip submission if maybe timeslicing
Normally, we try and skip submission if ELSP[1] is filled. However, we
may desire to enable timeslicing due to the queue priority, even if
ELSP[1] itself does not require timeslicing. That is the queue is equal
priority to ELSP[0] and higher priority then ELSP[1]. Previously, we
would wait until the context switch to preempt the current ELSP[1], but
with timeslicing, we want to preempt ELSP[0] and replace it with the
queue.

In writing the test case, it become quickly apparent that we were also
suppressing the tasklet during promotion and so failing to notice when
the queue started requiring timeslicing.

Fixes: 2229adc813 ("drm/i915/execlist: Trim immediate timeslice expiry")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191018072027.31948-1-chris@chris-wilson.co.uk
2019-10-18 11:23:26 +01:00

522 lines
14 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2018 Intel Corporation
*/
#include <linux/mutex.h>
#include "i915_drv.h"
#include "i915_globals.h"
#include "i915_request.h"
#include "i915_scheduler.h"
static struct i915_global_scheduler {
struct i915_global base;
struct kmem_cache *slab_dependencies;
struct kmem_cache *slab_priorities;
} global;
static DEFINE_SPINLOCK(schedule_lock);
static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
return container_of(node, const struct i915_request, sched);
}
static inline bool node_started(const struct i915_sched_node *node)
{
return i915_request_started(node_to_request(node));
}
static inline bool node_signaled(const struct i915_sched_node *node)
{
return i915_request_completed(node_to_request(node));
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static void assert_priolists(struct intel_engine_execlists * const execlists)
{
struct rb_node *rb;
long last_prio, i;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
rb_first(&execlists->queue.rb_root));
last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
const struct i915_priolist *p = to_priolist(rb);
GEM_BUG_ON(p->priority >= last_prio);
last_prio = p->priority;
GEM_BUG_ON(!p->used);
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
if (list_empty(&p->requests[i]))
continue;
GEM_BUG_ON(!(p->used & BIT(i)));
}
}
}
struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_priolist *p;
struct rb_node **parent, *rb;
bool first = true;
int idx, i;
lockdep_assert_held(&engine->active.lock);
assert_priolists(execlists);
/* buckets sorted from highest [in slot 0] to lowest priority */
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
prio >>= I915_USER_PRIORITY_SHIFT;
if (unlikely(execlists->no_priolist))
prio = I915_PRIORITY_NORMAL;
find_priolist:
/* most positive priority is scheduled first, equal priorities fifo */
rb = NULL;
parent = &execlists->queue.rb_root.rb_node;
while (*parent) {
rb = *parent;
p = to_priolist(rb);
if (prio > p->priority) {
parent = &rb->rb_left;
} else if (prio < p->priority) {
parent = &rb->rb_right;
first = false;
} else {
goto out;
}
}
if (prio == I915_PRIORITY_NORMAL) {
p = &execlists->default_priolist;
} else {
p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
/* Convert an allocation failure to a priority bump */
if (unlikely(!p)) {
prio = I915_PRIORITY_NORMAL; /* recurses just once */
/* To maintain ordering with all rendering, after an
* allocation failure we have to disable all scheduling.
* Requests will then be executed in fifo, and schedule
* will ensure that dependencies are emitted in fifo.
* There will be still some reordering with existing
* requests, so if userspace lied about their
* dependencies that reordering may be visible.
*/
execlists->no_priolist = true;
goto find_priolist;
}
}
p->priority = prio;
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
INIT_LIST_HEAD(&p->requests[i]);
rb_link_node(&p->node, rb, parent);
rb_insert_color_cached(&p->node, &execlists->queue, first);
p->used = 0;
out:
p->used |= BIT(idx);
return &p->requests[idx];
}
void __i915_priolist_free(struct i915_priolist *p)
{
kmem_cache_free(global.slab_priorities, p);
}
struct sched_cache {
struct list_head *priolist;
};
static struct intel_engine_cs *
sched_lock_engine(const struct i915_sched_node *node,
struct intel_engine_cs *locked,
struct sched_cache *cache)
{
const struct i915_request *rq = node_to_request(node);
struct intel_engine_cs *engine;
GEM_BUG_ON(!locked);
/*
* Virtual engines complicate acquiring the engine timeline lock,
* as their rq->engine pointer is not stable until under that
* engine lock. The simple ploy we use is to take the lock then
* check that the rq still belongs to the newly locked engine.
*/
while (locked != (engine = READ_ONCE(rq->engine))) {
spin_unlock(&locked->active.lock);
memset(cache, 0, sizeof(*cache));
spin_lock(&engine->active.lock);
locked = engine;
}
GEM_BUG_ON(locked != engine);
return locked;
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority | __NO_PREEMPTION;
}
static inline bool need_preempt(int prio, int active)
{
/*
* Allow preemption of low -> normal -> high, but we do
* not allow low priority tasks to preempt other low priority
* tasks under the impression that latency for low priority
* tasks does not matter (as much as background throughput),
* so kiss.
*/
return prio >= max(I915_PRIORITY_NORMAL, active);
}
static void kick_submission(struct intel_engine_cs *engine, int prio)
{
const struct i915_request *inflight =
execlists_active(&engine->execlists);
/*
* If we are already the currently executing context, don't
* bother evaluating if we should preempt ourselves, or if
* we expect nothing to change as a result of running the
* tasklet, i.e. we have not change the priority queue
* sufficiently to oust the running context.
*/
if (!inflight || !need_preempt(prio, rq_prio(inflight)))
return;
tasklet_hi_schedule(&engine->execlists.tasklet);
}
static void __i915_schedule(struct i915_sched_node *node,
const struct i915_sched_attr *attr)
{
struct intel_engine_cs *engine;
struct i915_dependency *dep, *p;
struct i915_dependency stack;
const int prio = attr->priority;
struct sched_cache cache;
LIST_HEAD(dfs);
/* Needed in order to use the temporary link inside i915_dependency */
lockdep_assert_held(&schedule_lock);
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
if (prio <= READ_ONCE(node->attr.priority))
return;
if (node_signaled(node))
return;
stack.signaler = node;
list_add(&stack.dfs_link, &dfs);
/*
* Recursively bump all dependent priorities to match the new request.
*
* A naive approach would be to use recursion:
* static void update_priorities(struct i915_sched_node *node, prio) {
* list_for_each_entry(dep, &node->signalers_list, signal_link)
* update_priorities(dep->signal, prio)
* queue_request(node);
* }
* but that may have unlimited recursion depth and so runs a very
* real risk of overunning the kernel stack. Instead, we build
* a flat list of all dependencies starting with the current request.
* As we walk the list of dependencies, we add all of its dependencies
* to the end of the list (this may include an already visited
* request) and continue to walk onwards onto the new dependencies. The
* end result is a topological list of requests in reverse order, the
* last element in the list is the request we must execute first.
*/
list_for_each_entry(dep, &dfs, dfs_link) {
struct i915_sched_node *node = dep->signaler;
/* If we are already flying, we know we have no signalers */
if (node_started(node))
continue;
/*
* Within an engine, there can be no cycle, but we may
* refer to the same dependency chain multiple times
* (redundant dependencies are not eliminated) and across
* engines.
*/
list_for_each_entry(p, &node->signalers_list, signal_link) {
GEM_BUG_ON(p == dep); /* no cycles! */
if (node_signaled(p->signaler))
continue;
if (prio > READ_ONCE(p->signaler->attr.priority))
list_move_tail(&p->dfs_link, &dfs);
}
}
/*
* If we didn't need to bump any existing priorities, and we haven't
* yet submitted this request (i.e. there is no potential race with
* execlists_submit_request()), we can set our own priority and skip
* acquiring the engine locks.
*/
if (node->attr.priority == I915_PRIORITY_INVALID) {
GEM_BUG_ON(!list_empty(&node->link));
node->attr = *attr;
if (stack.dfs_link.next == stack.dfs_link.prev)
return;
__list_del_entry(&stack.dfs_link);
}
memset(&cache, 0, sizeof(cache));
engine = node_to_request(node)->engine;
spin_lock(&engine->active.lock);
/* Fifo and depth-first replacement ensure our deps execute before us */
engine = sched_lock_engine(node, engine, &cache);
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
INIT_LIST_HEAD(&dep->dfs_link);
node = dep->signaler;
engine = sched_lock_engine(node, engine, &cache);
lockdep_assert_held(&engine->active.lock);
/* Recheck after acquiring the engine->timeline.lock */
if (prio <= node->attr.priority || node_signaled(node))
continue;
GEM_BUG_ON(node_to_request(node)->engine != engine);
node->attr.priority = prio;
if (list_empty(&node->link)) {
/*
* If the request is not in the priolist queue because
* it is not yet runnable, then it doesn't contribute
* to our preemption decisions. On the other hand,
* if the request is on the HW, it too is not in the
* queue; but in that case we may still need to reorder
* the inflight requests.
*/
continue;
}
if (!intel_engine_is_virtual(engine) &&
!i915_request_is_active(node_to_request(node))) {
if (!cache.priolist)
cache.priolist =
i915_sched_lookup_priolist(engine,
prio);
list_move_tail(&node->link, cache.priolist);
}
if (prio <= engine->execlists.queue_priority_hint)
continue;
engine->execlists.queue_priority_hint = prio;
/* Defer (tasklet) submission until after all of our updates. */
kick_submission(engine, prio);
}
spin_unlock(&engine->active.lock);
}
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
spin_lock_irq(&schedule_lock);
__i915_schedule(&rq->sched, attr);
spin_unlock_irq(&schedule_lock);
}
static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
{
struct i915_sched_attr attr = node->attr;
attr.priority |= bump;
__i915_schedule(node, &attr);
}
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
{
unsigned long flags;
GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
if (READ_ONCE(rq->sched.attr.priority) & bump)
return;
spin_lock_irqsave(&schedule_lock, flags);
__bump_priority(&rq->sched, bump);
spin_unlock_irqrestore(&schedule_lock, flags);
}
void i915_sched_node_init(struct i915_sched_node *node)
{
INIT_LIST_HEAD(&node->signalers_list);
INIT_LIST_HEAD(&node->waiters_list);
INIT_LIST_HEAD(&node->link);
node->attr.priority = I915_PRIORITY_INVALID;
node->semaphores = 0;
node->flags = 0;
}
static struct i915_dependency *
i915_dependency_alloc(void)
{
return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
}
static void
i915_dependency_free(struct i915_dependency *dep)
{
kmem_cache_free(global.slab_dependencies, dep);
}
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal,
struct i915_dependency *dep,
unsigned long flags)
{
bool ret = false;
spin_lock_irq(&schedule_lock);
if (!node_signaled(signal)) {
INIT_LIST_HEAD(&dep->dfs_link);
list_add(&dep->wait_link, &signal->waiters_list);
list_add(&dep->signal_link, &node->signalers_list);
dep->signaler = signal;
dep->waiter = node;
dep->flags = flags;
/* Keep track of whether anyone on this chain has a semaphore */
if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
!node_started(signal))
node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
/*
* As we do not allow WAIT to preempt inflight requests,
* once we have executed a request, along with triggering
* any execution callbacks, we must preserve its ordering
* within the non-preemptible FIFO.
*/
BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
if (flags & I915_DEPENDENCY_EXTERNAL)
__bump_priority(signal, __NO_PREEMPTION);
ret = true;
}
spin_unlock_irq(&schedule_lock);
return ret;
}
int i915_sched_node_add_dependency(struct i915_sched_node *node,
struct i915_sched_node *signal)
{
struct i915_dependency *dep;
dep = i915_dependency_alloc();
if (!dep)
return -ENOMEM;
if (!__i915_sched_node_add_dependency(node, signal, dep,
I915_DEPENDENCY_EXTERNAL |
I915_DEPENDENCY_ALLOC))
i915_dependency_free(dep);
return 0;
}
void i915_sched_node_fini(struct i915_sched_node *node)
{
struct i915_dependency *dep, *tmp;
spin_lock_irq(&schedule_lock);
/*
* Everyone we depended upon (the fences we wait to be signaled)
* should retire before us and remove themselves from our list.
* However, retirement is run independently on each timeline and
* so we may be called out-of-order.
*/
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
GEM_BUG_ON(!node_signaled(dep->signaler));
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->wait_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(dep);
}
/* Remove ourselves from everyone who depends upon us */
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
GEM_BUG_ON(dep->signaler != node);
GEM_BUG_ON(!list_empty(&dep->dfs_link));
list_del(&dep->signal_link);
if (dep->flags & I915_DEPENDENCY_ALLOC)
i915_dependency_free(dep);
}
spin_unlock_irq(&schedule_lock);
}
static void i915_global_scheduler_shrink(void)
{
kmem_cache_shrink(global.slab_dependencies);
kmem_cache_shrink(global.slab_priorities);
}
static void i915_global_scheduler_exit(void)
{
kmem_cache_destroy(global.slab_dependencies);
kmem_cache_destroy(global.slab_priorities);
}
static struct i915_global_scheduler global = { {
.shrink = i915_global_scheduler_shrink,
.exit = i915_global_scheduler_exit,
} };
int __init i915_global_scheduler_init(void)
{
global.slab_dependencies = KMEM_CACHE(i915_dependency,
SLAB_HWCACHE_ALIGN);
if (!global.slab_dependencies)
return -ENOMEM;
global.slab_priorities = KMEM_CACHE(i915_priolist,
SLAB_HWCACHE_ALIGN);
if (!global.slab_priorities)
goto err_priorities;
i915_global_register(&global.base);
return 0;
err_priorities:
kmem_cache_destroy(global.slab_priorities);
return -ENOMEM;
}