forked from Minki/linux
f36a1a133a
If we have the powerpc perf_counter backend compiled in, but the cpu we are running on is one where we don't support the PMU, we currently oops in hw_perf_group_sched_in if we try to use any counters, because ppmu is NULL in that case, and we unconditionally dereference ppmu. This fixes the problem by adding a check if ppmu is NULL at the beginning of hw_perf_group_sched_in, and also at the beginning of the other functions that get called from the perf_counter core, i.e. hw_perf_disable, hw_perf_enable, and hw_perf_counter_setup. Signed-off-by: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: benh@kernel.crashing.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
1315 lines
32 KiB
C
1315 lines
32 KiB
C
/*
|
|
* Performance counter support - powerpc architecture code
|
|
*
|
|
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/perf_counter.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/pmc.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
struct cpu_hw_counters {
|
|
int n_counters;
|
|
int n_percpu;
|
|
int disabled;
|
|
int n_added;
|
|
int n_limited;
|
|
u8 pmcs_enabled;
|
|
struct perf_counter *counter[MAX_HWCOUNTERS];
|
|
u64 events[MAX_HWCOUNTERS];
|
|
unsigned int flags[MAX_HWCOUNTERS];
|
|
unsigned long mmcr[3];
|
|
struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
|
|
u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
|
|
|
|
struct power_pmu *ppmu;
|
|
|
|
/*
|
|
* Normally, to ignore kernel events we set the FCS (freeze counters
|
|
* in supervisor mode) bit in MMCR0, but if the kernel runs with the
|
|
* hypervisor bit set in the MSR, or if we are running on a processor
|
|
* where the hypervisor bit is forced to 1 (as on Apple G5 processors),
|
|
* then we need to use the FCHV bit to ignore kernel events.
|
|
*/
|
|
static unsigned int freeze_counters_kernel = MMCR0_FCS;
|
|
|
|
/*
|
|
* 32-bit doesn't have MMCRA but does have an MMCR2,
|
|
* and a few other names are different.
|
|
*/
|
|
#ifdef CONFIG_PPC32
|
|
|
|
#define MMCR0_FCHV 0
|
|
#define MMCR0_PMCjCE MMCR0_PMCnCE
|
|
|
|
#define SPRN_MMCRA SPRN_MMCR2
|
|
#define MMCRA_SAMPLE_ENABLE 0
|
|
|
|
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void perf_set_pmu_inuse(int inuse) { }
|
|
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
|
|
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void perf_read_regs(struct pt_regs *regs) { }
|
|
static inline int perf_intr_is_nmi(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_PPC32 */
|
|
|
|
/*
|
|
* Things that are specific to 64-bit implementations.
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
|
|
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
|
|
{
|
|
unsigned long mmcra = regs->dsisr;
|
|
|
|
if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
|
|
unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
|
|
if (slot > 1)
|
|
return 4 * (slot - 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void perf_set_pmu_inuse(int inuse)
|
|
{
|
|
get_lppaca()->pmcregs_in_use = inuse;
|
|
}
|
|
|
|
/*
|
|
* The user wants a data address recorded.
|
|
* If we're not doing instruction sampling, give them the SDAR
|
|
* (sampled data address). If we are doing instruction sampling, then
|
|
* only give them the SDAR if it corresponds to the instruction
|
|
* pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
|
|
* bit in MMCRA.
|
|
*/
|
|
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
|
|
{
|
|
unsigned long mmcra = regs->dsisr;
|
|
unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
|
|
POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
|
|
|
|
if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
|
|
*addrp = mfspr(SPRN_SDAR);
|
|
}
|
|
|
|
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
|
|
{
|
|
unsigned long mmcra = regs->dsisr;
|
|
|
|
if (TRAP(regs) != 0xf00)
|
|
return 0; /* not a PMU interrupt */
|
|
|
|
if (ppmu->flags & PPMU_ALT_SIPR) {
|
|
if (mmcra & POWER6_MMCRA_SIHV)
|
|
return PERF_EVENT_MISC_HYPERVISOR;
|
|
return (mmcra & POWER6_MMCRA_SIPR) ?
|
|
PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
|
|
}
|
|
if (mmcra & MMCRA_SIHV)
|
|
return PERF_EVENT_MISC_HYPERVISOR;
|
|
return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
|
|
PERF_EVENT_MISC_KERNEL;
|
|
}
|
|
|
|
/*
|
|
* Overload regs->dsisr to store MMCRA so we only need to read it once
|
|
* on each interrupt.
|
|
*/
|
|
static inline void perf_read_regs(struct pt_regs *regs)
|
|
{
|
|
regs->dsisr = mfspr(SPRN_MMCRA);
|
|
}
|
|
|
|
/*
|
|
* If interrupts were soft-disabled when a PMU interrupt occurs, treat
|
|
* it as an NMI.
|
|
*/
|
|
static inline int perf_intr_is_nmi(struct pt_regs *regs)
|
|
{
|
|
return !regs->softe;
|
|
}
|
|
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
static void perf_counter_interrupt(struct pt_regs *regs);
|
|
|
|
void perf_counter_print_debug(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Read one performance monitor counter (PMC).
|
|
*/
|
|
static unsigned long read_pmc(int idx)
|
|
{
|
|
unsigned long val;
|
|
|
|
switch (idx) {
|
|
case 1:
|
|
val = mfspr(SPRN_PMC1);
|
|
break;
|
|
case 2:
|
|
val = mfspr(SPRN_PMC2);
|
|
break;
|
|
case 3:
|
|
val = mfspr(SPRN_PMC3);
|
|
break;
|
|
case 4:
|
|
val = mfspr(SPRN_PMC4);
|
|
break;
|
|
case 5:
|
|
val = mfspr(SPRN_PMC5);
|
|
break;
|
|
case 6:
|
|
val = mfspr(SPRN_PMC6);
|
|
break;
|
|
#ifdef CONFIG_PPC64
|
|
case 7:
|
|
val = mfspr(SPRN_PMC7);
|
|
break;
|
|
case 8:
|
|
val = mfspr(SPRN_PMC8);
|
|
break;
|
|
#endif /* CONFIG_PPC64 */
|
|
default:
|
|
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
|
|
val = 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write one PMC.
|
|
*/
|
|
static void write_pmc(int idx, unsigned long val)
|
|
{
|
|
switch (idx) {
|
|
case 1:
|
|
mtspr(SPRN_PMC1, val);
|
|
break;
|
|
case 2:
|
|
mtspr(SPRN_PMC2, val);
|
|
break;
|
|
case 3:
|
|
mtspr(SPRN_PMC3, val);
|
|
break;
|
|
case 4:
|
|
mtspr(SPRN_PMC4, val);
|
|
break;
|
|
case 5:
|
|
mtspr(SPRN_PMC5, val);
|
|
break;
|
|
case 6:
|
|
mtspr(SPRN_PMC6, val);
|
|
break;
|
|
#ifdef CONFIG_PPC64
|
|
case 7:
|
|
mtspr(SPRN_PMC7, val);
|
|
break;
|
|
case 8:
|
|
mtspr(SPRN_PMC8, val);
|
|
break;
|
|
#endif /* CONFIG_PPC64 */
|
|
default:
|
|
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if a set of events can all go on the PMU at once.
|
|
* If they can't, this will look at alternative codes for the events
|
|
* and see if any combination of alternative codes is feasible.
|
|
* The feasible set is returned in event[].
|
|
*/
|
|
static int power_check_constraints(u64 event[], unsigned int cflags[],
|
|
int n_ev)
|
|
{
|
|
unsigned long mask, value, nv;
|
|
u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
unsigned long amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
unsigned long avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
unsigned long smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
|
|
int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
|
|
int i, j;
|
|
unsigned long addf = ppmu->add_fields;
|
|
unsigned long tadd = ppmu->test_adder;
|
|
|
|
if (n_ev > ppmu->n_counter)
|
|
return -1;
|
|
|
|
/* First see if the events will go on as-is */
|
|
for (i = 0; i < n_ev; ++i) {
|
|
if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
|
|
&& !ppmu->limited_pmc_event(event[i])) {
|
|
ppmu->get_alternatives(event[i], cflags[i],
|
|
alternatives[i]);
|
|
event[i] = alternatives[i][0];
|
|
}
|
|
if (ppmu->get_constraint(event[i], &amasks[i][0],
|
|
&avalues[i][0]))
|
|
return -1;
|
|
}
|
|
value = mask = 0;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) != 0 ||
|
|
(((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
|
|
break;
|
|
value = nv;
|
|
mask |= amasks[i][0];
|
|
}
|
|
if (i == n_ev)
|
|
return 0; /* all OK */
|
|
|
|
/* doesn't work, gather alternatives... */
|
|
if (!ppmu->get_alternatives)
|
|
return -1;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
choice[i] = 0;
|
|
n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
|
|
alternatives[i]);
|
|
for (j = 1; j < n_alt[i]; ++j)
|
|
ppmu->get_constraint(alternatives[i][j],
|
|
&amasks[i][j], &avalues[i][j]);
|
|
}
|
|
|
|
/* enumerate all possibilities and see if any will work */
|
|
i = 0;
|
|
j = -1;
|
|
value = mask = nv = 0;
|
|
while (i < n_ev) {
|
|
if (j >= 0) {
|
|
/* we're backtracking, restore context */
|
|
value = svalues[i];
|
|
mask = smasks[i];
|
|
j = choice[i];
|
|
}
|
|
/*
|
|
* See if any alternative k for event i,
|
|
* where k > j, will satisfy the constraints.
|
|
*/
|
|
while (++j < n_alt[i]) {
|
|
nv = (value | avalues[i][j]) +
|
|
(value & avalues[i][j] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) == 0 &&
|
|
(((nv + tadd) ^ avalues[i][j])
|
|
& amasks[i][j]) == 0)
|
|
break;
|
|
}
|
|
if (j >= n_alt[i]) {
|
|
/*
|
|
* No feasible alternative, backtrack
|
|
* to event i-1 and continue enumerating its
|
|
* alternatives from where we got up to.
|
|
*/
|
|
if (--i < 0)
|
|
return -1;
|
|
} else {
|
|
/*
|
|
* Found a feasible alternative for event i,
|
|
* remember where we got up to with this event,
|
|
* go on to the next event, and start with
|
|
* the first alternative for it.
|
|
*/
|
|
choice[i] = j;
|
|
svalues[i] = value;
|
|
smasks[i] = mask;
|
|
value = nv;
|
|
mask |= amasks[i][j];
|
|
++i;
|
|
j = -1;
|
|
}
|
|
}
|
|
|
|
/* OK, we have a feasible combination, tell the caller the solution */
|
|
for (i = 0; i < n_ev; ++i)
|
|
event[i] = alternatives[i][choice[i]];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if newly-added counters have consistent settings for
|
|
* exclude_{user,kernel,hv} with each other and any previously
|
|
* added counters.
|
|
*/
|
|
static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
|
|
int n_prev, int n_new)
|
|
{
|
|
int eu = 0, ek = 0, eh = 0;
|
|
int i, n, first;
|
|
struct perf_counter *counter;
|
|
|
|
n = n_prev + n_new;
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
first = 1;
|
|
for (i = 0; i < n; ++i) {
|
|
if (cflags[i] & PPMU_LIMITED_PMC_OK) {
|
|
cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
|
|
continue;
|
|
}
|
|
counter = ctrs[i];
|
|
if (first) {
|
|
eu = counter->attr.exclude_user;
|
|
ek = counter->attr.exclude_kernel;
|
|
eh = counter->attr.exclude_hv;
|
|
first = 0;
|
|
} else if (counter->attr.exclude_user != eu ||
|
|
counter->attr.exclude_kernel != ek ||
|
|
counter->attr.exclude_hv != eh) {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
if (eu || ek || eh)
|
|
for (i = 0; i < n; ++i)
|
|
if (cflags[i] & PPMU_LIMITED_PMC_OK)
|
|
cflags[i] |= PPMU_LIMITED_PMC_REQD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void power_pmu_read(struct perf_counter *counter)
|
|
{
|
|
s64 val, delta, prev;
|
|
|
|
if (!counter->hw.idx)
|
|
return;
|
|
/*
|
|
* Performance monitor interrupts come even when interrupts
|
|
* are soft-disabled, as long as interrupts are hard-enabled.
|
|
* Therefore we treat them like NMIs.
|
|
*/
|
|
do {
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
barrier();
|
|
val = read_pmc(counter->hw.idx);
|
|
} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
|
|
|
|
/* The counters are only 32 bits wide */
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
atomic64_sub(delta, &counter->hw.period_left);
|
|
}
|
|
|
|
/*
|
|
* On some machines, PMC5 and PMC6 can't be written, don't respect
|
|
* the freeze conditions, and don't generate interrupts. This tells
|
|
* us if `counter' is using such a PMC.
|
|
*/
|
|
static int is_limited_pmc(int pmcnum)
|
|
{
|
|
return (ppmu->flags & PPMU_LIMITED_PMC5_6)
|
|
&& (pmcnum == 5 || pmcnum == 6);
|
|
}
|
|
|
|
static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
|
|
unsigned long pmc5, unsigned long pmc6)
|
|
{
|
|
struct perf_counter *counter;
|
|
u64 val, prev, delta;
|
|
int i;
|
|
|
|
for (i = 0; i < cpuhw->n_limited; ++i) {
|
|
counter = cpuhw->limited_counter[i];
|
|
if (!counter->hw.idx)
|
|
continue;
|
|
val = (counter->hw.idx == 5) ? pmc5 : pmc6;
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
counter->hw.idx = 0;
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
}
|
|
|
|
static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
|
|
unsigned long pmc5, unsigned long pmc6)
|
|
{
|
|
struct perf_counter *counter;
|
|
u64 val;
|
|
int i;
|
|
|
|
for (i = 0; i < cpuhw->n_limited; ++i) {
|
|
counter = cpuhw->limited_counter[i];
|
|
counter->hw.idx = cpuhw->limited_hwidx[i];
|
|
val = (counter->hw.idx == 5) ? pmc5 : pmc6;
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
perf_counter_update_userpage(counter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since limited counters don't respect the freeze conditions, we
|
|
* have to read them immediately after freezing or unfreezing the
|
|
* other counters. We try to keep the values from the limited
|
|
* counters as consistent as possible by keeping the delay (in
|
|
* cycles and instructions) between freezing/unfreezing and reading
|
|
* the limited counters as small and consistent as possible.
|
|
* Therefore, if any limited counters are in use, we read them
|
|
* both, and always in the same order, to minimize variability,
|
|
* and do it inside the same asm that writes MMCR0.
|
|
*/
|
|
static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
|
|
{
|
|
unsigned long pmc5, pmc6;
|
|
|
|
if (!cpuhw->n_limited) {
|
|
mtspr(SPRN_MMCR0, mmcr0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write MMCR0, then read PMC5 and PMC6 immediately.
|
|
* To ensure we don't get a performance monitor interrupt
|
|
* between writing MMCR0 and freezing/thawing the limited
|
|
* counters, we first write MMCR0 with the counter overflow
|
|
* interrupt enable bits turned off.
|
|
*/
|
|
asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
|
|
: "=&r" (pmc5), "=&r" (pmc6)
|
|
: "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
|
|
"i" (SPRN_MMCR0),
|
|
"i" (SPRN_PMC5), "i" (SPRN_PMC6));
|
|
|
|
if (mmcr0 & MMCR0_FC)
|
|
freeze_limited_counters(cpuhw, pmc5, pmc6);
|
|
else
|
|
thaw_limited_counters(cpuhw, pmc5, pmc6);
|
|
|
|
/*
|
|
* Write the full MMCR0 including the counter overflow interrupt
|
|
* enable bits, if necessary.
|
|
*/
|
|
if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
|
|
mtspr(SPRN_MMCR0, mmcr0);
|
|
}
|
|
|
|
/*
|
|
* Disable all counters to prevent PMU interrupts and to allow
|
|
* counters to be added or removed.
|
|
*/
|
|
void hw_perf_disable(void)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
|
|
if (!ppmu)
|
|
return;
|
|
local_irq_save(flags);
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
|
|
if (!cpuhw->disabled) {
|
|
cpuhw->disabled = 1;
|
|
cpuhw->n_added = 0;
|
|
|
|
/*
|
|
* Check if we ever enabled the PMU on this cpu.
|
|
*/
|
|
if (!cpuhw->pmcs_enabled) {
|
|
if (ppc_md.enable_pmcs)
|
|
ppc_md.enable_pmcs();
|
|
cpuhw->pmcs_enabled = 1;
|
|
}
|
|
|
|
/*
|
|
* Disable instruction sampling if it was enabled
|
|
*/
|
|
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
|
|
mtspr(SPRN_MMCRA,
|
|
cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mb();
|
|
}
|
|
|
|
/*
|
|
* Set the 'freeze counters' bit.
|
|
* The barrier is to make sure the mtspr has been
|
|
* executed and the PMU has frozen the counters
|
|
* before we return.
|
|
*/
|
|
write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
|
|
mb();
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Re-enable all counters if disable == 0.
|
|
* If we were previously disabled and counters were added, then
|
|
* put the new config on the PMU.
|
|
*/
|
|
void hw_perf_enable(void)
|
|
{
|
|
struct perf_counter *counter;
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
long i;
|
|
unsigned long val;
|
|
s64 left;
|
|
unsigned int hwc_index[MAX_HWCOUNTERS];
|
|
int n_lim;
|
|
int idx;
|
|
|
|
if (!ppmu)
|
|
return;
|
|
local_irq_save(flags);
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
if (!cpuhw->disabled) {
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
cpuhw->disabled = 0;
|
|
|
|
/*
|
|
* If we didn't change anything, or only removed counters,
|
|
* no need to recalculate MMCR* settings and reset the PMCs.
|
|
* Just reenable the PMU with the current MMCR* settings
|
|
* (possibly updated for removal of counters).
|
|
*/
|
|
if (!cpuhw->n_added) {
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
if (cpuhw->n_counters == 0)
|
|
perf_set_pmu_inuse(0);
|
|
goto out_enable;
|
|
}
|
|
|
|
/*
|
|
* Compute MMCR* values for the new set of counters
|
|
*/
|
|
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
|
|
cpuhw->mmcr)) {
|
|
/* shouldn't ever get here */
|
|
printk(KERN_ERR "oops compute_mmcr failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Add in MMCR0 freeze bits corresponding to the
|
|
* attr.exclude_* bits for the first counter.
|
|
* We have already checked that all counters have the
|
|
* same values for these bits as the first counter.
|
|
*/
|
|
counter = cpuhw->counter[0];
|
|
if (counter->attr.exclude_user)
|
|
cpuhw->mmcr[0] |= MMCR0_FCP;
|
|
if (counter->attr.exclude_kernel)
|
|
cpuhw->mmcr[0] |= freeze_counters_kernel;
|
|
if (counter->attr.exclude_hv)
|
|
cpuhw->mmcr[0] |= MMCR0_FCHV;
|
|
|
|
/*
|
|
* Write the new configuration to MMCR* with the freeze
|
|
* bit set and set the hardware counters to their initial values.
|
|
* Then unfreeze the counters.
|
|
*/
|
|
perf_set_pmu_inuse(1);
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
|
|
| MMCR0_FC);
|
|
|
|
/*
|
|
* Read off any pre-existing counters that need to move
|
|
* to another PMC.
|
|
*/
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
|
|
power_pmu_read(counter);
|
|
write_pmc(counter->hw.idx, 0);
|
|
counter->hw.idx = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the PMCs for all the new and moved counters.
|
|
*/
|
|
cpuhw->n_limited = n_lim = 0;
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter->hw.idx)
|
|
continue;
|
|
idx = hwc_index[i] + 1;
|
|
if (is_limited_pmc(idx)) {
|
|
cpuhw->limited_counter[n_lim] = counter;
|
|
cpuhw->limited_hwidx[n_lim] = idx;
|
|
++n_lim;
|
|
continue;
|
|
}
|
|
val = 0;
|
|
if (counter->hw.sample_period) {
|
|
left = atomic64_read(&counter->hw.period_left);
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
}
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
counter->hw.idx = idx;
|
|
write_pmc(idx, val);
|
|
perf_counter_update_userpage(counter);
|
|
}
|
|
cpuhw->n_limited = n_lim;
|
|
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
|
|
|
|
out_enable:
|
|
mb();
|
|
write_mmcr0(cpuhw, cpuhw->mmcr[0]);
|
|
|
|
/*
|
|
* Enable instruction sampling if necessary
|
|
*/
|
|
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
|
|
mb();
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
|
}
|
|
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int collect_events(struct perf_counter *group, int max_count,
|
|
struct perf_counter *ctrs[], u64 *events,
|
|
unsigned int *flags)
|
|
{
|
|
int n = 0;
|
|
struct perf_counter *counter;
|
|
|
|
if (!is_software_counter(group)) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = group;
|
|
flags[n] = group->hw.counter_base;
|
|
events[n++] = group->hw.config;
|
|
}
|
|
list_for_each_entry(counter, &group->sibling_list, list_entry) {
|
|
if (!is_software_counter(counter) &&
|
|
counter->state != PERF_COUNTER_STATE_OFF) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = counter;
|
|
flags[n] = counter->hw.counter_base;
|
|
events[n++] = counter->hw.config;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static void counter_sched_in(struct perf_counter *counter, int cpu)
|
|
{
|
|
counter->state = PERF_COUNTER_STATE_ACTIVE;
|
|
counter->oncpu = cpu;
|
|
counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
|
|
if (is_software_counter(counter))
|
|
counter->pmu->enable(counter);
|
|
}
|
|
|
|
/*
|
|
* Called to enable a whole group of counters.
|
|
* Returns 1 if the group was enabled, or -EAGAIN if it could not be.
|
|
* Assumes the caller has disabled interrupts and has
|
|
* frozen the PMU with hw_perf_save_disable.
|
|
*/
|
|
int hw_perf_group_sched_in(struct perf_counter *group_leader,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx, int cpu)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
long i, n, n0;
|
|
struct perf_counter *sub;
|
|
|
|
if (!ppmu)
|
|
return 0;
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
n0 = cpuhw->n_counters;
|
|
n = collect_events(group_leader, ppmu->n_counter - n0,
|
|
&cpuhw->counter[n0], &cpuhw->events[n0],
|
|
&cpuhw->flags[n0]);
|
|
if (n < 0)
|
|
return -EAGAIN;
|
|
if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
|
|
return -EAGAIN;
|
|
i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
|
|
if (i < 0)
|
|
return -EAGAIN;
|
|
cpuhw->n_counters = n0 + n;
|
|
cpuhw->n_added += n;
|
|
|
|
/*
|
|
* OK, this group can go on; update counter states etc.,
|
|
* and enable any software counters
|
|
*/
|
|
for (i = n0; i < n0 + n; ++i)
|
|
cpuhw->counter[i]->hw.config = cpuhw->events[i];
|
|
cpuctx->active_oncpu += n;
|
|
n = 1;
|
|
counter_sched_in(group_leader, cpu);
|
|
list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
|
|
if (sub->state != PERF_COUNTER_STATE_OFF) {
|
|
counter_sched_in(sub, cpu);
|
|
++n;
|
|
}
|
|
}
|
|
ctx->nr_active += n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add a counter to the PMU.
|
|
* If all counters are not already frozen, then we disable and
|
|
* re-enable the PMU in order to get hw_perf_enable to do the
|
|
* actual work of reconfiguring the PMU.
|
|
*/
|
|
static int power_pmu_enable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
int n0;
|
|
int ret = -EAGAIN;
|
|
|
|
local_irq_save(flags);
|
|
perf_disable();
|
|
|
|
/*
|
|
* Add the counter to the list (if there is room)
|
|
* and check whether the total set is still feasible.
|
|
*/
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
n0 = cpuhw->n_counters;
|
|
if (n0 >= ppmu->n_counter)
|
|
goto out;
|
|
cpuhw->counter[n0] = counter;
|
|
cpuhw->events[n0] = counter->hw.config;
|
|
cpuhw->flags[n0] = counter->hw.counter_base;
|
|
if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
|
|
goto out;
|
|
if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
|
|
goto out;
|
|
|
|
counter->hw.config = cpuhw->events[n0];
|
|
++cpuhw->n_counters;
|
|
++cpuhw->n_added;
|
|
|
|
ret = 0;
|
|
out:
|
|
perf_enable();
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a counter from the PMU.
|
|
*/
|
|
static void power_pmu_disable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
long i;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
perf_disable();
|
|
|
|
power_pmu_read(counter);
|
|
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
if (counter == cpuhw->counter[i]) {
|
|
while (++i < cpuhw->n_counters)
|
|
cpuhw->counter[i-1] = cpuhw->counter[i];
|
|
--cpuhw->n_counters;
|
|
ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
|
|
if (counter->hw.idx) {
|
|
write_pmc(counter->hw.idx, 0);
|
|
counter->hw.idx = 0;
|
|
}
|
|
perf_counter_update_userpage(counter);
|
|
break;
|
|
}
|
|
}
|
|
for (i = 0; i < cpuhw->n_limited; ++i)
|
|
if (counter == cpuhw->limited_counter[i])
|
|
break;
|
|
if (i < cpuhw->n_limited) {
|
|
while (++i < cpuhw->n_limited) {
|
|
cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
|
|
cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
|
|
}
|
|
--cpuhw->n_limited;
|
|
}
|
|
if (cpuhw->n_counters == 0) {
|
|
/* disable exceptions if no counters are running */
|
|
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
|
|
}
|
|
|
|
perf_enable();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Re-enable interrupts on a counter after they were throttled
|
|
* because they were coming too fast.
|
|
*/
|
|
static void power_pmu_unthrottle(struct perf_counter *counter)
|
|
{
|
|
s64 val, left;
|
|
unsigned long flags;
|
|
|
|
if (!counter->hw.idx || !counter->hw.sample_period)
|
|
return;
|
|
local_irq_save(flags);
|
|
perf_disable();
|
|
power_pmu_read(counter);
|
|
left = counter->hw.sample_period;
|
|
counter->hw.last_period = left;
|
|
val = 0;
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
write_pmc(counter->hw.idx, val);
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
atomic64_set(&counter->hw.period_left, left);
|
|
perf_counter_update_userpage(counter);
|
|
perf_enable();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
struct pmu power_pmu = {
|
|
.enable = power_pmu_enable,
|
|
.disable = power_pmu_disable,
|
|
.read = power_pmu_read,
|
|
.unthrottle = power_pmu_unthrottle,
|
|
};
|
|
|
|
/*
|
|
* Return 1 if we might be able to put counter on a limited PMC,
|
|
* or 0 if not.
|
|
* A counter can only go on a limited PMC if it counts something
|
|
* that a limited PMC can count, doesn't require interrupts, and
|
|
* doesn't exclude any processor mode.
|
|
*/
|
|
static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
|
|
unsigned int flags)
|
|
{
|
|
int n;
|
|
u64 alt[MAX_EVENT_ALTERNATIVES];
|
|
|
|
if (counter->attr.exclude_user
|
|
|| counter->attr.exclude_kernel
|
|
|| counter->attr.exclude_hv
|
|
|| counter->attr.sample_period)
|
|
return 0;
|
|
|
|
if (ppmu->limited_pmc_event(ev))
|
|
return 1;
|
|
|
|
/*
|
|
* The requested event isn't on a limited PMC already;
|
|
* see if any alternative code goes on a limited PMC.
|
|
*/
|
|
if (!ppmu->get_alternatives)
|
|
return 0;
|
|
|
|
flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
|
|
n = ppmu->get_alternatives(ev, flags, alt);
|
|
|
|
return n > 0;
|
|
}
|
|
|
|
/*
|
|
* Find an alternative event that goes on a normal PMC, if possible,
|
|
* and return the event code, or 0 if there is no such alternative.
|
|
* (Note: event code 0 is "don't count" on all machines.)
|
|
*/
|
|
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
|
|
{
|
|
u64 alt[MAX_EVENT_ALTERNATIVES];
|
|
int n;
|
|
|
|
flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
|
|
n = ppmu->get_alternatives(ev, flags, alt);
|
|
if (!n)
|
|
return 0;
|
|
return alt[0];
|
|
}
|
|
|
|
/* Number of perf_counters counting hardware events */
|
|
static atomic_t num_counters;
|
|
/* Used to avoid races in calling reserve/release_pmc_hardware */
|
|
static DEFINE_MUTEX(pmc_reserve_mutex);
|
|
|
|
/*
|
|
* Release the PMU if this is the last perf_counter.
|
|
*/
|
|
static void hw_perf_counter_destroy(struct perf_counter *counter)
|
|
{
|
|
if (!atomic_add_unless(&num_counters, -1, 1)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_dec_return(&num_counters) == 0)
|
|
release_pmc_hardware();
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Translate a generic cache event config to a raw event code.
|
|
*/
|
|
static int hw_perf_cache_event(u64 config, u64 *eventp)
|
|
{
|
|
unsigned long type, op, result;
|
|
int ev;
|
|
|
|
if (!ppmu->cache_events)
|
|
return -EINVAL;
|
|
|
|
/* unpack config */
|
|
type = config & 0xff;
|
|
op = (config >> 8) & 0xff;
|
|
result = (config >> 16) & 0xff;
|
|
|
|
if (type >= PERF_COUNT_HW_CACHE_MAX ||
|
|
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
|
|
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
ev = (*ppmu->cache_events)[type][op][result];
|
|
if (ev == 0)
|
|
return -EOPNOTSUPP;
|
|
if (ev == -1)
|
|
return -EINVAL;
|
|
*eventp = ev;
|
|
return 0;
|
|
}
|
|
|
|
const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
u64 ev;
|
|
unsigned long flags;
|
|
struct perf_counter *ctrs[MAX_HWCOUNTERS];
|
|
u64 events[MAX_HWCOUNTERS];
|
|
unsigned int cflags[MAX_HWCOUNTERS];
|
|
int n;
|
|
int err;
|
|
|
|
if (!ppmu)
|
|
return ERR_PTR(-ENXIO);
|
|
switch (counter->attr.type) {
|
|
case PERF_TYPE_HARDWARE:
|
|
ev = counter->attr.config;
|
|
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
ev = ppmu->generic_events[ev];
|
|
break;
|
|
case PERF_TYPE_HW_CACHE:
|
|
err = hw_perf_cache_event(counter->attr.config, &ev);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
break;
|
|
case PERF_TYPE_RAW:
|
|
ev = counter->attr.config;
|
|
break;
|
|
default:
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
counter->hw.config_base = ev;
|
|
counter->hw.idx = 0;
|
|
|
|
/*
|
|
* If we are not running on a hypervisor, force the
|
|
* exclude_hv bit to 0 so that we don't care what
|
|
* the user set it to.
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR))
|
|
counter->attr.exclude_hv = 0;
|
|
|
|
/*
|
|
* If this is a per-task counter, then we can use
|
|
* PM_RUN_* events interchangeably with their non RUN_*
|
|
* equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
|
|
* XXX we should check if the task is an idle task.
|
|
*/
|
|
flags = 0;
|
|
if (counter->ctx->task)
|
|
flags |= PPMU_ONLY_COUNT_RUN;
|
|
|
|
/*
|
|
* If this machine has limited counters, check whether this
|
|
* event could go on a limited counter.
|
|
*/
|
|
if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
|
|
if (can_go_on_limited_pmc(counter, ev, flags)) {
|
|
flags |= PPMU_LIMITED_PMC_OK;
|
|
} else if (ppmu->limited_pmc_event(ev)) {
|
|
/*
|
|
* The requested event is on a limited PMC,
|
|
* but we can't use a limited PMC; see if any
|
|
* alternative goes on a normal PMC.
|
|
*/
|
|
ev = normal_pmc_alternative(ev, flags);
|
|
if (!ev)
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is in a group, check if it can go on with all the
|
|
* other hardware counters in the group. We assume the counter
|
|
* hasn't been linked into its leader's sibling list at this point.
|
|
*/
|
|
n = 0;
|
|
if (counter->group_leader != counter) {
|
|
n = collect_events(counter->group_leader, ppmu->n_counter - 1,
|
|
ctrs, events, cflags);
|
|
if (n < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
events[n] = ev;
|
|
ctrs[n] = counter;
|
|
cflags[n] = flags;
|
|
if (check_excludes(ctrs, cflags, n, 1))
|
|
return ERR_PTR(-EINVAL);
|
|
if (power_check_constraints(events, cflags, n + 1))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
counter->hw.config = events[n];
|
|
counter->hw.counter_base = cflags[n];
|
|
counter->hw.last_period = counter->hw.sample_period;
|
|
atomic64_set(&counter->hw.period_left, counter->hw.last_period);
|
|
|
|
/*
|
|
* See if we need to reserve the PMU.
|
|
* If no counters are currently in use, then we have to take a
|
|
* mutex to ensure that we don't race with another task doing
|
|
* reserve_pmc_hardware or release_pmc_hardware.
|
|
*/
|
|
err = 0;
|
|
if (!atomic_inc_not_zero(&num_counters)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_read(&num_counters) == 0 &&
|
|
reserve_pmc_hardware(perf_counter_interrupt))
|
|
err = -EBUSY;
|
|
else
|
|
atomic_inc(&num_counters);
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
counter->destroy = hw_perf_counter_destroy;
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
return &power_pmu;
|
|
}
|
|
|
|
/*
|
|
* A counter has overflowed; update its count and record
|
|
* things if requested. Note that interrupts are hard-disabled
|
|
* here so there is no possibility of being interrupted.
|
|
*/
|
|
static void record_and_restart(struct perf_counter *counter, unsigned long val,
|
|
struct pt_regs *regs, int nmi)
|
|
{
|
|
u64 period = counter->hw.sample_period;
|
|
s64 prev, delta, left;
|
|
int record = 0;
|
|
|
|
/* we don't have to worry about interrupts here */
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
|
|
/*
|
|
* See if the total period for this counter has expired,
|
|
* and update for the next period.
|
|
*/
|
|
val = 0;
|
|
left = atomic64_read(&counter->hw.period_left) - delta;
|
|
if (period) {
|
|
if (left <= 0) {
|
|
left += period;
|
|
if (left <= 0)
|
|
left = period;
|
|
record = 1;
|
|
}
|
|
if (left < 0x80000000LL)
|
|
val = 0x80000000LL - left;
|
|
}
|
|
|
|
/*
|
|
* Finally record data if requested.
|
|
*/
|
|
if (record) {
|
|
struct perf_sample_data data = {
|
|
.regs = regs,
|
|
.addr = 0,
|
|
.period = counter->hw.last_period,
|
|
};
|
|
|
|
if (counter->attr.sample_type & PERF_SAMPLE_ADDR)
|
|
perf_get_data_addr(regs, &data.addr);
|
|
|
|
if (perf_counter_overflow(counter, nmi, &data)) {
|
|
/*
|
|
* Interrupts are coming too fast - throttle them
|
|
* by setting the counter to 0, so it will be
|
|
* at least 2^30 cycles until the next interrupt
|
|
* (assuming each counter counts at most 2 counts
|
|
* per cycle).
|
|
*/
|
|
val = 0;
|
|
left = ~0ULL >> 1;
|
|
}
|
|
}
|
|
|
|
write_pmc(counter->hw.idx, val);
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
atomic64_set(&counter->hw.period_left, left);
|
|
perf_counter_update_userpage(counter);
|
|
}
|
|
|
|
/*
|
|
* Called from generic code to get the misc flags (i.e. processor mode)
|
|
* for an event.
|
|
*/
|
|
unsigned long perf_misc_flags(struct pt_regs *regs)
|
|
{
|
|
u32 flags = perf_get_misc_flags(regs);
|
|
|
|
if (flags)
|
|
return flags;
|
|
return user_mode(regs) ? PERF_EVENT_MISC_USER :
|
|
PERF_EVENT_MISC_KERNEL;
|
|
}
|
|
|
|
/*
|
|
* Called from generic code to get the instruction pointer
|
|
* for an event.
|
|
*/
|
|
unsigned long perf_instruction_pointer(struct pt_regs *regs)
|
|
{
|
|
unsigned long ip;
|
|
|
|
if (TRAP(regs) != 0xf00)
|
|
return regs->nip; /* not a PMU interrupt */
|
|
|
|
ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
|
|
return ip;
|
|
}
|
|
|
|
/*
|
|
* Performance monitor interrupt stuff
|
|
*/
|
|
static void perf_counter_interrupt(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
struct perf_counter *counter;
|
|
unsigned long val;
|
|
int found = 0;
|
|
int nmi;
|
|
|
|
if (cpuhw->n_limited)
|
|
freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
|
|
mfspr(SPRN_PMC6));
|
|
|
|
perf_read_regs(regs);
|
|
|
|
nmi = perf_intr_is_nmi(regs);
|
|
if (nmi)
|
|
nmi_enter();
|
|
else
|
|
irq_enter();
|
|
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
|
|
continue;
|
|
val = read_pmc(counter->hw.idx);
|
|
if ((int)val < 0) {
|
|
/* counter has overflowed */
|
|
found = 1;
|
|
record_and_restart(counter, val, regs, nmi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In case we didn't find and reset the counter that caused
|
|
* the interrupt, scan all counters and reset any that are
|
|
* negative, to avoid getting continual interrupts.
|
|
* Any that we processed in the previous loop will not be negative.
|
|
*/
|
|
if (!found) {
|
|
for (i = 0; i < ppmu->n_counter; ++i) {
|
|
if (is_limited_pmc(i + 1))
|
|
continue;
|
|
val = read_pmc(i + 1);
|
|
if ((int)val < 0)
|
|
write_pmc(i + 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset MMCR0 to its normal value. This will set PMXE and
|
|
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
|
|
* and thus allow interrupts to occur again.
|
|
* XXX might want to use MSR.PM to keep the counters frozen until
|
|
* we get back out of this interrupt.
|
|
*/
|
|
write_mmcr0(cpuhw, cpuhw->mmcr[0]);
|
|
|
|
if (nmi)
|
|
nmi_exit();
|
|
else
|
|
irq_exit();
|
|
}
|
|
|
|
void hw_perf_counter_setup(int cpu)
|
|
{
|
|
struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
|
|
|
|
if (!ppmu)
|
|
return;
|
|
memset(cpuhw, 0, sizeof(*cpuhw));
|
|
cpuhw->mmcr[0] = MMCR0_FC;
|
|
}
|
|
|
|
int register_power_pmu(struct power_pmu *pmu)
|
|
{
|
|
if (ppmu)
|
|
return -EBUSY; /* something's already registered */
|
|
|
|
ppmu = pmu;
|
|
pr_info("%s performance monitor hardware support registered\n",
|
|
pmu->name);
|
|
|
|
#ifdef MSR_HV
|
|
/*
|
|
* Use FCHV to ignore kernel events if MSR.HV is set.
|
|
*/
|
|
if (mfmsr() & MSR_HV)
|
|
freeze_counters_kernel = MMCR0_FCHV;
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
return 0;
|
|
}
|