forked from Minki/linux
03c698c93f
with hardware slow in negotiation, the system did freeze while trying to mount root on nfs at boot time. the link state has not been initialised so network stack tried to start transmission right away. this caused instant retries, as the driver solely stated business upon link down, rendering the system unusable. notify carrier off initially to prevent transmission until phylib will report link up. Signed-off-by: Oskar Schirmer <oskar@linutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
1432 lines
36 KiB
C
1432 lines
36 KiB
C
/*
|
|
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
|
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* Right now, I am very wasteful with the buffers. I allocate memory
|
|
* pages and then divide them into 2K frame buffers. This way I know I
|
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
|
* will be much more memory efficient and will easily handle lots of
|
|
* small packets.
|
|
*
|
|
* Much better multiple PHY support by Magnus Damm.
|
|
* Copyright (c) 2000 Ericsson Radio Systems AB.
|
|
*
|
|
* Support for FEC controller of ColdFire processors.
|
|
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
|
|
*
|
|
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
|
|
* Copyright (c) 2004-2006 Macq Electronique SA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/fec.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#ifndef CONFIG_ARCH_MXC
|
|
#include <asm/coldfire.h>
|
|
#include <asm/mcfsim.h>
|
|
#endif
|
|
|
|
#include "fec.h"
|
|
|
|
#ifdef CONFIG_ARCH_MXC
|
|
#include <mach/hardware.h>
|
|
#define FEC_ALIGNMENT 0xf
|
|
#else
|
|
#define FEC_ALIGNMENT 0x3
|
|
#endif
|
|
|
|
/*
|
|
* Define the fixed address of the FEC hardware.
|
|
*/
|
|
#if defined(CONFIG_M5272)
|
|
|
|
static unsigned char fec_mac_default[] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
|
|
/*
|
|
* Some hardware gets it MAC address out of local flash memory.
|
|
* if this is non-zero then assume it is the address to get MAC from.
|
|
*/
|
|
#if defined(CONFIG_NETtel)
|
|
#define FEC_FLASHMAC 0xf0006006
|
|
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
|
|
#define FEC_FLASHMAC 0xf0006000
|
|
#elif defined(CONFIG_CANCam)
|
|
#define FEC_FLASHMAC 0xf0020000
|
|
#elif defined (CONFIG_M5272C3)
|
|
#define FEC_FLASHMAC (0xffe04000 + 4)
|
|
#elif defined(CONFIG_MOD5272)
|
|
#define FEC_FLASHMAC 0xffc0406b
|
|
#else
|
|
#define FEC_FLASHMAC 0
|
|
#endif
|
|
#endif /* CONFIG_M5272 */
|
|
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
|
* pool. The code may assume these are power of two, so it it best
|
|
* to keep them that size.
|
|
* We don't need to allocate pages for the transmitter. We just use
|
|
* the skbuffer directly.
|
|
*/
|
|
#define FEC_ENET_RX_PAGES 8
|
|
#define FEC_ENET_RX_FRSIZE 2048
|
|
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
|
|
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
|
|
#define FEC_ENET_TX_FRSIZE 2048
|
|
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
|
|
#define TX_RING_SIZE 16 /* Must be power of two */
|
|
#define TX_RING_MOD_MASK 15 /* for this to work */
|
|
|
|
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
|
|
#error "FEC: descriptor ring size constants too large"
|
|
#endif
|
|
|
|
/* Interrupt events/masks. */
|
|
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
|
|
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
|
|
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
|
|
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
|
|
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
|
|
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
|
|
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
|
|
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
|
|
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
|
|
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
|
|
|
|
#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
|
|
|
|
/* The FEC stores dest/src/type, data, and checksum for receive packets.
|
|
*/
|
|
#define PKT_MAXBUF_SIZE 1518
|
|
#define PKT_MINBUF_SIZE 64
|
|
#define PKT_MAXBLR_SIZE 1520
|
|
|
|
|
|
/*
|
|
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
|
|
* size bits. Other FEC hardware does not, so we need to take that into
|
|
* account when setting it.
|
|
*/
|
|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
|
|
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
|
|
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
|
|
#else
|
|
#define OPT_FRAME_SIZE 0
|
|
#endif
|
|
|
|
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
|
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
|
* cur_rx and cur_tx point to the currently available buffer.
|
|
* The dirty_tx tracks the current buffer that is being sent by the
|
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
|
* empty and completely full conditions. The empty/ready indicator in
|
|
* the buffer descriptor determines the actual condition.
|
|
*/
|
|
struct fec_enet_private {
|
|
/* Hardware registers of the FEC device */
|
|
void __iomem *hwp;
|
|
|
|
struct net_device *netdev;
|
|
|
|
struct clk *clk;
|
|
|
|
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
|
|
unsigned char *tx_bounce[TX_RING_SIZE];
|
|
struct sk_buff* tx_skbuff[TX_RING_SIZE];
|
|
struct sk_buff* rx_skbuff[RX_RING_SIZE];
|
|
ushort skb_cur;
|
|
ushort skb_dirty;
|
|
|
|
/* CPM dual port RAM relative addresses */
|
|
dma_addr_t bd_dma;
|
|
/* Address of Rx and Tx buffers */
|
|
struct bufdesc *rx_bd_base;
|
|
struct bufdesc *tx_bd_base;
|
|
/* The next free ring entry */
|
|
struct bufdesc *cur_rx, *cur_tx;
|
|
/* The ring entries to be free()ed */
|
|
struct bufdesc *dirty_tx;
|
|
|
|
uint tx_full;
|
|
/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
|
|
spinlock_t hw_lock;
|
|
|
|
struct platform_device *pdev;
|
|
|
|
int opened;
|
|
|
|
/* Phylib and MDIO interface */
|
|
struct mii_bus *mii_bus;
|
|
struct phy_device *phy_dev;
|
|
int mii_timeout;
|
|
uint phy_speed;
|
|
phy_interface_t phy_interface;
|
|
int index;
|
|
int link;
|
|
int full_duplex;
|
|
struct completion mdio_done;
|
|
};
|
|
|
|
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
|
|
static void fec_enet_tx(struct net_device *dev);
|
|
static void fec_enet_rx(struct net_device *dev);
|
|
static int fec_enet_close(struct net_device *dev);
|
|
static void fec_restart(struct net_device *dev, int duplex);
|
|
static void fec_stop(struct net_device *dev);
|
|
|
|
/* FEC MII MMFR bits definition */
|
|
#define FEC_MMFR_ST (1 << 30)
|
|
#define FEC_MMFR_OP_READ (2 << 28)
|
|
#define FEC_MMFR_OP_WRITE (1 << 28)
|
|
#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
|
|
#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
|
|
#define FEC_MMFR_TA (2 << 16)
|
|
#define FEC_MMFR_DATA(v) (v & 0xffff)
|
|
|
|
#define FEC_MII_TIMEOUT 1000 /* us */
|
|
|
|
/* Transmitter timeout */
|
|
#define TX_TIMEOUT (2 * HZ)
|
|
|
|
static netdev_tx_t
|
|
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct bufdesc *bdp;
|
|
void *bufaddr;
|
|
unsigned short status;
|
|
unsigned long flags;
|
|
|
|
if (!fep->link) {
|
|
/* Link is down or autonegotiation is in progress. */
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
spin_lock_irqsave(&fep->hw_lock, flags);
|
|
/* Fill in a Tx ring entry */
|
|
bdp = fep->cur_tx;
|
|
|
|
status = bdp->cbd_sc;
|
|
|
|
if (status & BD_ENET_TX_READY) {
|
|
/* Ooops. All transmit buffers are full. Bail out.
|
|
* This should not happen, since dev->tbusy should be set.
|
|
*/
|
|
printk("%s: tx queue full!.\n", dev->name);
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* Clear all of the status flags */
|
|
status &= ~BD_ENET_TX_STATS;
|
|
|
|
/* Set buffer length and buffer pointer */
|
|
bufaddr = skb->data;
|
|
bdp->cbd_datlen = skb->len;
|
|
|
|
/*
|
|
* On some FEC implementations data must be aligned on
|
|
* 4-byte boundaries. Use bounce buffers to copy data
|
|
* and get it aligned. Ugh.
|
|
*/
|
|
if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
|
|
unsigned int index;
|
|
index = bdp - fep->tx_bd_base;
|
|
memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
|
|
bufaddr = fep->tx_bounce[index];
|
|
}
|
|
|
|
/* Save skb pointer */
|
|
fep->tx_skbuff[fep->skb_cur] = skb;
|
|
|
|
dev->stats.tx_bytes += skb->len;
|
|
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
|
|
/* Push the data cache so the CPM does not get stale memory
|
|
* data.
|
|
*/
|
|
bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
|
|
FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
|
|
|
|
/* Send it on its way. Tell FEC it's ready, interrupt when done,
|
|
* it's the last BD of the frame, and to put the CRC on the end.
|
|
*/
|
|
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
|
|
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
bdp->cbd_sc = status;
|
|
|
|
/* Trigger transmission start */
|
|
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
|
|
|
|
/* If this was the last BD in the ring, start at the beginning again. */
|
|
if (status & BD_ENET_TX_WRAP)
|
|
bdp = fep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
if (bdp == fep->dirty_tx) {
|
|
fep->tx_full = 1;
|
|
netif_stop_queue(dev);
|
|
}
|
|
|
|
fep->cur_tx = bdp;
|
|
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void
|
|
fec_timeout(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
dev->stats.tx_errors++;
|
|
|
|
fec_restart(dev, fep->full_duplex);
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
static irqreturn_t
|
|
fec_enet_interrupt(int irq, void * dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
uint int_events;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
do {
|
|
int_events = readl(fep->hwp + FEC_IEVENT);
|
|
writel(int_events, fep->hwp + FEC_IEVENT);
|
|
|
|
if (int_events & FEC_ENET_RXF) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_rx(dev);
|
|
}
|
|
|
|
/* Transmit OK, or non-fatal error. Update the buffer
|
|
* descriptors. FEC handles all errors, we just discover
|
|
* them as part of the transmit process.
|
|
*/
|
|
if (int_events & FEC_ENET_TXF) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_tx(dev);
|
|
}
|
|
|
|
if (int_events & FEC_ENET_MII) {
|
|
ret = IRQ_HANDLED;
|
|
complete(&fep->mdio_done);
|
|
}
|
|
} while (int_events);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void
|
|
fec_enet_tx(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct bufdesc *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
|
|
fep = netdev_priv(dev);
|
|
spin_lock(&fep->hw_lock);
|
|
bdp = fep->dirty_tx;
|
|
|
|
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
|
|
if (bdp == fep->cur_tx && fep->tx_full == 0)
|
|
break;
|
|
|
|
dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
|
|
bdp->cbd_bufaddr = 0;
|
|
|
|
skb = fep->tx_skbuff[fep->skb_dirty];
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
|
|
BD_ENET_TX_RL | BD_ENET_TX_UN |
|
|
BD_ENET_TX_CSL)) {
|
|
dev->stats.tx_errors++;
|
|
if (status & BD_ENET_TX_HB) /* No heartbeat */
|
|
dev->stats.tx_heartbeat_errors++;
|
|
if (status & BD_ENET_TX_LC) /* Late collision */
|
|
dev->stats.tx_window_errors++;
|
|
if (status & BD_ENET_TX_RL) /* Retrans limit */
|
|
dev->stats.tx_aborted_errors++;
|
|
if (status & BD_ENET_TX_UN) /* Underrun */
|
|
dev->stats.tx_fifo_errors++;
|
|
if (status & BD_ENET_TX_CSL) /* Carrier lost */
|
|
dev->stats.tx_carrier_errors++;
|
|
} else {
|
|
dev->stats.tx_packets++;
|
|
}
|
|
|
|
if (status & BD_ENET_TX_READY)
|
|
printk("HEY! Enet xmit interrupt and TX_READY.\n");
|
|
|
|
/* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (status & BD_ENET_TX_DEF)
|
|
dev->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this last transmit */
|
|
dev_kfree_skb_any(skb);
|
|
fep->tx_skbuff[fep->skb_dirty] = NULL;
|
|
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
|
|
/* Update pointer to next buffer descriptor to be transmitted */
|
|
if (status & BD_ENET_TX_WRAP)
|
|
bdp = fep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* Since we have freed up a buffer, the ring is no longer full
|
|
*/
|
|
if (fep->tx_full) {
|
|
fep->tx_full = 0;
|
|
if (netif_queue_stopped(dev))
|
|
netif_wake_queue(dev);
|
|
}
|
|
}
|
|
fep->dirty_tx = bdp;
|
|
spin_unlock(&fep->hw_lock);
|
|
}
|
|
|
|
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
|
* When we update through the ring, if the next incoming buffer has
|
|
* not been given to the system, we just set the empty indicator,
|
|
* effectively tossing the packet.
|
|
*/
|
|
static void
|
|
fec_enet_rx(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct bufdesc *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
ushort pkt_len;
|
|
__u8 *data;
|
|
|
|
#ifdef CONFIG_M532x
|
|
flush_cache_all();
|
|
#endif
|
|
|
|
spin_lock(&fep->hw_lock);
|
|
|
|
/* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = fep->cur_rx;
|
|
|
|
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
|
|
|
|
/* Since we have allocated space to hold a complete frame,
|
|
* the last indicator should be set.
|
|
*/
|
|
if ((status & BD_ENET_RX_LAST) == 0)
|
|
printk("FEC ENET: rcv is not +last\n");
|
|
|
|
if (!fep->opened)
|
|
goto rx_processing_done;
|
|
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
|
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
|
|
dev->stats.rx_errors++;
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
|
|
/* Frame too long or too short. */
|
|
dev->stats.rx_length_errors++;
|
|
}
|
|
if (status & BD_ENET_RX_NO) /* Frame alignment */
|
|
dev->stats.rx_frame_errors++;
|
|
if (status & BD_ENET_RX_CR) /* CRC Error */
|
|
dev->stats.rx_crc_errors++;
|
|
if (status & BD_ENET_RX_OV) /* FIFO overrun */
|
|
dev->stats.rx_fifo_errors++;
|
|
}
|
|
|
|
/* Report late collisions as a frame error.
|
|
* On this error, the BD is closed, but we don't know what we
|
|
* have in the buffer. So, just drop this frame on the floor.
|
|
*/
|
|
if (status & BD_ENET_RX_CL) {
|
|
dev->stats.rx_errors++;
|
|
dev->stats.rx_frame_errors++;
|
|
goto rx_processing_done;
|
|
}
|
|
|
|
/* Process the incoming frame. */
|
|
dev->stats.rx_packets++;
|
|
pkt_len = bdp->cbd_datlen;
|
|
dev->stats.rx_bytes += pkt_len;
|
|
data = (__u8*)__va(bdp->cbd_bufaddr);
|
|
|
|
dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* This does 16 byte alignment, exactly what we need.
|
|
* The packet length includes FCS, but we don't want to
|
|
* include that when passing upstream as it messes up
|
|
* bridging applications.
|
|
*/
|
|
skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
|
|
|
|
if (unlikely(!skb)) {
|
|
printk("%s: Memory squeeze, dropping packet.\n",
|
|
dev->name);
|
|
dev->stats.rx_dropped++;
|
|
} else {
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
skb_put(skb, pkt_len - 4); /* Make room */
|
|
skb_copy_to_linear_data(skb, data, pkt_len - 4);
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
netif_rx(skb);
|
|
}
|
|
|
|
bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
|
|
DMA_FROM_DEVICE);
|
|
rx_processing_done:
|
|
/* Clear the status flags for this buffer */
|
|
status &= ~BD_ENET_RX_STATS;
|
|
|
|
/* Mark the buffer empty */
|
|
status |= BD_ENET_RX_EMPTY;
|
|
bdp->cbd_sc = status;
|
|
|
|
/* Update BD pointer to next entry */
|
|
if (status & BD_ENET_RX_WRAP)
|
|
bdp = fep->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
/* Doing this here will keep the FEC running while we process
|
|
* incoming frames. On a heavily loaded network, we should be
|
|
* able to keep up at the expense of system resources.
|
|
*/
|
|
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
|
}
|
|
fep->cur_rx = bdp;
|
|
|
|
spin_unlock(&fep->hw_lock);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
#ifdef CONFIG_M5272
|
|
static void __inline__ fec_get_mac(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
unsigned char *iap, tmpaddr[ETH_ALEN];
|
|
|
|
if (FEC_FLASHMAC) {
|
|
/*
|
|
* Get MAC address from FLASH.
|
|
* If it is all 1's or 0's, use the default.
|
|
*/
|
|
iap = (unsigned char *)FEC_FLASHMAC;
|
|
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
|
|
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
|
|
iap = fec_mac_default;
|
|
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
|
|
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
|
|
iap = fec_mac_default;
|
|
} else {
|
|
*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
|
|
*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
|
|
iap = &tmpaddr[0];
|
|
}
|
|
|
|
memcpy(dev->dev_addr, iap, ETH_ALEN);
|
|
|
|
/* Adjust MAC if using default MAC address */
|
|
if (iap == fec_mac_default)
|
|
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
|
|
}
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Phy section
|
|
*/
|
|
static void fec_enet_adjust_link(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct phy_device *phy_dev = fep->phy_dev;
|
|
unsigned long flags;
|
|
|
|
int status_change = 0;
|
|
|
|
spin_lock_irqsave(&fep->hw_lock, flags);
|
|
|
|
/* Prevent a state halted on mii error */
|
|
if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
|
|
phy_dev->state = PHY_RESUMING;
|
|
goto spin_unlock;
|
|
}
|
|
|
|
/* Duplex link change */
|
|
if (phy_dev->link) {
|
|
if (fep->full_duplex != phy_dev->duplex) {
|
|
fec_restart(dev, phy_dev->duplex);
|
|
status_change = 1;
|
|
}
|
|
}
|
|
|
|
/* Link on or off change */
|
|
if (phy_dev->link != fep->link) {
|
|
fep->link = phy_dev->link;
|
|
if (phy_dev->link)
|
|
fec_restart(dev, phy_dev->duplex);
|
|
else
|
|
fec_stop(dev);
|
|
status_change = 1;
|
|
}
|
|
|
|
spin_unlock:
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
|
|
if (status_change)
|
|
phy_print_status(phy_dev);
|
|
}
|
|
|
|
static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
|
|
{
|
|
struct fec_enet_private *fep = bus->priv;
|
|
unsigned long time_left;
|
|
|
|
fep->mii_timeout = 0;
|
|
init_completion(&fep->mdio_done);
|
|
|
|
/* start a read op */
|
|
writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
|
|
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
|
|
FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
|
|
|
|
/* wait for end of transfer */
|
|
time_left = wait_for_completion_timeout(&fep->mdio_done,
|
|
usecs_to_jiffies(FEC_MII_TIMEOUT));
|
|
if (time_left == 0) {
|
|
fep->mii_timeout = 1;
|
|
printk(KERN_ERR "FEC: MDIO read timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* return value */
|
|
return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
|
|
}
|
|
|
|
static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
|
|
u16 value)
|
|
{
|
|
struct fec_enet_private *fep = bus->priv;
|
|
unsigned long time_left;
|
|
|
|
fep->mii_timeout = 0;
|
|
init_completion(&fep->mdio_done);
|
|
|
|
/* start a read op */
|
|
writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
|
|
FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
|
|
FEC_MMFR_TA | FEC_MMFR_DATA(value),
|
|
fep->hwp + FEC_MII_DATA);
|
|
|
|
/* wait for end of transfer */
|
|
time_left = wait_for_completion_timeout(&fep->mdio_done,
|
|
usecs_to_jiffies(FEC_MII_TIMEOUT));
|
|
if (time_left == 0) {
|
|
fep->mii_timeout = 1;
|
|
printk(KERN_ERR "FEC: MDIO write timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mdio_reset(struct mii_bus *bus)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mii_probe(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct phy_device *phy_dev = NULL;
|
|
int ret;
|
|
|
|
fep->phy_dev = NULL;
|
|
|
|
/* find the first phy */
|
|
phy_dev = phy_find_first(fep->mii_bus);
|
|
if (!phy_dev) {
|
|
printk(KERN_ERR "%s: no PHY found\n", dev->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* attach the mac to the phy */
|
|
ret = phy_connect_direct(dev, phy_dev,
|
|
&fec_enet_adjust_link, 0,
|
|
PHY_INTERFACE_MODE_MII);
|
|
if (ret) {
|
|
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
|
|
return ret;
|
|
}
|
|
|
|
/* mask with MAC supported features */
|
|
phy_dev->supported &= PHY_BASIC_FEATURES;
|
|
phy_dev->advertising = phy_dev->supported;
|
|
|
|
fep->phy_dev = phy_dev;
|
|
fep->link = 0;
|
|
fep->full_duplex = 0;
|
|
|
|
printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
|
|
"(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
|
|
fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
|
|
fep->phy_dev->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_mii_init(struct platform_device *pdev)
|
|
{
|
|
struct net_device *dev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
int err = -ENXIO, i;
|
|
|
|
fep->mii_timeout = 0;
|
|
|
|
/*
|
|
* Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
|
|
*/
|
|
fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
fep->mii_bus = mdiobus_alloc();
|
|
if (fep->mii_bus == NULL) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
fep->mii_bus->name = "fec_enet_mii_bus";
|
|
fep->mii_bus->read = fec_enet_mdio_read;
|
|
fep->mii_bus->write = fec_enet_mdio_write;
|
|
fep->mii_bus->reset = fec_enet_mdio_reset;
|
|
snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
|
|
fep->mii_bus->priv = fep;
|
|
fep->mii_bus->parent = &pdev->dev;
|
|
|
|
fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
|
|
if (!fep->mii_bus->irq) {
|
|
err = -ENOMEM;
|
|
goto err_out_free_mdiobus;
|
|
}
|
|
|
|
for (i = 0; i < PHY_MAX_ADDR; i++)
|
|
fep->mii_bus->irq[i] = PHY_POLL;
|
|
|
|
platform_set_drvdata(dev, fep->mii_bus);
|
|
|
|
if (mdiobus_register(fep->mii_bus))
|
|
goto err_out_free_mdio_irq;
|
|
|
|
return 0;
|
|
|
|
err_out_free_mdio_irq:
|
|
kfree(fep->mii_bus->irq);
|
|
err_out_free_mdiobus:
|
|
mdiobus_free(fep->mii_bus);
|
|
err_out:
|
|
return err;
|
|
}
|
|
|
|
static void fec_enet_mii_remove(struct fec_enet_private *fep)
|
|
{
|
|
if (fep->phy_dev)
|
|
phy_disconnect(fep->phy_dev);
|
|
mdiobus_unregister(fep->mii_bus);
|
|
kfree(fep->mii_bus->irq);
|
|
mdiobus_free(fep->mii_bus);
|
|
}
|
|
|
|
static int fec_enet_get_settings(struct net_device *dev,
|
|
struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_ethtool_gset(phydev, cmd);
|
|
}
|
|
|
|
static int fec_enet_set_settings(struct net_device *dev,
|
|
struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_ethtool_sset(phydev, cmd);
|
|
}
|
|
|
|
static void fec_enet_get_drvinfo(struct net_device *dev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
strcpy(info->driver, fep->pdev->dev.driver->name);
|
|
strcpy(info->version, "Revision: 1.0");
|
|
strcpy(info->bus_info, dev_name(&dev->dev));
|
|
}
|
|
|
|
static struct ethtool_ops fec_enet_ethtool_ops = {
|
|
.get_settings = fec_enet_get_settings,
|
|
.set_settings = fec_enet_set_settings,
|
|
.get_drvinfo = fec_enet_get_drvinfo,
|
|
.get_link = ethtool_op_get_link,
|
|
};
|
|
|
|
static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct phy_device *phydev = fep->phy_dev;
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
if (!phydev)
|
|
return -ENODEV;
|
|
|
|
return phy_mii_ioctl(phydev, rq, cmd);
|
|
}
|
|
|
|
static void fec_enet_free_buffers(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
int i;
|
|
struct sk_buff *skb;
|
|
struct bufdesc *bdp;
|
|
|
|
bdp = fep->rx_bd_base;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
skb = fep->rx_skbuff[i];
|
|
|
|
if (bdp->cbd_bufaddr)
|
|
dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
|
|
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
|
|
if (skb)
|
|
dev_kfree_skb(skb);
|
|
bdp++;
|
|
}
|
|
|
|
bdp = fep->tx_bd_base;
|
|
for (i = 0; i < TX_RING_SIZE; i++)
|
|
kfree(fep->tx_bounce[i]);
|
|
}
|
|
|
|
static int fec_enet_alloc_buffers(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
int i;
|
|
struct sk_buff *skb;
|
|
struct bufdesc *bdp;
|
|
|
|
bdp = fep->rx_bd_base;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
|
|
if (!skb) {
|
|
fec_enet_free_buffers(dev);
|
|
return -ENOMEM;
|
|
}
|
|
fep->rx_skbuff[i] = skb;
|
|
|
|
bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
|
|
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
|
|
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap. */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
bdp = fep->tx_bd_base;
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
|
|
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap. */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_open(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
int ret;
|
|
|
|
/* I should reset the ring buffers here, but I don't yet know
|
|
* a simple way to do that.
|
|
*/
|
|
|
|
ret = fec_enet_alloc_buffers(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Probe and connect to PHY when open the interface */
|
|
ret = fec_enet_mii_probe(dev);
|
|
if (ret) {
|
|
fec_enet_free_buffers(dev);
|
|
return ret;
|
|
}
|
|
phy_start(fep->phy_dev);
|
|
netif_start_queue(dev);
|
|
fep->opened = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_enet_close(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
/* Don't know what to do yet. */
|
|
fep->opened = 0;
|
|
netif_stop_queue(dev);
|
|
fec_stop(dev);
|
|
|
|
if (fep->phy_dev)
|
|
phy_disconnect(fep->phy_dev);
|
|
|
|
fec_enet_free_buffers(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
|
|
#define HASH_BITS 6 /* #bits in hash */
|
|
#define CRC32_POLY 0xEDB88320
|
|
|
|
static void set_multicast_list(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct netdev_hw_addr *ha;
|
|
unsigned int i, bit, data, crc, tmp;
|
|
unsigned char hash;
|
|
|
|
if (dev->flags & IFF_PROMISC) {
|
|
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
|
tmp |= 0x8;
|
|
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
|
return;
|
|
}
|
|
|
|
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
|
tmp &= ~0x8;
|
|
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
|
|
|
if (dev->flags & IFF_ALLMULTI) {
|
|
/* Catch all multicast addresses, so set the
|
|
* filter to all 1's
|
|
*/
|
|
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Clear filter and add the addresses in hash register
|
|
*/
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
/* Only support group multicast for now */
|
|
if (!(ha->addr[0] & 1))
|
|
continue;
|
|
|
|
/* calculate crc32 value of mac address */
|
|
crc = 0xffffffff;
|
|
|
|
for (i = 0; i < dev->addr_len; i++) {
|
|
data = ha->addr[i];
|
|
for (bit = 0; bit < 8; bit++, data >>= 1) {
|
|
crc = (crc >> 1) ^
|
|
(((crc ^ data) & 1) ? CRC32_POLY : 0);
|
|
}
|
|
}
|
|
|
|
/* only upper 6 bits (HASH_BITS) are used
|
|
* which point to specific bit in he hash registers
|
|
*/
|
|
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
|
|
|
|
if (hash > 31) {
|
|
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
tmp |= 1 << (hash - 32);
|
|
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
} else {
|
|
tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
tmp |= 1 << hash;
|
|
writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set a MAC change in hardware. */
|
|
static int
|
|
fec_set_mac_address(struct net_device *dev, void *p)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct sockaddr *addr = p;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
|
|
writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
|
|
(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
|
|
fep->hwp + FEC_ADDR_LOW);
|
|
writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
|
|
fep->hwp + FEC_ADDR_HIGH);
|
|
return 0;
|
|
}
|
|
|
|
static const struct net_device_ops fec_netdev_ops = {
|
|
.ndo_open = fec_enet_open,
|
|
.ndo_stop = fec_enet_close,
|
|
.ndo_start_xmit = fec_enet_start_xmit,
|
|
.ndo_set_multicast_list = set_multicast_list,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_tx_timeout = fec_timeout,
|
|
.ndo_set_mac_address = fec_set_mac_address,
|
|
.ndo_do_ioctl = fec_enet_ioctl,
|
|
};
|
|
|
|
/*
|
|
* XXX: We need to clean up on failure exits here.
|
|
*
|
|
* index is only used in legacy code
|
|
*/
|
|
static int fec_enet_init(struct net_device *dev, int index)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct bufdesc *cbd_base;
|
|
struct bufdesc *bdp;
|
|
int i;
|
|
|
|
/* Allocate memory for buffer descriptors. */
|
|
cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
|
|
GFP_KERNEL);
|
|
if (!cbd_base) {
|
|
printk("FEC: allocate descriptor memory failed?\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_init(&fep->hw_lock);
|
|
|
|
fep->index = index;
|
|
fep->hwp = (void __iomem *)dev->base_addr;
|
|
fep->netdev = dev;
|
|
|
|
/* Set the Ethernet address */
|
|
#ifdef CONFIG_M5272
|
|
fec_get_mac(dev);
|
|
#else
|
|
{
|
|
unsigned long l;
|
|
l = readl(fep->hwp + FEC_ADDR_LOW);
|
|
dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
|
|
dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
|
|
dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
|
|
dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
|
|
l = readl(fep->hwp + FEC_ADDR_HIGH);
|
|
dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
|
|
dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
|
|
}
|
|
#endif
|
|
|
|
/* Set receive and transmit descriptor base. */
|
|
fep->rx_bd_base = cbd_base;
|
|
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
|
|
|
|
/* The FEC Ethernet specific entries in the device structure */
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->netdev_ops = &fec_netdev_ops;
|
|
dev->ethtool_ops = &fec_enet_ethtool_ops;
|
|
|
|
/* Initialize the receive buffer descriptors. */
|
|
bdp = fep->rx_bd_base;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page. */
|
|
bdp->cbd_sc = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* ...and the same for transmit */
|
|
bdp = fep->tx_bd_base;
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page. */
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap */
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
fec_restart(dev, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function is called to start or restart the FEC during a link
|
|
* change. This only happens when switching between half and full
|
|
* duplex.
|
|
*/
|
|
static void
|
|
fec_restart(struct net_device *dev, int duplex)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
int i;
|
|
|
|
/* Whack a reset. We should wait for this. */
|
|
writel(1, fep->hwp + FEC_ECNTRL);
|
|
udelay(10);
|
|
|
|
/* Clear any outstanding interrupt. */
|
|
writel(0xffc00000, fep->hwp + FEC_IEVENT);
|
|
|
|
/* Reset all multicast. */
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
|
#ifndef CONFIG_M5272
|
|
writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
|
|
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
|
|
#endif
|
|
|
|
/* Set maximum receive buffer size. */
|
|
writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
|
|
|
|
/* Set receive and transmit descriptor base. */
|
|
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
|
|
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
|
|
fep->hwp + FEC_X_DES_START);
|
|
|
|
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
|
|
fep->cur_rx = fep->rx_bd_base;
|
|
|
|
/* Reset SKB transmit buffers. */
|
|
fep->skb_cur = fep->skb_dirty = 0;
|
|
for (i = 0; i <= TX_RING_MOD_MASK; i++) {
|
|
if (fep->tx_skbuff[i]) {
|
|
dev_kfree_skb_any(fep->tx_skbuff[i]);
|
|
fep->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Enable MII mode */
|
|
if (duplex) {
|
|
/* MII enable / FD enable */
|
|
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
|
|
writel(0x04, fep->hwp + FEC_X_CNTRL);
|
|
} else {
|
|
/* MII enable / No Rcv on Xmit */
|
|
writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
|
|
writel(0x0, fep->hwp + FEC_X_CNTRL);
|
|
}
|
|
fep->full_duplex = duplex;
|
|
|
|
/* Set MII speed */
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
|
|
#ifdef FEC_MIIGSK_ENR
|
|
if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
|
|
/* disable the gasket and wait */
|
|
writel(0, fep->hwp + FEC_MIIGSK_ENR);
|
|
while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
|
|
udelay(1);
|
|
|
|
/* configure the gasket: RMII, 50 MHz, no loopback, no echo */
|
|
writel(1, fep->hwp + FEC_MIIGSK_CFGR);
|
|
|
|
/* re-enable the gasket */
|
|
writel(2, fep->hwp + FEC_MIIGSK_ENR);
|
|
}
|
|
#endif
|
|
|
|
/* And last, enable the transmit and receive processing */
|
|
writel(2, fep->hwp + FEC_ECNTRL);
|
|
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
|
|
|
/* Enable interrupts we wish to service */
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
}
|
|
|
|
static void
|
|
fec_stop(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
/* We cannot expect a graceful transmit stop without link !!! */
|
|
if (fep->link) {
|
|
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
|
|
udelay(10);
|
|
if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
|
|
printk("fec_stop : Graceful transmit stop did not complete !\n");
|
|
}
|
|
|
|
/* Whack a reset. We should wait for this. */
|
|
writel(1, fep->hwp + FEC_ECNTRL);
|
|
udelay(10);
|
|
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
|
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
|
|
}
|
|
|
|
static int __devinit
|
|
fec_probe(struct platform_device *pdev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct fec_platform_data *pdata;
|
|
struct net_device *ndev;
|
|
int i, irq, ret = 0;
|
|
struct resource *r;
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!r)
|
|
return -ENXIO;
|
|
|
|
r = request_mem_region(r->start, resource_size(r), pdev->name);
|
|
if (!r)
|
|
return -EBUSY;
|
|
|
|
/* Init network device */
|
|
ndev = alloc_etherdev(sizeof(struct fec_enet_private));
|
|
if (!ndev)
|
|
return -ENOMEM;
|
|
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
|
|
/* setup board info structure */
|
|
fep = netdev_priv(ndev);
|
|
memset(fep, 0, sizeof(*fep));
|
|
|
|
ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
|
|
fep->pdev = pdev;
|
|
|
|
if (!ndev->base_addr) {
|
|
ret = -ENOMEM;
|
|
goto failed_ioremap;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, ndev);
|
|
|
|
pdata = pdev->dev.platform_data;
|
|
if (pdata)
|
|
fep->phy_interface = pdata->phy;
|
|
|
|
/* This device has up to three irqs on some platforms */
|
|
for (i = 0; i < 3; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (i && irq < 0)
|
|
break;
|
|
ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
|
|
if (ret) {
|
|
while (i >= 0) {
|
|
irq = platform_get_irq(pdev, i);
|
|
free_irq(irq, ndev);
|
|
i--;
|
|
}
|
|
goto failed_irq;
|
|
}
|
|
}
|
|
|
|
fep->clk = clk_get(&pdev->dev, "fec_clk");
|
|
if (IS_ERR(fep->clk)) {
|
|
ret = PTR_ERR(fep->clk);
|
|
goto failed_clk;
|
|
}
|
|
clk_enable(fep->clk);
|
|
|
|
ret = fec_enet_init(ndev, 0);
|
|
if (ret)
|
|
goto failed_init;
|
|
|
|
ret = fec_enet_mii_init(pdev);
|
|
if (ret)
|
|
goto failed_mii_init;
|
|
|
|
/* Carrier starts down, phylib will bring it up */
|
|
netif_carrier_off(ndev);
|
|
|
|
ret = register_netdev(ndev);
|
|
if (ret)
|
|
goto failed_register;
|
|
|
|
return 0;
|
|
|
|
failed_register:
|
|
fec_enet_mii_remove(fep);
|
|
failed_mii_init:
|
|
failed_init:
|
|
clk_disable(fep->clk);
|
|
clk_put(fep->clk);
|
|
failed_clk:
|
|
for (i = 0; i < 3; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq > 0)
|
|
free_irq(irq, ndev);
|
|
}
|
|
failed_irq:
|
|
iounmap((void __iomem *)ndev->base_addr);
|
|
failed_ioremap:
|
|
free_netdev(ndev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit
|
|
fec_drv_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
fec_stop(ndev);
|
|
fec_enet_mii_remove(fep);
|
|
clk_disable(fep->clk);
|
|
clk_put(fep->clk);
|
|
iounmap((void __iomem *)ndev->base_addr);
|
|
unregister_netdev(ndev);
|
|
free_netdev(ndev);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int
|
|
fec_suspend(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep;
|
|
|
|
if (ndev) {
|
|
fep = netdev_priv(ndev);
|
|
if (netif_running(ndev))
|
|
fec_enet_close(ndev);
|
|
clk_disable(fep->clk);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_resume(struct device *dev)
|
|
{
|
|
struct net_device *ndev = dev_get_drvdata(dev);
|
|
struct fec_enet_private *fep;
|
|
|
|
if (ndev) {
|
|
fep = netdev_priv(ndev);
|
|
clk_enable(fep->clk);
|
|
if (netif_running(ndev))
|
|
fec_enet_open(ndev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops fec_pm_ops = {
|
|
.suspend = fec_suspend,
|
|
.resume = fec_resume,
|
|
.freeze = fec_suspend,
|
|
.thaw = fec_resume,
|
|
.poweroff = fec_suspend,
|
|
.restore = fec_resume,
|
|
};
|
|
#endif
|
|
|
|
static struct platform_driver fec_driver = {
|
|
.driver = {
|
|
.name = "fec",
|
|
.owner = THIS_MODULE,
|
|
#ifdef CONFIG_PM
|
|
.pm = &fec_pm_ops,
|
|
#endif
|
|
},
|
|
.probe = fec_probe,
|
|
.remove = __devexit_p(fec_drv_remove),
|
|
};
|
|
|
|
static int __init
|
|
fec_enet_module_init(void)
|
|
{
|
|
printk(KERN_INFO "FEC Ethernet Driver\n");
|
|
|
|
return platform_driver_register(&fec_driver);
|
|
}
|
|
|
|
static void __exit
|
|
fec_enet_cleanup(void)
|
|
{
|
|
platform_driver_unregister(&fec_driver);
|
|
}
|
|
|
|
module_exit(fec_enet_cleanup);
|
|
module_init(fec_enet_module_init);
|
|
|
|
MODULE_LICENSE("GPL");
|