forked from Minki/linux
d1cbb1447b
Don't use SOC specific functions to identify which crypto hardware we are talking to and use the ID provided in the module instead. Signed-off-by: Andreas Westin <andreas.westin@stericsson.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2010 lines
51 KiB
C
2010 lines
51 KiB
C
/*
|
|
* Cryptographic API.
|
|
* Support for Nomadik hardware crypto engine.
|
|
|
|
* Copyright (C) ST-Ericsson SA 2010
|
|
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
|
|
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
|
|
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
|
|
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
|
|
* Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
|
|
* License terms: GNU General Public License (GPL) version 2
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/klist.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/crypto.h>
|
|
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/algapi.h>
|
|
|
|
#include <mach/crypto-ux500.h>
|
|
#include <mach/hardware.h>
|
|
|
|
#include "hash_alg.h"
|
|
|
|
#define DEV_DBG_NAME "hashX hashX:"
|
|
|
|
static int hash_mode;
|
|
module_param(hash_mode, int, 0);
|
|
MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
|
|
|
|
/**
|
|
* Pre-calculated empty message digests.
|
|
*/
|
|
static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
|
|
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
|
|
0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
|
|
0xaf, 0xd8, 0x07, 0x09
|
|
};
|
|
|
|
static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
|
|
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
|
|
0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
|
|
0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
|
|
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
|
|
};
|
|
|
|
/* HMAC-SHA1, no key */
|
|
static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
|
|
0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
|
|
0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
|
|
0x70, 0x69, 0x0e, 0x1d
|
|
};
|
|
|
|
/* HMAC-SHA256, no key */
|
|
static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
|
|
0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
|
|
0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
|
|
0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
|
|
0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
|
|
};
|
|
|
|
/**
|
|
* struct hash_driver_data - data specific to the driver.
|
|
*
|
|
* @device_list: A list of registered devices to choose from.
|
|
* @device_allocation: A semaphore initialized with number of devices.
|
|
*/
|
|
struct hash_driver_data {
|
|
struct klist device_list;
|
|
struct semaphore device_allocation;
|
|
};
|
|
|
|
static struct hash_driver_data driver_data;
|
|
|
|
/* Declaration of functions */
|
|
/**
|
|
* hash_messagepad - Pads a message and write the nblw bits.
|
|
* @device_data: Structure for the hash device.
|
|
* @message: Last word of a message
|
|
* @index_bytes: The number of bytes in the last message
|
|
*
|
|
* This function manages the final part of the digest calculation, when less
|
|
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
|
|
*
|
|
*/
|
|
static void hash_messagepad(struct hash_device_data *device_data,
|
|
const u32 *message, u8 index_bytes);
|
|
|
|
/**
|
|
* release_hash_device - Releases a previously allocated hash device.
|
|
* @device_data: Structure for the hash device.
|
|
*
|
|
*/
|
|
static void release_hash_device(struct hash_device_data *device_data)
|
|
{
|
|
spin_lock(&device_data->ctx_lock);
|
|
device_data->current_ctx->device = NULL;
|
|
device_data->current_ctx = NULL;
|
|
spin_unlock(&device_data->ctx_lock);
|
|
|
|
/*
|
|
* The down_interruptible part for this semaphore is called in
|
|
* cryp_get_device_data.
|
|
*/
|
|
up(&driver_data.device_allocation);
|
|
}
|
|
|
|
static void hash_dma_setup_channel(struct hash_device_data *device_data,
|
|
struct device *dev)
|
|
{
|
|
struct hash_platform_data *platform_data = dev->platform_data;
|
|
dma_cap_zero(device_data->dma.mask);
|
|
dma_cap_set(DMA_SLAVE, device_data->dma.mask);
|
|
|
|
device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
|
|
device_data->dma.chan_mem2hash =
|
|
dma_request_channel(device_data->dma.mask,
|
|
platform_data->dma_filter,
|
|
device_data->dma.cfg_mem2hash);
|
|
|
|
init_completion(&device_data->dma.complete);
|
|
}
|
|
|
|
static void hash_dma_callback(void *data)
|
|
{
|
|
struct hash_ctx *ctx = (struct hash_ctx *) data;
|
|
|
|
complete(&ctx->device->dma.complete);
|
|
}
|
|
|
|
static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
|
|
int len, enum dma_data_direction direction)
|
|
{
|
|
struct dma_async_tx_descriptor *desc = NULL;
|
|
struct dma_chan *channel = NULL;
|
|
dma_cookie_t cookie;
|
|
|
|
if (direction != DMA_TO_DEVICE) {
|
|
dev_err(ctx->device->dev, "[%s] Invalid DMA direction",
|
|
__func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
|
|
|
|
channel = ctx->device->dma.chan_mem2hash;
|
|
ctx->device->dma.sg = sg;
|
|
ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
|
|
ctx->device->dma.sg, ctx->device->dma.nents,
|
|
direction);
|
|
|
|
if (!ctx->device->dma.sg_len) {
|
|
dev_err(ctx->device->dev,
|
|
"[%s]: Could not map the sg list (TO_DEVICE)",
|
|
__func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
|
|
"(TO_DEVICE)", __func__);
|
|
desc = channel->device->device_prep_slave_sg(channel,
|
|
ctx->device->dma.sg, ctx->device->dma.sg_len,
|
|
direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
|
|
if (!desc) {
|
|
dev_err(ctx->device->dev,
|
|
"[%s]: device_prep_slave_sg() failed!", __func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
desc->callback = hash_dma_callback;
|
|
desc->callback_param = ctx;
|
|
|
|
cookie = desc->tx_submit(desc);
|
|
dma_async_issue_pending(channel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hash_dma_done(struct hash_ctx *ctx)
|
|
{
|
|
struct dma_chan *chan;
|
|
|
|
chan = ctx->device->dma.chan_mem2hash;
|
|
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
|
|
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
|
|
ctx->device->dma.sg_len, DMA_TO_DEVICE);
|
|
|
|
}
|
|
|
|
static int hash_dma_write(struct hash_ctx *ctx,
|
|
struct scatterlist *sg, int len)
|
|
{
|
|
int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
|
|
if (error) {
|
|
dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() "
|
|
"failed", __func__);
|
|
return error;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* get_empty_message_digest - Returns a pre-calculated digest for
|
|
* the empty message.
|
|
* @device_data: Structure for the hash device.
|
|
* @zero_hash: Buffer to return the empty message digest.
|
|
* @zero_hash_size: Hash size of the empty message digest.
|
|
* @zero_digest: True if zero_digest returned.
|
|
*/
|
|
static int get_empty_message_digest(
|
|
struct hash_device_data *device_data,
|
|
u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
|
|
{
|
|
int ret = 0;
|
|
struct hash_ctx *ctx = device_data->current_ctx;
|
|
*zero_digest = false;
|
|
|
|
/**
|
|
* Caller responsible for ctx != NULL.
|
|
*/
|
|
|
|
if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
|
|
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
|
|
memcpy(zero_hash, &zero_message_hash_sha1[0],
|
|
SHA1_DIGEST_SIZE);
|
|
*zero_hash_size = SHA1_DIGEST_SIZE;
|
|
*zero_digest = true;
|
|
} else if (HASH_ALGO_SHA256 ==
|
|
ctx->config.algorithm) {
|
|
memcpy(zero_hash, &zero_message_hash_sha256[0],
|
|
SHA256_DIGEST_SIZE);
|
|
*zero_hash_size = SHA256_DIGEST_SIZE;
|
|
*zero_digest = true;
|
|
} else {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"Incorrect algorithm!"
|
|
, __func__);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
|
|
if (!ctx->keylen) {
|
|
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
|
|
memcpy(zero_hash, &zero_message_hmac_sha1[0],
|
|
SHA1_DIGEST_SIZE);
|
|
*zero_hash_size = SHA1_DIGEST_SIZE;
|
|
*zero_digest = true;
|
|
} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
|
|
memcpy(zero_hash, &zero_message_hmac_sha256[0],
|
|
SHA256_DIGEST_SIZE);
|
|
*zero_hash_size = SHA256_DIGEST_SIZE;
|
|
*zero_digest = true;
|
|
} else {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"Incorrect algorithm!"
|
|
, __func__);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
dev_dbg(device_data->dev, "[%s] Continue hash "
|
|
"calculation, since hmac key avalable",
|
|
__func__);
|
|
}
|
|
}
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_disable_power - Request to disable power and clock.
|
|
* @device_data: Structure for the hash device.
|
|
* @save_device_state: If true, saves the current hw state.
|
|
*
|
|
* This function request for disabling power (regulator) and clock,
|
|
* and could also save current hw state.
|
|
*/
|
|
static int hash_disable_power(
|
|
struct hash_device_data *device_data,
|
|
bool save_device_state)
|
|
{
|
|
int ret = 0;
|
|
struct device *dev = device_data->dev;
|
|
|
|
spin_lock(&device_data->power_state_lock);
|
|
if (!device_data->power_state)
|
|
goto out;
|
|
|
|
if (save_device_state) {
|
|
hash_save_state(device_data,
|
|
&device_data->state);
|
|
device_data->restore_dev_state = true;
|
|
}
|
|
|
|
clk_disable(device_data->clk);
|
|
ret = regulator_disable(device_data->regulator);
|
|
if (ret)
|
|
dev_err(dev, "[%s] regulator_disable() failed!", __func__);
|
|
|
|
device_data->power_state = false;
|
|
|
|
out:
|
|
spin_unlock(&device_data->power_state_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_enable_power - Request to enable power and clock.
|
|
* @device_data: Structure for the hash device.
|
|
* @restore_device_state: If true, restores a previous saved hw state.
|
|
*
|
|
* This function request for enabling power (regulator) and clock,
|
|
* and could also restore a previously saved hw state.
|
|
*/
|
|
static int hash_enable_power(
|
|
struct hash_device_data *device_data,
|
|
bool restore_device_state)
|
|
{
|
|
int ret = 0;
|
|
struct device *dev = device_data->dev;
|
|
|
|
spin_lock(&device_data->power_state_lock);
|
|
if (!device_data->power_state) {
|
|
ret = regulator_enable(device_data->regulator);
|
|
if (ret) {
|
|
dev_err(dev, "[%s]: regulator_enable() failed!",
|
|
__func__);
|
|
goto out;
|
|
}
|
|
ret = clk_enable(device_data->clk);
|
|
if (ret) {
|
|
dev_err(dev, "[%s]: clk_enable() failed!",
|
|
__func__);
|
|
ret = regulator_disable(
|
|
device_data->regulator);
|
|
goto out;
|
|
}
|
|
device_data->power_state = true;
|
|
}
|
|
|
|
if (device_data->restore_dev_state) {
|
|
if (restore_device_state) {
|
|
device_data->restore_dev_state = false;
|
|
hash_resume_state(device_data,
|
|
&device_data->state);
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock(&device_data->power_state_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_get_device_data - Checks for an available hash device and return it.
|
|
* @hash_ctx: Structure for the hash context.
|
|
* @device_data: Structure for the hash device.
|
|
*
|
|
* This function check for an available hash device and return it to
|
|
* the caller.
|
|
* Note! Caller need to release the device, calling up().
|
|
*/
|
|
static int hash_get_device_data(struct hash_ctx *ctx,
|
|
struct hash_device_data **device_data)
|
|
{
|
|
int ret;
|
|
struct klist_iter device_iterator;
|
|
struct klist_node *device_node;
|
|
struct hash_device_data *local_device_data = NULL;
|
|
|
|
/* Wait until a device is available */
|
|
ret = down_interruptible(&driver_data.device_allocation);
|
|
if (ret)
|
|
return ret; /* Interrupted */
|
|
|
|
/* Select a device */
|
|
klist_iter_init(&driver_data.device_list, &device_iterator);
|
|
device_node = klist_next(&device_iterator);
|
|
while (device_node) {
|
|
local_device_data = container_of(device_node,
|
|
struct hash_device_data, list_node);
|
|
spin_lock(&local_device_data->ctx_lock);
|
|
/* current_ctx allocates a device, NULL = unallocated */
|
|
if (local_device_data->current_ctx) {
|
|
device_node = klist_next(&device_iterator);
|
|
} else {
|
|
local_device_data->current_ctx = ctx;
|
|
ctx->device = local_device_data;
|
|
spin_unlock(&local_device_data->ctx_lock);
|
|
break;
|
|
}
|
|
spin_unlock(&local_device_data->ctx_lock);
|
|
}
|
|
klist_iter_exit(&device_iterator);
|
|
|
|
if (!device_node) {
|
|
/**
|
|
* No free device found.
|
|
* Since we allocated a device with down_interruptible, this
|
|
* should not be able to happen.
|
|
* Number of available devices, which are contained in
|
|
* device_allocation, is therefore decremented by not doing
|
|
* an up(device_allocation).
|
|
*/
|
|
return -EBUSY;
|
|
}
|
|
|
|
*device_data = local_device_data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hash_hw_write_key - Writes the key to the hardware registries.
|
|
*
|
|
* @device_data: Structure for the hash device.
|
|
* @key: Key to be written.
|
|
* @keylen: The lengt of the key.
|
|
*
|
|
* Note! This function DOES NOT write to the NBLW registry, even though
|
|
* specified in the the hw design spec. Either due to incorrect info in the
|
|
* spec or due to a bug in the hw.
|
|
*/
|
|
static void hash_hw_write_key(struct hash_device_data *device_data,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
u32 word = 0;
|
|
int nwords = 1;
|
|
|
|
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
|
|
|
|
while (keylen >= 4) {
|
|
u32 *key_word = (u32 *)key;
|
|
|
|
HASH_SET_DIN(key_word, nwords);
|
|
keylen -= 4;
|
|
key += 4;
|
|
}
|
|
|
|
/* Take care of the remaining bytes in the last word */
|
|
if (keylen) {
|
|
word = 0;
|
|
while (keylen) {
|
|
word |= (key[keylen - 1] << (8 * (keylen - 1)));
|
|
keylen--;
|
|
}
|
|
|
|
HASH_SET_DIN(&word, nwords);
|
|
}
|
|
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
|
|
HASH_SET_DCAL;
|
|
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
}
|
|
|
|
/**
|
|
* init_hash_hw - Initialise the hash hardware for a new calculation.
|
|
* @device_data: Structure for the hash device.
|
|
* @ctx: The hash context.
|
|
*
|
|
* This function will enable the bits needed to clear and start a new
|
|
* calculation.
|
|
*/
|
|
static int init_hash_hw(struct hash_device_data *device_data,
|
|
struct hash_ctx *ctx)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = hash_setconfiguration(device_data, &ctx->config);
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] hash_setconfiguration() "
|
|
"failed!", __func__);
|
|
return ret;
|
|
}
|
|
|
|
hash_begin(device_data, ctx);
|
|
|
|
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
|
|
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_get_nents - Return number of entries (nents) in scatterlist (sg).
|
|
*
|
|
* @sg: Scatterlist.
|
|
* @size: Size in bytes.
|
|
* @aligned: True if sg data aligned to work in DMA mode.
|
|
*
|
|
*/
|
|
static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
|
|
{
|
|
int nents = 0;
|
|
bool aligned_data = true;
|
|
|
|
while (size > 0 && sg) {
|
|
nents++;
|
|
size -= sg->length;
|
|
|
|
/* hash_set_dma_transfer will align last nent */
|
|
if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE))
|
|
|| (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) &&
|
|
size > 0))
|
|
aligned_data = false;
|
|
|
|
sg = sg_next(sg);
|
|
}
|
|
|
|
if (aligned)
|
|
*aligned = aligned_data;
|
|
|
|
if (size != 0)
|
|
return -EFAULT;
|
|
|
|
return nents;
|
|
}
|
|
|
|
/**
|
|
* hash_dma_valid_data - checks for dma valid sg data.
|
|
* @sg: Scatterlist.
|
|
* @datasize: Datasize in bytes.
|
|
*
|
|
* NOTE! This function checks for dma valid sg data, since dma
|
|
* only accept datasizes of even wordsize.
|
|
*/
|
|
static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
|
|
{
|
|
bool aligned;
|
|
|
|
/* Need to include at least one nent, else error */
|
|
if (hash_get_nents(sg, datasize, &aligned) < 1)
|
|
return false;
|
|
|
|
return aligned;
|
|
}
|
|
|
|
/**
|
|
* hash_init - Common hash init function for SHA1/SHA2 (SHA256).
|
|
* @req: The hash request for the job.
|
|
*
|
|
* Initialize structures.
|
|
*/
|
|
static int hash_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
|
|
|
|
if (!ctx->key)
|
|
ctx->keylen = 0;
|
|
|
|
memset(&req_ctx->state, 0, sizeof(struct hash_state));
|
|
req_ctx->updated = 0;
|
|
if (hash_mode == HASH_MODE_DMA) {
|
|
if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
|
|
req_ctx->dma_mode = false; /* Don't use DMA */
|
|
|
|
pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct "
|
|
"to CPU mode for data size < %d",
|
|
__func__, HASH_DMA_ALIGN_SIZE);
|
|
} else {
|
|
if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
|
|
hash_dma_valid_data(req->src,
|
|
req->nbytes)) {
|
|
req_ctx->dma_mode = true;
|
|
} else {
|
|
req_ctx->dma_mode = false;
|
|
pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use"
|
|
" CPU mode for datalength < %d"
|
|
" or non-aligned data, except "
|
|
"in last nent", __func__,
|
|
HASH_DMA_PERFORMANCE_MIN_SIZE);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hash_processblock - This function processes a single block of 512 bits (64
|
|
* bytes), word aligned, starting at message.
|
|
* @device_data: Structure for the hash device.
|
|
* @message: Block (512 bits) of message to be written to
|
|
* the HASH hardware.
|
|
*
|
|
*/
|
|
static void hash_processblock(
|
|
struct hash_device_data *device_data,
|
|
const u32 *message, int length)
|
|
{
|
|
int len = length / HASH_BYTES_PER_WORD;
|
|
/*
|
|
* NBLW bits. Reset the number of bits in last word (NBLW).
|
|
*/
|
|
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
|
|
|
|
/*
|
|
* Write message data to the HASH_DIN register.
|
|
*/
|
|
HASH_SET_DIN(message, len);
|
|
}
|
|
|
|
/**
|
|
* hash_messagepad - Pads a message and write the nblw bits.
|
|
* @device_data: Structure for the hash device.
|
|
* @message: Last word of a message.
|
|
* @index_bytes: The number of bytes in the last message.
|
|
*
|
|
* This function manages the final part of the digest calculation, when less
|
|
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
|
|
*
|
|
*/
|
|
static void hash_messagepad(struct hash_device_data *device_data,
|
|
const u32 *message, u8 index_bytes)
|
|
{
|
|
int nwords = 1;
|
|
|
|
/*
|
|
* Clear hash str register, only clear NBLW
|
|
* since DCAL will be reset by hardware.
|
|
*/
|
|
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
|
|
|
|
/* Main loop */
|
|
while (index_bytes >= 4) {
|
|
HASH_SET_DIN(message, nwords);
|
|
index_bytes -= 4;
|
|
message++;
|
|
}
|
|
|
|
if (index_bytes)
|
|
HASH_SET_DIN(message, nwords);
|
|
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
|
|
/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
|
|
HASH_SET_NBLW(index_bytes * 8);
|
|
dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__,
|
|
readl_relaxed(&device_data->base->din),
|
|
(int)(readl_relaxed(&device_data->base->str) &
|
|
HASH_STR_NBLW_MASK));
|
|
HASH_SET_DCAL;
|
|
dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d",
|
|
__func__, readl_relaxed(&device_data->base->din),
|
|
(int)(readl_relaxed(&device_data->base->str) &
|
|
HASH_STR_NBLW_MASK));
|
|
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
}
|
|
|
|
/**
|
|
* hash_incrementlength - Increments the length of the current message.
|
|
* @ctx: Hash context
|
|
* @incr: Length of message processed already
|
|
*
|
|
* Overflow cannot occur, because conditions for overflow are checked in
|
|
* hash_hw_update.
|
|
*/
|
|
static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
|
|
{
|
|
ctx->state.length.low_word += incr;
|
|
|
|
/* Check for wrap-around */
|
|
if (ctx->state.length.low_word < incr)
|
|
ctx->state.length.high_word++;
|
|
}
|
|
|
|
/**
|
|
* hash_setconfiguration - Sets the required configuration for the hash
|
|
* hardware.
|
|
* @device_data: Structure for the hash device.
|
|
* @config: Pointer to a configuration structure.
|
|
*/
|
|
int hash_setconfiguration(struct hash_device_data *device_data,
|
|
struct hash_config *config)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (config->algorithm != HASH_ALGO_SHA1 &&
|
|
config->algorithm != HASH_ALGO_SHA256)
|
|
return -EPERM;
|
|
|
|
/*
|
|
* DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
|
|
* to be written to HASH_DIN is considered as 32 bits.
|
|
*/
|
|
HASH_SET_DATA_FORMAT(config->data_format);
|
|
|
|
/*
|
|
* ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
|
|
*/
|
|
switch (config->algorithm) {
|
|
case HASH_ALGO_SHA1:
|
|
HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
|
|
break;
|
|
|
|
case HASH_ALGO_SHA256:
|
|
HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
|
|
break;
|
|
|
|
default:
|
|
dev_err(device_data->dev, "[%s] Incorrect algorithm.",
|
|
__func__);
|
|
return -EPERM;
|
|
}
|
|
|
|
/*
|
|
* MODE bit. This bit selects between HASH or HMAC mode for the
|
|
* selected algorithm. 0b0 = HASH and 0b1 = HMAC.
|
|
*/
|
|
if (HASH_OPER_MODE_HASH == config->oper_mode)
|
|
HASH_CLEAR_BITS(&device_data->base->cr,
|
|
HASH_CR_MODE_MASK);
|
|
else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
|
|
HASH_SET_BITS(&device_data->base->cr,
|
|
HASH_CR_MODE_MASK);
|
|
if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
|
|
/* Truncate key to blocksize */
|
|
dev_dbg(device_data->dev, "[%s] LKEY set", __func__);
|
|
HASH_SET_BITS(&device_data->base->cr,
|
|
HASH_CR_LKEY_MASK);
|
|
} else {
|
|
dev_dbg(device_data->dev, "[%s] LKEY cleared",
|
|
__func__);
|
|
HASH_CLEAR_BITS(&device_data->base->cr,
|
|
HASH_CR_LKEY_MASK);
|
|
}
|
|
} else { /* Wrong hash mode */
|
|
ret = -EPERM;
|
|
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
|
|
__func__);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_begin - This routine resets some globals and initializes the hash
|
|
* hardware.
|
|
* @device_data: Structure for the hash device.
|
|
* @ctx: Hash context.
|
|
*/
|
|
void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
|
|
{
|
|
/* HW and SW initializations */
|
|
/* Note: there is no need to initialize buffer and digest members */
|
|
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
|
|
/*
|
|
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
|
|
* prepare the initialize the HASH accelerator to compute the message
|
|
* digest of a new message.
|
|
*/
|
|
HASH_INITIALIZE;
|
|
|
|
/*
|
|
* NBLW bits. Reset the number of bits in last word (NBLW).
|
|
*/
|
|
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
|
|
}
|
|
|
|
int hash_process_data(
|
|
struct hash_device_data *device_data,
|
|
struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
|
|
int msg_length, u8 *data_buffer, u8 *buffer, u8 *index)
|
|
{
|
|
int ret = 0;
|
|
u32 count;
|
|
|
|
do {
|
|
if ((*index + msg_length) < HASH_BLOCK_SIZE) {
|
|
for (count = 0; count < msg_length; count++) {
|
|
buffer[*index + count] =
|
|
*(data_buffer + count);
|
|
}
|
|
*index += msg_length;
|
|
msg_length = 0;
|
|
} else {
|
|
if (req_ctx->updated) {
|
|
|
|
ret = hash_resume_state(device_data,
|
|
&device_data->state);
|
|
memmove(req_ctx->state.buffer,
|
|
device_data->state.buffer,
|
|
HASH_BLOCK_SIZE / sizeof(u32));
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"hash_resume_state()"
|
|
" failed!", __func__);
|
|
goto out;
|
|
}
|
|
} else {
|
|
ret = init_hash_hw(device_data, ctx);
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"init_hash_hw()"
|
|
" failed!", __func__);
|
|
goto out;
|
|
}
|
|
req_ctx->updated = 1;
|
|
}
|
|
/*
|
|
* If 'data_buffer' is four byte aligned and
|
|
* local buffer does not have any data, we can
|
|
* write data directly from 'data_buffer' to
|
|
* HW peripheral, otherwise we first copy data
|
|
* to a local buffer
|
|
*/
|
|
if ((0 == (((u32)data_buffer) % 4))
|
|
&& (0 == *index))
|
|
hash_processblock(device_data,
|
|
(const u32 *)
|
|
data_buffer, HASH_BLOCK_SIZE);
|
|
else {
|
|
for (count = 0; count <
|
|
(u32)(HASH_BLOCK_SIZE -
|
|
*index);
|
|
count++) {
|
|
buffer[*index + count] =
|
|
*(data_buffer + count);
|
|
}
|
|
hash_processblock(device_data,
|
|
(const u32 *)buffer,
|
|
HASH_BLOCK_SIZE);
|
|
}
|
|
hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
|
|
data_buffer += (HASH_BLOCK_SIZE - *index);
|
|
|
|
msg_length -= (HASH_BLOCK_SIZE - *index);
|
|
*index = 0;
|
|
|
|
ret = hash_save_state(device_data,
|
|
&device_data->state);
|
|
|
|
memmove(device_data->state.buffer,
|
|
req_ctx->state.buffer,
|
|
HASH_BLOCK_SIZE / sizeof(u32));
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"hash_save_state()"
|
|
" failed!", __func__);
|
|
goto out;
|
|
}
|
|
}
|
|
} while (msg_length != 0);
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_dma_final - The hash dma final function for SHA1/SHA256.
|
|
* @req: The hash request for the job.
|
|
*/
|
|
static int hash_dma_final(struct ahash_request *req)
|
|
{
|
|
int ret = 0;
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
|
|
struct hash_device_data *device_data;
|
|
u8 digest[SHA256_DIGEST_SIZE];
|
|
int bytes_written = 0;
|
|
|
|
ret = hash_get_device_data(ctx, &device_data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
|
|
|
|
if (req_ctx->updated) {
|
|
ret = hash_resume_state(device_data, &device_data->state);
|
|
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] hash_resume_state() "
|
|
"failed!", __func__);
|
|
goto out;
|
|
}
|
|
|
|
}
|
|
|
|
if (!req_ctx->updated) {
|
|
ret = hash_setconfiguration(device_data, &ctx->config);
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"hash_setconfiguration() failed!",
|
|
__func__);
|
|
goto out;
|
|
}
|
|
|
|
/* Enable DMA input */
|
|
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
|
|
HASH_CLEAR_BITS(&device_data->base->cr,
|
|
HASH_CR_DMAE_MASK);
|
|
} else {
|
|
HASH_SET_BITS(&device_data->base->cr,
|
|
HASH_CR_DMAE_MASK);
|
|
HASH_SET_BITS(&device_data->base->cr,
|
|
HASH_CR_PRIVN_MASK);
|
|
}
|
|
|
|
HASH_INITIALIZE;
|
|
|
|
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
|
|
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
|
|
|
|
/* Number of bits in last word = (nbytes * 8) % 32 */
|
|
HASH_SET_NBLW((req->nbytes * 8) % 32);
|
|
req_ctx->updated = 1;
|
|
}
|
|
|
|
/* Store the nents in the dma struct. */
|
|
ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
|
|
if (!ctx->device->dma.nents) {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"ctx->device->dma.nents = 0", __func__);
|
|
goto out;
|
|
}
|
|
|
|
bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
|
|
if (bytes_written != req->nbytes) {
|
|
dev_err(device_data->dev, "[%s] "
|
|
"hash_dma_write() failed!", __func__);
|
|
goto out;
|
|
}
|
|
|
|
wait_for_completion(&ctx->device->dma.complete);
|
|
hash_dma_done(ctx);
|
|
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
|
|
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
|
|
unsigned int keylen = ctx->keylen;
|
|
u8 *key = ctx->key;
|
|
|
|
dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
|
|
ctx->keylen);
|
|
hash_hw_write_key(device_data, key, keylen);
|
|
}
|
|
|
|
hash_get_digest(device_data, digest, ctx->config.algorithm);
|
|
memcpy(req->result, digest, ctx->digestsize);
|
|
|
|
out:
|
|
release_hash_device(device_data);
|
|
|
|
/**
|
|
* Allocated in setkey, and only used in HMAC.
|
|
*/
|
|
kfree(ctx->key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_hw_final - The final hash calculation function
|
|
* @req: The hash request for the job.
|
|
*/
|
|
int hash_hw_final(struct ahash_request *req)
|
|
{
|
|
int ret = 0;
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
|
|
struct hash_device_data *device_data;
|
|
u8 digest[SHA256_DIGEST_SIZE];
|
|
|
|
ret = hash_get_device_data(ctx, &device_data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
|
|
|
|
if (req_ctx->updated) {
|
|
ret = hash_resume_state(device_data, &device_data->state);
|
|
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] hash_resume_state() "
|
|
"failed!", __func__);
|
|
goto out;
|
|
}
|
|
} else if (req->nbytes == 0 && ctx->keylen == 0) {
|
|
u8 zero_hash[SHA256_DIGEST_SIZE];
|
|
u32 zero_hash_size = 0;
|
|
bool zero_digest = false;
|
|
/**
|
|
* Use a pre-calculated empty message digest
|
|
* (workaround since hw return zeroes, hw bug!?)
|
|
*/
|
|
ret = get_empty_message_digest(device_data, &zero_hash[0],
|
|
&zero_hash_size, &zero_digest);
|
|
if (!ret && likely(zero_hash_size == ctx->digestsize) &&
|
|
zero_digest) {
|
|
memcpy(req->result, &zero_hash[0], ctx->digestsize);
|
|
goto out;
|
|
} else if (!ret && !zero_digest) {
|
|
dev_dbg(device_data->dev, "[%s] HMAC zero msg with "
|
|
"key, continue...", __func__);
|
|
} else {
|
|
dev_err(device_data->dev, "[%s] ret=%d, or wrong "
|
|
"digest size? %s", __func__, ret,
|
|
(zero_hash_size == ctx->digestsize) ?
|
|
"true" : "false");
|
|
/* Return error */
|
|
goto out;
|
|
}
|
|
} else if (req->nbytes == 0 && ctx->keylen > 0) {
|
|
dev_err(device_data->dev, "[%s] Empty message with "
|
|
"keylength > 0, NOT supported.", __func__);
|
|
goto out;
|
|
}
|
|
|
|
if (!req_ctx->updated) {
|
|
ret = init_hash_hw(device_data, ctx);
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] init_hash_hw() "
|
|
"failed!", __func__);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (req_ctx->state.index) {
|
|
hash_messagepad(device_data, req_ctx->state.buffer,
|
|
req_ctx->state.index);
|
|
} else {
|
|
HASH_SET_DCAL;
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
}
|
|
|
|
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
|
|
unsigned int keylen = ctx->keylen;
|
|
u8 *key = ctx->key;
|
|
|
|
dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
|
|
ctx->keylen);
|
|
hash_hw_write_key(device_data, key, keylen);
|
|
}
|
|
|
|
hash_get_digest(device_data, digest, ctx->config.algorithm);
|
|
memcpy(req->result, digest, ctx->digestsize);
|
|
|
|
out:
|
|
release_hash_device(device_data);
|
|
|
|
/**
|
|
* Allocated in setkey, and only used in HMAC.
|
|
*/
|
|
kfree(ctx->key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_hw_update - Updates current HASH computation hashing another part of
|
|
* the message.
|
|
* @req: Byte array containing the message to be hashed (caller
|
|
* allocated).
|
|
*/
|
|
int hash_hw_update(struct ahash_request *req)
|
|
{
|
|
int ret = 0;
|
|
u8 index = 0;
|
|
u8 *buffer;
|
|
struct hash_device_data *device_data;
|
|
u8 *data_buffer;
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
|
|
struct crypto_hash_walk walk;
|
|
int msg_length = crypto_hash_walk_first(req, &walk);
|
|
|
|
/* Empty message ("") is correct indata */
|
|
if (msg_length == 0)
|
|
return ret;
|
|
|
|
index = req_ctx->state.index;
|
|
buffer = (u8 *)req_ctx->state.buffer;
|
|
|
|
/* Check if ctx->state.length + msg_length
|
|
overflows */
|
|
if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
|
|
HASH_HIGH_WORD_MAX_VAL ==
|
|
req_ctx->state.length.high_word) {
|
|
pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!",
|
|
__func__);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = hash_get_device_data(ctx, &device_data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Main loop */
|
|
while (0 != msg_length) {
|
|
data_buffer = walk.data;
|
|
ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
|
|
data_buffer, buffer, &index);
|
|
|
|
if (ret) {
|
|
dev_err(device_data->dev, "[%s] hash_internal_hw_"
|
|
"update() failed!", __func__);
|
|
goto out;
|
|
}
|
|
|
|
msg_length = crypto_hash_walk_done(&walk, 0);
|
|
}
|
|
|
|
req_ctx->state.index = index;
|
|
dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))",
|
|
__func__, req_ctx->state.index,
|
|
req_ctx->state.bit_index);
|
|
|
|
out:
|
|
release_hash_device(device_data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_resume_state - Function that resumes the state of an calculation.
|
|
* @device_data: Pointer to the device structure.
|
|
* @device_state: The state to be restored in the hash hardware
|
|
*/
|
|
int hash_resume_state(struct hash_device_data *device_data,
|
|
const struct hash_state *device_state)
|
|
{
|
|
u32 temp_cr;
|
|
s32 count;
|
|
int hash_mode = HASH_OPER_MODE_HASH;
|
|
|
|
if (NULL == device_state) {
|
|
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
|
|
__func__);
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Check correctness of index and length members */
|
|
if (device_state->index > HASH_BLOCK_SIZE
|
|
|| (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
|
|
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
|
|
__func__);
|
|
return -EPERM;
|
|
}
|
|
|
|
/*
|
|
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
|
|
* prepare the initialize the HASH accelerator to compute the message
|
|
* digest of a new message.
|
|
*/
|
|
HASH_INITIALIZE;
|
|
|
|
temp_cr = device_state->temp_cr;
|
|
writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
|
|
|
|
if (device_data->base->cr & HASH_CR_MODE_MASK)
|
|
hash_mode = HASH_OPER_MODE_HMAC;
|
|
else
|
|
hash_mode = HASH_OPER_MODE_HASH;
|
|
|
|
for (count = 0; count < HASH_CSR_COUNT; count++) {
|
|
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
|
|
break;
|
|
|
|
writel_relaxed(device_state->csr[count],
|
|
&device_data->base->csrx[count]);
|
|
}
|
|
|
|
writel_relaxed(device_state->csfull, &device_data->base->csfull);
|
|
writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
|
|
|
|
writel_relaxed(device_state->str_reg, &device_data->base->str);
|
|
writel_relaxed(temp_cr, &device_data->base->cr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hash_save_state - Function that saves the state of hardware.
|
|
* @device_data: Pointer to the device structure.
|
|
* @device_state: The strucure where the hardware state should be saved.
|
|
*/
|
|
int hash_save_state(struct hash_device_data *device_data,
|
|
struct hash_state *device_state)
|
|
{
|
|
u32 temp_cr;
|
|
u32 count;
|
|
int hash_mode = HASH_OPER_MODE_HASH;
|
|
|
|
if (NULL == device_state) {
|
|
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
|
|
__func__);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/* Write dummy value to force digest intermediate calculation. This
|
|
* actually makes sure that there isn't any ongoing calculation in the
|
|
* hardware.
|
|
*/
|
|
while (device_data->base->str & HASH_STR_DCAL_MASK)
|
|
cpu_relax();
|
|
|
|
temp_cr = readl_relaxed(&device_data->base->cr);
|
|
|
|
device_state->str_reg = readl_relaxed(&device_data->base->str);
|
|
|
|
device_state->din_reg = readl_relaxed(&device_data->base->din);
|
|
|
|
if (device_data->base->cr & HASH_CR_MODE_MASK)
|
|
hash_mode = HASH_OPER_MODE_HMAC;
|
|
else
|
|
hash_mode = HASH_OPER_MODE_HASH;
|
|
|
|
for (count = 0; count < HASH_CSR_COUNT; count++) {
|
|
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
|
|
break;
|
|
|
|
device_state->csr[count] =
|
|
readl_relaxed(&device_data->base->csrx[count]);
|
|
}
|
|
|
|
device_state->csfull = readl_relaxed(&device_data->base->csfull);
|
|
device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
|
|
|
|
device_state->temp_cr = temp_cr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
|
|
* @device_data:
|
|
*
|
|
*/
|
|
int hash_check_hw(struct hash_device_data *device_data)
|
|
{
|
|
/* Checking Peripheral Ids */
|
|
if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0)
|
|
&& HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1)
|
|
&& HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2)
|
|
&& HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3)
|
|
&& HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0)
|
|
&& HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1)
|
|
&& HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2)
|
|
&& HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)
|
|
) {
|
|
return 0;
|
|
}
|
|
|
|
dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!",
|
|
__func__);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* hash_get_digest - Gets the digest.
|
|
* @device_data: Pointer to the device structure.
|
|
* @digest: User allocated byte array for the calculated digest.
|
|
* @algorithm: The algorithm in use.
|
|
*/
|
|
void hash_get_digest(struct hash_device_data *device_data,
|
|
u8 *digest, int algorithm)
|
|
{
|
|
u32 temp_hx_val, count;
|
|
int loop_ctr;
|
|
|
|
if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
|
|
dev_err(device_data->dev, "[%s] Incorrect algorithm %d",
|
|
__func__, algorithm);
|
|
return;
|
|
}
|
|
|
|
if (algorithm == HASH_ALGO_SHA1)
|
|
loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
|
|
else
|
|
loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
|
|
|
|
dev_dbg(device_data->dev, "[%s] digest array:(0x%x)",
|
|
__func__, (u32) digest);
|
|
|
|
/* Copy result into digest array */
|
|
for (count = 0; count < loop_ctr; count++) {
|
|
temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
|
|
digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
|
|
digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
|
|
digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
|
|
digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hash_update - The hash update function for SHA1/SHA2 (SHA256).
|
|
* @req: The hash request for the job.
|
|
*/
|
|
static int ahash_update(struct ahash_request *req)
|
|
{
|
|
int ret = 0;
|
|
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
|
|
|
|
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
|
|
ret = hash_hw_update(req);
|
|
/* Skip update for DMA, all data will be passed to DMA in final */
|
|
|
|
if (ret) {
|
|
pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!",
|
|
__func__);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_final - The hash final function for SHA1/SHA2 (SHA256).
|
|
* @req: The hash request for the job.
|
|
*/
|
|
static int ahash_final(struct ahash_request *req)
|
|
{
|
|
int ret = 0;
|
|
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
|
|
|
|
pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes);
|
|
|
|
if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
|
|
ret = hash_dma_final(req);
|
|
else
|
|
ret = hash_hw_final(req);
|
|
|
|
if (ret) {
|
|
pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed",
|
|
__func__);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int hash_setkey(struct crypto_ahash *tfm,
|
|
const u8 *key, unsigned int keylen, int alg)
|
|
{
|
|
int ret = 0;
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
/**
|
|
* Freed in final.
|
|
*/
|
|
ctx->key = kmalloc(keylen, GFP_KERNEL);
|
|
if (!ctx->key) {
|
|
pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key "
|
|
"for %d\n", __func__, alg);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(ctx->key, key, keylen);
|
|
ctx->keylen = keylen;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ahash_sha1_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ctx->config.data_format = HASH_DATA_8_BITS;
|
|
ctx->config.algorithm = HASH_ALGO_SHA1;
|
|
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
|
|
ctx->digestsize = SHA1_DIGEST_SIZE;
|
|
|
|
return hash_init(req);
|
|
}
|
|
|
|
static int ahash_sha256_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ctx->config.data_format = HASH_DATA_8_BITS;
|
|
ctx->config.algorithm = HASH_ALGO_SHA256;
|
|
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
|
|
ctx->digestsize = SHA256_DIGEST_SIZE;
|
|
|
|
return hash_init(req);
|
|
}
|
|
|
|
static int ahash_sha1_digest(struct ahash_request *req)
|
|
{
|
|
int ret2, ret1;
|
|
|
|
ret1 = ahash_sha1_init(req);
|
|
if (ret1)
|
|
goto out;
|
|
|
|
ret1 = ahash_update(req);
|
|
ret2 = ahash_final(req);
|
|
|
|
out:
|
|
return ret1 ? ret1 : ret2;
|
|
}
|
|
|
|
static int ahash_sha256_digest(struct ahash_request *req)
|
|
{
|
|
int ret2, ret1;
|
|
|
|
ret1 = ahash_sha256_init(req);
|
|
if (ret1)
|
|
goto out;
|
|
|
|
ret1 = ahash_update(req);
|
|
ret2 = ahash_final(req);
|
|
|
|
out:
|
|
return ret1 ? ret1 : ret2;
|
|
}
|
|
|
|
static int hmac_sha1_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ctx->config.data_format = HASH_DATA_8_BITS;
|
|
ctx->config.algorithm = HASH_ALGO_SHA1;
|
|
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
|
|
ctx->digestsize = SHA1_DIGEST_SIZE;
|
|
|
|
return hash_init(req);
|
|
}
|
|
|
|
static int hmac_sha256_init(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
ctx->config.data_format = HASH_DATA_8_BITS;
|
|
ctx->config.algorithm = HASH_ALGO_SHA256;
|
|
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
|
|
ctx->digestsize = SHA256_DIGEST_SIZE;
|
|
|
|
return hash_init(req);
|
|
}
|
|
|
|
static int hmac_sha1_digest(struct ahash_request *req)
|
|
{
|
|
int ret2, ret1;
|
|
|
|
ret1 = hmac_sha1_init(req);
|
|
if (ret1)
|
|
goto out;
|
|
|
|
ret1 = ahash_update(req);
|
|
ret2 = ahash_final(req);
|
|
|
|
out:
|
|
return ret1 ? ret1 : ret2;
|
|
}
|
|
|
|
static int hmac_sha256_digest(struct ahash_request *req)
|
|
{
|
|
int ret2, ret1;
|
|
|
|
ret1 = hmac_sha256_init(req);
|
|
if (ret1)
|
|
goto out;
|
|
|
|
ret1 = ahash_update(req);
|
|
ret2 = ahash_final(req);
|
|
|
|
out:
|
|
return ret1 ? ret1 : ret2;
|
|
}
|
|
|
|
static int hmac_sha1_setkey(struct crypto_ahash *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
|
|
}
|
|
|
|
static int hmac_sha256_setkey(struct crypto_ahash *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
|
|
}
|
|
|
|
struct hash_algo_template {
|
|
struct hash_config conf;
|
|
struct ahash_alg hash;
|
|
};
|
|
|
|
static int hash_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
struct hash_algo_template *hash_alg;
|
|
|
|
hash_alg = container_of(__crypto_ahash_alg(alg),
|
|
struct hash_algo_template,
|
|
hash);
|
|
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct hash_req_ctx));
|
|
|
|
ctx->config.data_format = HASH_DATA_8_BITS;
|
|
ctx->config.algorithm = hash_alg->conf.algorithm;
|
|
ctx->config.oper_mode = hash_alg->conf.oper_mode;
|
|
|
|
ctx->digestsize = hash_alg->hash.halg.digestsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct hash_algo_template hash_algs[] = {
|
|
{
|
|
.conf.algorithm = HASH_ALGO_SHA1,
|
|
.conf.oper_mode = HASH_OPER_MODE_HASH,
|
|
.hash = {
|
|
.init = hash_init,
|
|
.update = ahash_update,
|
|
.final = ahash_final,
|
|
.digest = ahash_sha1_digest,
|
|
.halg.digestsize = SHA1_DIGEST_SIZE,
|
|
.halg.statesize = sizeof(struct hash_ctx),
|
|
.halg.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "sha1-ux500",
|
|
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
|
|
CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct hash_ctx),
|
|
.cra_init = hash_cra_init,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}
|
|
},
|
|
{
|
|
.conf.algorithm = HASH_ALGO_SHA256,
|
|
.conf.oper_mode = HASH_OPER_MODE_HASH,
|
|
.hash = {
|
|
.init = hash_init,
|
|
.update = ahash_update,
|
|
.final = ahash_final,
|
|
.digest = ahash_sha256_digest,
|
|
.halg.digestsize = SHA256_DIGEST_SIZE,
|
|
.halg.statesize = sizeof(struct hash_ctx),
|
|
.halg.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name = "sha256-ux500",
|
|
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
|
|
CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct hash_ctx),
|
|
.cra_type = &crypto_ahash_type,
|
|
.cra_init = hash_cra_init,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}
|
|
|
|
},
|
|
{
|
|
.conf.algorithm = HASH_ALGO_SHA1,
|
|
.conf.oper_mode = HASH_OPER_MODE_HMAC,
|
|
.hash = {
|
|
.init = hash_init,
|
|
.update = ahash_update,
|
|
.final = ahash_final,
|
|
.digest = hmac_sha1_digest,
|
|
.setkey = hmac_sha1_setkey,
|
|
.halg.digestsize = SHA1_DIGEST_SIZE,
|
|
.halg.statesize = sizeof(struct hash_ctx),
|
|
.halg.base = {
|
|
.cra_name = "hmac(sha1)",
|
|
.cra_driver_name = "hmac-sha1-ux500",
|
|
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
|
|
CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct hash_ctx),
|
|
.cra_type = &crypto_ahash_type,
|
|
.cra_init = hash_cra_init,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}
|
|
},
|
|
{
|
|
.conf.algorithm = HASH_ALGO_SHA256,
|
|
.conf.oper_mode = HASH_OPER_MODE_HMAC,
|
|
.hash = {
|
|
.init = hash_init,
|
|
.update = ahash_update,
|
|
.final = ahash_final,
|
|
.digest = hmac_sha256_digest,
|
|
.setkey = hmac_sha256_setkey,
|
|
.halg.digestsize = SHA256_DIGEST_SIZE,
|
|
.halg.statesize = sizeof(struct hash_ctx),
|
|
.halg.base = {
|
|
.cra_name = "hmac(sha256)",
|
|
.cra_driver_name = "hmac-sha256-ux500",
|
|
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
|
|
CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct hash_ctx),
|
|
.cra_type = &crypto_ahash_type,
|
|
.cra_init = hash_cra_init,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* hash_algs_register_all -
|
|
*/
|
|
static int ahash_algs_register_all(struct hash_device_data *device_data)
|
|
{
|
|
int ret;
|
|
int i;
|
|
int count;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
|
|
ret = crypto_register_ahash(&hash_algs[i].hash);
|
|
if (ret) {
|
|
count = i;
|
|
dev_err(device_data->dev, "[%s] alg registration failed",
|
|
hash_algs[i].hash.halg.base.cra_driver_name);
|
|
goto unreg;
|
|
}
|
|
}
|
|
return 0;
|
|
unreg:
|
|
for (i = 0; i < count; i++)
|
|
crypto_unregister_ahash(&hash_algs[i].hash);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hash_algs_unregister_all -
|
|
*/
|
|
static void ahash_algs_unregister_all(struct hash_device_data *device_data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
|
|
crypto_unregister_ahash(&hash_algs[i].hash);
|
|
}
|
|
|
|
/**
|
|
* ux500_hash_probe - Function that probes the hash hardware.
|
|
* @pdev: The platform device.
|
|
*/
|
|
static int ux500_hash_probe(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
struct resource *res = NULL;
|
|
struct hash_device_data *device_data;
|
|
struct device *dev = &pdev->dev;
|
|
|
|
device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC);
|
|
if (!device_data) {
|
|
dev_dbg(dev, "[%s] kzalloc() failed!", __func__);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
device_data->dev = dev;
|
|
device_data->current_ctx = NULL;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!res) {
|
|
dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__);
|
|
ret = -ENODEV;
|
|
goto out_kfree;
|
|
}
|
|
|
|
res = request_mem_region(res->start, resource_size(res), pdev->name);
|
|
if (res == NULL) {
|
|
dev_dbg(dev, "[%s] request_mem_region() failed!", __func__);
|
|
ret = -EBUSY;
|
|
goto out_kfree;
|
|
}
|
|
|
|
device_data->base = ioremap(res->start, resource_size(res));
|
|
if (!device_data->base) {
|
|
dev_err(dev, "[%s] ioremap() failed!",
|
|
__func__);
|
|
ret = -ENOMEM;
|
|
goto out_free_mem;
|
|
}
|
|
spin_lock_init(&device_data->ctx_lock);
|
|
spin_lock_init(&device_data->power_state_lock);
|
|
|
|
/* Enable power for HASH1 hardware block */
|
|
device_data->regulator = regulator_get(dev, "v-ape");
|
|
if (IS_ERR(device_data->regulator)) {
|
|
dev_err(dev, "[%s] regulator_get() failed!", __func__);
|
|
ret = PTR_ERR(device_data->regulator);
|
|
device_data->regulator = NULL;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/* Enable the clock for HASH1 hardware block */
|
|
device_data->clk = clk_get(dev, NULL);
|
|
if (IS_ERR(device_data->clk)) {
|
|
dev_err(dev, "[%s] clk_get() failed!", __func__);
|
|
ret = PTR_ERR(device_data->clk);
|
|
goto out_regulator;
|
|
}
|
|
|
|
/* Enable device power (and clock) */
|
|
ret = hash_enable_power(device_data, false);
|
|
if (ret) {
|
|
dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
|
|
goto out_clk;
|
|
}
|
|
|
|
ret = hash_check_hw(device_data);
|
|
if (ret) {
|
|
dev_err(dev, "[%s] hash_check_hw() failed!", __func__);
|
|
goto out_power;
|
|
}
|
|
|
|
if (hash_mode == HASH_MODE_DMA)
|
|
hash_dma_setup_channel(device_data, dev);
|
|
|
|
platform_set_drvdata(pdev, device_data);
|
|
|
|
/* Put the new device into the device list... */
|
|
klist_add_tail(&device_data->list_node, &driver_data.device_list);
|
|
/* ... and signal that a new device is available. */
|
|
up(&driver_data.device_allocation);
|
|
|
|
ret = ahash_algs_register_all(device_data);
|
|
if (ret) {
|
|
dev_err(dev, "[%s] ahash_algs_register_all() "
|
|
"failed!", __func__);
|
|
goto out_power;
|
|
}
|
|
|
|
dev_info(dev, "[%s] successfully probed\n", __func__);
|
|
return 0;
|
|
|
|
out_power:
|
|
hash_disable_power(device_data, false);
|
|
|
|
out_clk:
|
|
clk_put(device_data->clk);
|
|
|
|
out_regulator:
|
|
regulator_put(device_data->regulator);
|
|
|
|
out_unmap:
|
|
iounmap(device_data->base);
|
|
|
|
out_free_mem:
|
|
release_mem_region(res->start, resource_size(res));
|
|
|
|
out_kfree:
|
|
kfree(device_data);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ux500_hash_remove - Function that removes the hash device from the platform.
|
|
* @pdev: The platform device.
|
|
*/
|
|
static int ux500_hash_remove(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
struct hash_device_data *device_data;
|
|
struct device *dev = &pdev->dev;
|
|
|
|
device_data = platform_get_drvdata(pdev);
|
|
if (!device_data) {
|
|
dev_err(dev, "[%s]: platform_get_drvdata() failed!",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Try to decrease the number of available devices. */
|
|
if (down_trylock(&driver_data.device_allocation))
|
|
return -EBUSY;
|
|
|
|
/* Check that the device is free */
|
|
spin_lock(&device_data->ctx_lock);
|
|
/* current_ctx allocates a device, NULL = unallocated */
|
|
if (device_data->current_ctx) {
|
|
/* The device is busy */
|
|
spin_unlock(&device_data->ctx_lock);
|
|
/* Return the device to the pool. */
|
|
up(&driver_data.device_allocation);
|
|
return -EBUSY;
|
|
}
|
|
|
|
spin_unlock(&device_data->ctx_lock);
|
|
|
|
/* Remove the device from the list */
|
|
if (klist_node_attached(&device_data->list_node))
|
|
klist_remove(&device_data->list_node);
|
|
|
|
/* If this was the last device, remove the services */
|
|
if (list_empty(&driver_data.device_list.k_list))
|
|
ahash_algs_unregister_all(device_data);
|
|
|
|
if (hash_disable_power(device_data, false))
|
|
dev_err(dev, "[%s]: hash_disable_power() failed",
|
|
__func__);
|
|
|
|
clk_put(device_data->clk);
|
|
regulator_put(device_data->regulator);
|
|
|
|
iounmap(device_data->base);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (res)
|
|
release_mem_region(res->start, resource_size(res));
|
|
|
|
kfree(device_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ux500_hash_shutdown - Function that shutdown the hash device.
|
|
* @pdev: The platform device
|
|
*/
|
|
static void ux500_hash_shutdown(struct platform_device *pdev)
|
|
{
|
|
struct resource *res = NULL;
|
|
struct hash_device_data *device_data;
|
|
|
|
device_data = platform_get_drvdata(pdev);
|
|
if (!device_data) {
|
|
dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
/* Check that the device is free */
|
|
spin_lock(&device_data->ctx_lock);
|
|
/* current_ctx allocates a device, NULL = unallocated */
|
|
if (!device_data->current_ctx) {
|
|
if (down_trylock(&driver_data.device_allocation))
|
|
dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
|
|
"Shutting down anyway...", __func__);
|
|
/**
|
|
* (Allocate the device)
|
|
* Need to set this to non-null (dummy) value,
|
|
* to avoid usage if context switching.
|
|
*/
|
|
device_data->current_ctx++;
|
|
}
|
|
spin_unlock(&device_data->ctx_lock);
|
|
|
|
/* Remove the device from the list */
|
|
if (klist_node_attached(&device_data->list_node))
|
|
klist_remove(&device_data->list_node);
|
|
|
|
/* If this was the last device, remove the services */
|
|
if (list_empty(&driver_data.device_list.k_list))
|
|
ahash_algs_unregister_all(device_data);
|
|
|
|
iounmap(device_data->base);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (res)
|
|
release_mem_region(res->start, resource_size(res));
|
|
|
|
if (hash_disable_power(device_data, false))
|
|
dev_err(&pdev->dev, "[%s] hash_disable_power() failed",
|
|
__func__);
|
|
}
|
|
|
|
/**
|
|
* ux500_hash_suspend - Function that suspends the hash device.
|
|
* @pdev: The platform device.
|
|
* @state: -
|
|
*/
|
|
static int ux500_hash_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
int ret;
|
|
struct hash_device_data *device_data;
|
|
struct hash_ctx *temp_ctx = NULL;
|
|
|
|
device_data = platform_get_drvdata(pdev);
|
|
if (!device_data) {
|
|
dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock(&device_data->ctx_lock);
|
|
if (!device_data->current_ctx)
|
|
device_data->current_ctx++;
|
|
spin_unlock(&device_data->ctx_lock);
|
|
|
|
if (device_data->current_ctx == ++temp_ctx) {
|
|
if (down_interruptible(&driver_data.device_allocation))
|
|
dev_dbg(&pdev->dev, "[%s]: down_interruptible() "
|
|
"failed", __func__);
|
|
ret = hash_disable_power(device_data, false);
|
|
|
|
} else
|
|
ret = hash_disable_power(device_data, true);
|
|
|
|
if (ret)
|
|
dev_err(&pdev->dev, "[%s]: hash_disable_power()", __func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ux500_hash_resume - Function that resume the hash device.
|
|
* @pdev: The platform device.
|
|
*/
|
|
static int ux500_hash_resume(struct platform_device *pdev)
|
|
{
|
|
int ret = 0;
|
|
struct hash_device_data *device_data;
|
|
struct hash_ctx *temp_ctx = NULL;
|
|
|
|
device_data = platform_get_drvdata(pdev);
|
|
if (!device_data) {
|
|
dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock(&device_data->ctx_lock);
|
|
if (device_data->current_ctx == ++temp_ctx)
|
|
device_data->current_ctx = NULL;
|
|
spin_unlock(&device_data->ctx_lock);
|
|
|
|
if (!device_data->current_ctx)
|
|
up(&driver_data.device_allocation);
|
|
else
|
|
ret = hash_enable_power(device_data, true);
|
|
|
|
if (ret)
|
|
dev_err(&pdev->dev, "[%s]: hash_enable_power() failed!",
|
|
__func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver hash_driver = {
|
|
.probe = ux500_hash_probe,
|
|
.remove = ux500_hash_remove,
|
|
.shutdown = ux500_hash_shutdown,
|
|
.suspend = ux500_hash_suspend,
|
|
.resume = ux500_hash_resume,
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "hash1",
|
|
}
|
|
};
|
|
|
|
/**
|
|
* ux500_hash_mod_init - The kernel module init function.
|
|
*/
|
|
static int __init ux500_hash_mod_init(void)
|
|
{
|
|
klist_init(&driver_data.device_list, NULL, NULL);
|
|
/* Initialize the semaphore to 0 devices (locked state) */
|
|
sema_init(&driver_data.device_allocation, 0);
|
|
|
|
return platform_driver_register(&hash_driver);
|
|
}
|
|
|
|
/**
|
|
* ux500_hash_mod_fini - The kernel module exit function.
|
|
*/
|
|
static void __exit ux500_hash_mod_fini(void)
|
|
{
|
|
platform_driver_unregister(&hash_driver);
|
|
return;
|
|
}
|
|
|
|
module_init(ux500_hash_mod_init);
|
|
module_exit(ux500_hash_mod_fini);
|
|
|
|
MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS("sha1-all");
|
|
MODULE_ALIAS("sha256-all");
|
|
MODULE_ALIAS("hmac-sha1-all");
|
|
MODULE_ALIAS("hmac-sha256-all");
|