ee9bb9a1e3
As we are about to play tricks with the timer to be more lazy in saving and restoring state, we need to move the timer sync and flush functions under a disabled irq section and since we have to flush the vgic state after the timer and PMU state, we do the whole flush/sync sequence with disabled irqs. The only downside is a slightly longer delay before being able to process hardware interrupts and run softirqs. Signed-off-by: Christoffer Dall <cdall@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
1510 lines
33 KiB
C
1510 lines
33 KiB
C
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kvm.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <kvm/arm_pmu.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/virt.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_coproc.h>
|
|
#include <asm/kvm_psci.h>
|
|
#include <asm/sections.h>
|
|
|
|
#ifdef REQUIRES_VIRT
|
|
__asm__(".arch_extension virt");
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
|
|
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
|
|
|
|
/* Per-CPU variable containing the currently running vcpu. */
|
|
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
|
|
|
|
/* The VMID used in the VTTBR */
|
|
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
|
|
static u32 kvm_next_vmid;
|
|
static unsigned int kvm_vmid_bits __read_mostly;
|
|
static DEFINE_SPINLOCK(kvm_vmid_lock);
|
|
|
|
static bool vgic_present;
|
|
|
|
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
|
|
|
|
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
BUG_ON(preemptible());
|
|
__this_cpu_write(kvm_arm_running_vcpu, vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
|
|
* Must be called from non-preemptible context
|
|
*/
|
|
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
|
|
{
|
|
BUG_ON(preemptible());
|
|
return __this_cpu_read(kvm_arm_running_vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
|
|
*/
|
|
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
|
|
{
|
|
return &kvm_arm_running_vcpu;
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
{
|
|
*(int *)rtn = 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_arch_init_vm - initializes a VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
int ret, cpu;
|
|
|
|
if (type)
|
|
return -EINVAL;
|
|
|
|
kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
|
|
if (!kvm->arch.last_vcpu_ran)
|
|
return -ENOMEM;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
|
|
|
|
ret = kvm_alloc_stage2_pgd(kvm);
|
|
if (ret)
|
|
goto out_fail_alloc;
|
|
|
|
ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
|
|
if (ret)
|
|
goto out_free_stage2_pgd;
|
|
|
|
kvm_vgic_early_init(kvm);
|
|
|
|
/* Mark the initial VMID generation invalid */
|
|
kvm->arch.vmid_gen = 0;
|
|
|
|
/* The maximum number of VCPUs is limited by the host's GIC model */
|
|
kvm->arch.max_vcpus = vgic_present ?
|
|
kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
|
|
|
|
return ret;
|
|
out_free_stage2_pgd:
|
|
kvm_free_stage2_pgd(kvm);
|
|
out_fail_alloc:
|
|
free_percpu(kvm->arch.last_vcpu_ran);
|
|
kvm->arch.last_vcpu_ran = NULL;
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_arch_has_vcpu_debugfs(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_arch_destroy_vm - destroy the VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
free_percpu(kvm->arch.last_vcpu_ran);
|
|
kvm->arch.last_vcpu_ran = NULL;
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
if (kvm->vcpus[i]) {
|
|
kvm_arch_vcpu_free(kvm->vcpus[i]);
|
|
kvm->vcpus[i] = NULL;
|
|
}
|
|
}
|
|
|
|
kvm_vgic_destroy(kvm);
|
|
}
|
|
|
|
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|
{
|
|
int r;
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
r = vgic_present;
|
|
break;
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_DEVICE_CTRL:
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_ONE_REG:
|
|
case KVM_CAP_ARM_PSCI:
|
|
case KVM_CAP_ARM_PSCI_0_2:
|
|
case KVM_CAP_READONLY_MEM:
|
|
case KVM_CAP_MP_STATE:
|
|
case KVM_CAP_IMMEDIATE_EXIT:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_ARM_SET_DEVICE_ADDR:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = num_online_cpus();
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_NR_MEMSLOTS:
|
|
r = KVM_USER_MEM_SLOTS;
|
|
break;
|
|
case KVM_CAP_MSI_DEVID:
|
|
if (!kvm)
|
|
r = -EINVAL;
|
|
else
|
|
r = kvm->arch.vgic.msis_require_devid;
|
|
break;
|
|
case KVM_CAP_ARM_USER_IRQ:
|
|
/*
|
|
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
|
|
* (bump this number if adding more devices)
|
|
*/
|
|
r = 1;
|
|
break;
|
|
default:
|
|
r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
|
|
{
|
|
int err;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (id >= kvm->arch.max_vcpus) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!vcpu) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_vcpu;
|
|
|
|
err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
|
|
if (err)
|
|
goto vcpu_uninit;
|
|
|
|
return vcpu;
|
|
vcpu_uninit:
|
|
kvm_vcpu_uninit(vcpu);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_vgic_vcpu_early_init(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_mmu_free_memory_caches(vcpu);
|
|
kvm_timer_vcpu_terminate(vcpu);
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
kvm_pmu_vcpu_destroy(vcpu);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_arch_vcpu_free(vcpu);
|
|
}
|
|
|
|
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
|
|
kvm_timer_should_fire(vcpu_ptimer(vcpu));
|
|
}
|
|
|
|
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_timer_schedule(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_timer_unschedule(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Force users to call KVM_ARM_VCPU_INIT */
|
|
vcpu->arch.target = -1;
|
|
bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
/* Set up the timer */
|
|
kvm_timer_vcpu_init(vcpu);
|
|
|
|
kvm_arm_reset_debug_ptr(vcpu);
|
|
|
|
return kvm_vgic_vcpu_init(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
int *last_ran;
|
|
|
|
last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
|
|
|
|
/*
|
|
* We might get preempted before the vCPU actually runs, but
|
|
* over-invalidation doesn't affect correctness.
|
|
*/
|
|
if (*last_ran != vcpu->vcpu_id) {
|
|
kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
|
|
*last_ran = vcpu->vcpu_id;
|
|
}
|
|
|
|
vcpu->cpu = cpu;
|
|
vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
|
|
|
|
kvm_arm_set_running_vcpu(vcpu);
|
|
|
|
kvm_vgic_load(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_vgic_put(vcpu);
|
|
|
|
vcpu->cpu = -1;
|
|
|
|
kvm_arm_set_running_vcpu(NULL);
|
|
kvm_timer_vcpu_put(vcpu);
|
|
}
|
|
|
|
static void vcpu_power_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.power_off = true;
|
|
kvm_make_request(KVM_REQ_SLEEP, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
if (vcpu->arch.power_off)
|
|
mp_state->mp_state = KVM_MP_STATE_STOPPED;
|
|
else
|
|
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
switch (mp_state->mp_state) {
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
vcpu->arch.power_off = false;
|
|
break;
|
|
case KVM_MP_STATE_STOPPED:
|
|
vcpu_power_off(vcpu);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
|
|
* @v: The VCPU pointer
|
|
*
|
|
* If the guest CPU is not waiting for interrupts or an interrupt line is
|
|
* asserted, the CPU is by definition runnable.
|
|
*/
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
|
|
{
|
|
return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
|
|
&& !v->arch.power_off && !v->arch.pause);
|
|
}
|
|
|
|
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu_mode_priv(vcpu);
|
|
}
|
|
|
|
/* Just ensure a guest exit from a particular CPU */
|
|
static void exit_vm_noop(void *info)
|
|
{
|
|
}
|
|
|
|
void force_vm_exit(const cpumask_t *mask)
|
|
{
|
|
preempt_disable();
|
|
smp_call_function_many(mask, exit_vm_noop, NULL, true);
|
|
preempt_enable();
|
|
}
|
|
|
|
/**
|
|
* need_new_vmid_gen - check that the VMID is still valid
|
|
* @kvm: The VM's VMID to check
|
|
*
|
|
* return true if there is a new generation of VMIDs being used
|
|
*
|
|
* The hardware supports only 256 values with the value zero reserved for the
|
|
* host, so we check if an assigned value belongs to a previous generation,
|
|
* which which requires us to assign a new value. If we're the first to use a
|
|
* VMID for the new generation, we must flush necessary caches and TLBs on all
|
|
* CPUs.
|
|
*/
|
|
static bool need_new_vmid_gen(struct kvm *kvm)
|
|
{
|
|
return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
|
|
}
|
|
|
|
/**
|
|
* update_vttbr - Update the VTTBR with a valid VMID before the guest runs
|
|
* @kvm The guest that we are about to run
|
|
*
|
|
* Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
|
|
* VM has a valid VMID, otherwise assigns a new one and flushes corresponding
|
|
* caches and TLBs.
|
|
*/
|
|
static void update_vttbr(struct kvm *kvm)
|
|
{
|
|
phys_addr_t pgd_phys;
|
|
u64 vmid;
|
|
|
|
if (!need_new_vmid_gen(kvm))
|
|
return;
|
|
|
|
spin_lock(&kvm_vmid_lock);
|
|
|
|
/*
|
|
* We need to re-check the vmid_gen here to ensure that if another vcpu
|
|
* already allocated a valid vmid for this vm, then this vcpu should
|
|
* use the same vmid.
|
|
*/
|
|
if (!need_new_vmid_gen(kvm)) {
|
|
spin_unlock(&kvm_vmid_lock);
|
|
return;
|
|
}
|
|
|
|
/* First user of a new VMID generation? */
|
|
if (unlikely(kvm_next_vmid == 0)) {
|
|
atomic64_inc(&kvm_vmid_gen);
|
|
kvm_next_vmid = 1;
|
|
|
|
/*
|
|
* On SMP we know no other CPUs can use this CPU's or each
|
|
* other's VMID after force_vm_exit returns since the
|
|
* kvm_vmid_lock blocks them from reentry to the guest.
|
|
*/
|
|
force_vm_exit(cpu_all_mask);
|
|
/*
|
|
* Now broadcast TLB + ICACHE invalidation over the inner
|
|
* shareable domain to make sure all data structures are
|
|
* clean.
|
|
*/
|
|
kvm_call_hyp(__kvm_flush_vm_context);
|
|
}
|
|
|
|
kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
|
|
kvm->arch.vmid = kvm_next_vmid;
|
|
kvm_next_vmid++;
|
|
kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
|
|
|
|
/* update vttbr to be used with the new vmid */
|
|
pgd_phys = virt_to_phys(kvm->arch.pgd);
|
|
BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
|
|
vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
|
|
kvm->arch.vttbr = pgd_phys | vmid;
|
|
|
|
spin_unlock(&kvm_vmid_lock);
|
|
}
|
|
|
|
static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret = 0;
|
|
|
|
if (likely(vcpu->arch.has_run_once))
|
|
return 0;
|
|
|
|
vcpu->arch.has_run_once = true;
|
|
|
|
/*
|
|
* Map the VGIC hardware resources before running a vcpu the first
|
|
* time on this VM.
|
|
*/
|
|
if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
|
|
ret = kvm_vgic_map_resources(kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = kvm_timer_enable(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kvm_arm_pmu_v3_enable(vcpu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_arch_intc_initialized(struct kvm *kvm)
|
|
{
|
|
return vgic_initialized(kvm);
|
|
}
|
|
|
|
void kvm_arm_halt_guest(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
vcpu->arch.pause = true;
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
|
|
}
|
|
|
|
void kvm_arm_resume_guest(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
vcpu->arch.pause = false;
|
|
swake_up(kvm_arch_vcpu_wq(vcpu));
|
|
}
|
|
}
|
|
|
|
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
|
|
|
|
swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
|
|
(!vcpu->arch.pause)));
|
|
|
|
if (vcpu->arch.power_off || vcpu->arch.pause) {
|
|
/* Awaken to handle a signal, request we sleep again later. */
|
|
kvm_make_request(KVM_REQ_SLEEP, vcpu);
|
|
}
|
|
}
|
|
|
|
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.target >= 0;
|
|
}
|
|
|
|
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_request_pending(vcpu)) {
|
|
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
|
|
vcpu_req_sleep(vcpu);
|
|
|
|
/*
|
|
* Clear IRQ_PENDING requests that were made to guarantee
|
|
* that a VCPU sees new virtual interrupts.
|
|
*/
|
|
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run structure pointer used for userspace state exchange
|
|
*
|
|
* This function is called through the VCPU_RUN ioctl called from user space. It
|
|
* will execute VM code in a loop until the time slice for the process is used
|
|
* or some emulation is needed from user space in which case the function will
|
|
* return with return value 0 and with the kvm_run structure filled in with the
|
|
* required data for the requested emulation.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
int ret;
|
|
sigset_t sigsaved;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
ret = kvm_vcpu_first_run_init(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (run->exit_reason == KVM_EXIT_MMIO) {
|
|
ret = kvm_handle_mmio_return(vcpu, vcpu->run);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (run->immediate_exit)
|
|
return -EINTR;
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
ret = 1;
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
while (ret > 0) {
|
|
/*
|
|
* Check conditions before entering the guest
|
|
*/
|
|
cond_resched();
|
|
|
|
update_vttbr(vcpu->kvm);
|
|
|
|
check_vcpu_requests(vcpu);
|
|
|
|
/*
|
|
* Preparing the interrupts to be injected also
|
|
* involves poking the GIC, which must be done in a
|
|
* non-preemptible context.
|
|
*/
|
|
preempt_disable();
|
|
|
|
kvm_pmu_flush_hwstate(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
kvm_timer_flush_hwstate(vcpu);
|
|
kvm_vgic_flush_hwstate(vcpu);
|
|
|
|
/*
|
|
* If we have a singal pending, or need to notify a userspace
|
|
* irqchip about timer or PMU level changes, then we exit (and
|
|
* update the timer level state in kvm_timer_update_run
|
|
* below).
|
|
*/
|
|
if (signal_pending(current) ||
|
|
kvm_timer_should_notify_user(vcpu) ||
|
|
kvm_pmu_should_notify_user(vcpu)) {
|
|
ret = -EINTR;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
}
|
|
|
|
/*
|
|
* Ensure we set mode to IN_GUEST_MODE after we disable
|
|
* interrupts and before the final VCPU requests check.
|
|
* See the comment in kvm_vcpu_exiting_guest_mode() and
|
|
* Documentation/virtual/kvm/vcpu-requests.rst
|
|
*/
|
|
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
|
|
|
|
if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
|
|
kvm_request_pending(vcpu)) {
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
kvm_timer_sync_hwstate(vcpu);
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
continue;
|
|
}
|
|
|
|
kvm_arm_setup_debug(vcpu);
|
|
|
|
/**************************************************************
|
|
* Enter the guest
|
|
*/
|
|
trace_kvm_entry(*vcpu_pc(vcpu));
|
|
guest_enter_irqoff();
|
|
|
|
ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
vcpu->stat.exits++;
|
|
/*
|
|
* Back from guest
|
|
*************************************************************/
|
|
|
|
kvm_arm_clear_debug(vcpu);
|
|
|
|
/*
|
|
* We must sync the PMU and timer state before the vgic state so
|
|
* that the vgic can properly sample the updated state of the
|
|
* interrupt line.
|
|
*/
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
kvm_timer_sync_hwstate(vcpu);
|
|
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
|
|
/*
|
|
* We may have taken a host interrupt in HYP mode (ie
|
|
* while executing the guest). This interrupt is still
|
|
* pending, as we haven't serviced it yet!
|
|
*
|
|
* We're now back in SVC mode, with interrupts
|
|
* disabled. Enabling the interrupts now will have
|
|
* the effect of taking the interrupt again, in SVC
|
|
* mode this time.
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* We do local_irq_enable() before calling guest_exit() so
|
|
* that if a timer interrupt hits while running the guest we
|
|
* account that tick as being spent in the guest. We enable
|
|
* preemption after calling guest_exit() so that if we get
|
|
* preempted we make sure ticks after that is not counted as
|
|
* guest time.
|
|
*/
|
|
guest_exit();
|
|
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
|
|
|
|
preempt_enable();
|
|
|
|
ret = handle_exit(vcpu, run, ret);
|
|
}
|
|
|
|
/* Tell userspace about in-kernel device output levels */
|
|
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
|
|
kvm_timer_update_run(vcpu);
|
|
kvm_pmu_update_run(vcpu);
|
|
}
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
return ret;
|
|
}
|
|
|
|
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
|
|
{
|
|
int bit_index;
|
|
bool set;
|
|
unsigned long *ptr;
|
|
|
|
if (number == KVM_ARM_IRQ_CPU_IRQ)
|
|
bit_index = __ffs(HCR_VI);
|
|
else /* KVM_ARM_IRQ_CPU_FIQ */
|
|
bit_index = __ffs(HCR_VF);
|
|
|
|
ptr = (unsigned long *)&vcpu->arch.irq_lines;
|
|
if (level)
|
|
set = test_and_set_bit(bit_index, ptr);
|
|
else
|
|
set = test_and_clear_bit(bit_index, ptr);
|
|
|
|
/*
|
|
* If we didn't change anything, no need to wake up or kick other CPUs
|
|
*/
|
|
if (set == level)
|
|
return 0;
|
|
|
|
/*
|
|
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
|
|
* trigger a world-switch round on the running physical CPU to set the
|
|
* virtual IRQ/FIQ fields in the HCR appropriately.
|
|
*/
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
|
|
bool line_status)
|
|
{
|
|
u32 irq = irq_level->irq;
|
|
unsigned int irq_type, vcpu_idx, irq_num;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
bool level = irq_level->level;
|
|
|
|
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
|
|
vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
|
|
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
|
|
|
|
trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
|
|
|
|
switch (irq_type) {
|
|
case KVM_ARM_IRQ_TYPE_CPU:
|
|
if (irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
|
|
return -EINVAL;
|
|
|
|
return vcpu_interrupt_line(vcpu, irq_num, level);
|
|
case KVM_ARM_IRQ_TYPE_PPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
|
|
case KVM_ARM_IRQ_TYPE_SPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (irq_num < VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
unsigned int i;
|
|
int phys_target = kvm_target_cpu();
|
|
|
|
if (init->target != phys_target)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
|
|
* use the same target.
|
|
*/
|
|
if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
|
|
return -EINVAL;
|
|
|
|
/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
|
|
for (i = 0; i < sizeof(init->features) * 8; i++) {
|
|
bool set = (init->features[i / 32] & (1 << (i % 32)));
|
|
|
|
if (set && i >= KVM_VCPU_MAX_FEATURES)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
|
|
* use the same feature set.
|
|
*/
|
|
if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
|
|
test_bit(i, vcpu->arch.features) != set)
|
|
return -EINVAL;
|
|
|
|
if (set)
|
|
set_bit(i, vcpu->arch.features);
|
|
}
|
|
|
|
vcpu->arch.target = phys_target;
|
|
|
|
/* Now we know what it is, we can reset it. */
|
|
return kvm_reset_vcpu(vcpu);
|
|
}
|
|
|
|
|
|
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_init *init)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_set_target(vcpu, init);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Ensure a rebooted VM will fault in RAM pages and detect if the
|
|
* guest MMU is turned off and flush the caches as needed.
|
|
*/
|
|
if (vcpu->arch.has_run_once)
|
|
stage2_unmap_vm(vcpu->kvm);
|
|
|
|
vcpu_reset_hcr(vcpu);
|
|
|
|
/*
|
|
* Handle the "start in power-off" case.
|
|
*/
|
|
if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
|
|
vcpu_power_off(vcpu);
|
|
else
|
|
vcpu->arch.power_off = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
struct kvm_device_attr attr;
|
|
|
|
switch (ioctl) {
|
|
case KVM_ARM_VCPU_INIT: {
|
|
struct kvm_vcpu_init init;
|
|
|
|
if (copy_from_user(&init, argp, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
|
|
}
|
|
case KVM_SET_ONE_REG:
|
|
case KVM_GET_ONE_REG: {
|
|
struct kvm_one_reg reg;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
if (copy_from_user(®, argp, sizeof(reg)))
|
|
return -EFAULT;
|
|
if (ioctl == KVM_SET_ONE_REG)
|
|
return kvm_arm_set_reg(vcpu, ®);
|
|
else
|
|
return kvm_arm_get_reg(vcpu, ®);
|
|
}
|
|
case KVM_GET_REG_LIST: {
|
|
struct kvm_reg_list __user *user_list = argp;
|
|
struct kvm_reg_list reg_list;
|
|
unsigned n;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
if (copy_from_user(®_list, user_list, sizeof(reg_list)))
|
|
return -EFAULT;
|
|
n = reg_list.n;
|
|
reg_list.n = kvm_arm_num_regs(vcpu);
|
|
if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
|
|
return -EFAULT;
|
|
if (n < reg_list.n)
|
|
return -E2BIG;
|
|
return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
|
|
}
|
|
case KVM_SET_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
return kvm_arm_vcpu_set_attr(vcpu, &attr);
|
|
}
|
|
case KVM_GET_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
return kvm_arm_vcpu_get_attr(vcpu, &attr);
|
|
}
|
|
case KVM_HAS_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
return kvm_arm_vcpu_has_attr(vcpu, &attr);
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
|
|
* @kvm: kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
*
|
|
* Steps 1-4 below provide general overview of dirty page logging. See
|
|
* kvm_get_dirty_log_protect() function description for additional details.
|
|
*
|
|
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
|
|
* always flush the TLB (step 4) even if previous step failed and the dirty
|
|
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
|
|
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
|
|
* writes will be marked dirty for next log read.
|
|
*
|
|
* 1. Take a snapshot of the bit and clear it if needed.
|
|
* 2. Write protect the corresponding page.
|
|
* 3. Copy the snapshot to the userspace.
|
|
* 4. Flush TLB's if needed.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
|
{
|
|
bool is_dirty = false;
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
|
|
|
|
if (is_dirty)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
|
|
struct kvm_arm_device_addr *dev_addr)
|
|
{
|
|
unsigned long dev_id, type;
|
|
|
|
dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
|
|
KVM_ARM_DEVICE_ID_SHIFT;
|
|
type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
|
|
KVM_ARM_DEVICE_TYPE_SHIFT;
|
|
|
|
switch (dev_id) {
|
|
case KVM_ARM_DEVICE_VGIC_V2:
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (ioctl) {
|
|
case KVM_CREATE_IRQCHIP: {
|
|
int ret;
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
mutex_lock(&kvm->lock);
|
|
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
case KVM_ARM_SET_DEVICE_ADDR: {
|
|
struct kvm_arm_device_addr dev_addr;
|
|
|
|
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
|
|
}
|
|
case KVM_ARM_PREFERRED_TARGET: {
|
|
int err;
|
|
struct kvm_vcpu_init init;
|
|
|
|
err = kvm_vcpu_preferred_target(&init);
|
|
if (err)
|
|
return err;
|
|
|
|
if (copy_to_user(argp, &init, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void cpu_init_hyp_mode(void *dummy)
|
|
{
|
|
phys_addr_t pgd_ptr;
|
|
unsigned long hyp_stack_ptr;
|
|
unsigned long stack_page;
|
|
unsigned long vector_ptr;
|
|
|
|
/* Switch from the HYP stub to our own HYP init vector */
|
|
__hyp_set_vectors(kvm_get_idmap_vector());
|
|
|
|
pgd_ptr = kvm_mmu_get_httbr();
|
|
stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
|
|
hyp_stack_ptr = stack_page + PAGE_SIZE;
|
|
vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
|
|
|
|
__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
|
|
__cpu_init_stage2();
|
|
|
|
kvm_arm_init_debug();
|
|
}
|
|
|
|
static void cpu_hyp_reset(void)
|
|
{
|
|
if (!is_kernel_in_hyp_mode())
|
|
__hyp_reset_vectors();
|
|
}
|
|
|
|
static void cpu_hyp_reinit(void)
|
|
{
|
|
cpu_hyp_reset();
|
|
|
|
if (is_kernel_in_hyp_mode()) {
|
|
/*
|
|
* __cpu_init_stage2() is safe to call even if the PM
|
|
* event was cancelled before the CPU was reset.
|
|
*/
|
|
__cpu_init_stage2();
|
|
kvm_timer_init_vhe();
|
|
} else {
|
|
cpu_init_hyp_mode(NULL);
|
|
}
|
|
|
|
if (vgic_present)
|
|
kvm_vgic_init_cpu_hardware();
|
|
}
|
|
|
|
static void _kvm_arch_hardware_enable(void *discard)
|
|
{
|
|
if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
|
|
cpu_hyp_reinit();
|
|
__this_cpu_write(kvm_arm_hardware_enabled, 1);
|
|
}
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void)
|
|
{
|
|
_kvm_arch_hardware_enable(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void _kvm_arch_hardware_disable(void *discard)
|
|
{
|
|
if (__this_cpu_read(kvm_arm_hardware_enabled)) {
|
|
cpu_hyp_reset();
|
|
__this_cpu_write(kvm_arm_hardware_enabled, 0);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void)
|
|
{
|
|
_kvm_arch_hardware_disable(NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
|
|
unsigned long cmd,
|
|
void *v)
|
|
{
|
|
/*
|
|
* kvm_arm_hardware_enabled is left with its old value over
|
|
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
|
|
* re-enable hyp.
|
|
*/
|
|
switch (cmd) {
|
|
case CPU_PM_ENTER:
|
|
if (__this_cpu_read(kvm_arm_hardware_enabled))
|
|
/*
|
|
* don't update kvm_arm_hardware_enabled here
|
|
* so that the hardware will be re-enabled
|
|
* when we resume. See below.
|
|
*/
|
|
cpu_hyp_reset();
|
|
|
|
return NOTIFY_OK;
|
|
case CPU_PM_EXIT:
|
|
if (__this_cpu_read(kvm_arm_hardware_enabled))
|
|
/* The hardware was enabled before suspend. */
|
|
cpu_hyp_reinit();
|
|
|
|
return NOTIFY_OK;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
}
|
|
|
|
static struct notifier_block hyp_init_cpu_pm_nb = {
|
|
.notifier_call = hyp_init_cpu_pm_notifier,
|
|
};
|
|
|
|
static void __init hyp_cpu_pm_init(void)
|
|
{
|
|
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
static void __init hyp_cpu_pm_exit(void)
|
|
{
|
|
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
#else
|
|
static inline void hyp_cpu_pm_init(void)
|
|
{
|
|
}
|
|
static inline void hyp_cpu_pm_exit(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void teardown_common_resources(void)
|
|
{
|
|
free_percpu(kvm_host_cpu_state);
|
|
}
|
|
|
|
static int init_common_resources(void)
|
|
{
|
|
kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
|
|
if (!kvm_host_cpu_state) {
|
|
kvm_err("Cannot allocate host CPU state\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* set size of VMID supported by CPU */
|
|
kvm_vmid_bits = kvm_get_vmid_bits();
|
|
kvm_info("%d-bit VMID\n", kvm_vmid_bits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_subsystems(void)
|
|
{
|
|
int err = 0;
|
|
|
|
/*
|
|
* Enable hardware so that subsystem initialisation can access EL2.
|
|
*/
|
|
on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
|
|
|
|
/*
|
|
* Register CPU lower-power notifier
|
|
*/
|
|
hyp_cpu_pm_init();
|
|
|
|
/*
|
|
* Init HYP view of VGIC
|
|
*/
|
|
err = kvm_vgic_hyp_init();
|
|
switch (err) {
|
|
case 0:
|
|
vgic_present = true;
|
|
break;
|
|
case -ENODEV:
|
|
case -ENXIO:
|
|
vgic_present = false;
|
|
err = 0;
|
|
break;
|
|
default:
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Init HYP architected timer support
|
|
*/
|
|
err = kvm_timer_hyp_init();
|
|
if (err)
|
|
goto out;
|
|
|
|
kvm_perf_init();
|
|
kvm_coproc_table_init();
|
|
|
|
out:
|
|
on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void teardown_hyp_mode(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return;
|
|
|
|
free_hyp_pgds();
|
|
for_each_possible_cpu(cpu)
|
|
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
|
|
hyp_cpu_pm_exit();
|
|
}
|
|
|
|
static int init_vhe_mode(void)
|
|
{
|
|
kvm_info("VHE mode initialized successfully\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Inits Hyp-mode on all online CPUs
|
|
*/
|
|
static int init_hyp_mode(void)
|
|
{
|
|
int cpu;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Allocate Hyp PGD and setup Hyp identity mapping
|
|
*/
|
|
err = kvm_mmu_init();
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/*
|
|
* Allocate stack pages for Hypervisor-mode
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long stack_page;
|
|
|
|
stack_page = __get_free_page(GFP_KERNEL);
|
|
if (!stack_page) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp-code called directly from the host
|
|
*/
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
|
|
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
|
|
if (err) {
|
|
kvm_err("Cannot map world-switch code\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
|
|
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map rodata section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
|
|
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
|
|
if (err) {
|
|
kvm_err("Cannot map bss section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp stack pages
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
|
|
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
|
|
PAGE_HYP);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map hyp stack\n");
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
kvm_cpu_context_t *cpu_ctxt;
|
|
|
|
cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
|
|
err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map host CPU state: %d\n", err);
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
kvm_info("Hyp mode initialized successfully\n");
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
teardown_hyp_mode();
|
|
kvm_err("error initializing Hyp mode: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
static void check_kvm_target_cpu(void *ret)
|
|
{
|
|
*(int *)ret = kvm_target_cpu();
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mpidr &= MPIDR_HWID_BITMASK;
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
|
|
return vcpu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Initialize Hyp-mode and memory mappings on all CPUs.
|
|
*/
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int err;
|
|
int ret, cpu;
|
|
|
|
if (!is_hyp_mode_available()) {
|
|
kvm_err("HYP mode not available\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
|
|
if (ret < 0) {
|
|
kvm_err("Error, CPU %d not supported!\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
err = init_common_resources();
|
|
if (err)
|
|
return err;
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
err = init_vhe_mode();
|
|
else
|
|
err = init_hyp_mode();
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = init_subsystems();
|
|
if (err)
|
|
goto out_hyp;
|
|
|
|
return 0;
|
|
|
|
out_hyp:
|
|
teardown_hyp_mode();
|
|
out_err:
|
|
teardown_common_resources();
|
|
return err;
|
|
}
|
|
|
|
/* NOP: Compiling as a module not supported */
|
|
void kvm_arch_exit(void)
|
|
{
|
|
kvm_perf_teardown();
|
|
}
|
|
|
|
static int arm_init(void)
|
|
{
|
|
int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
|
return rc;
|
|
}
|
|
|
|
module_init(arm_init);
|