linux/drivers/gpu/drm/i915/gvt/scheduler.c
Colin Xu f25a49ab8a drm/i915/gvt: Use vgpu_lock to protect per vgpu access
The patch set splits out 2 small locks from the original big gvt lock:
  - vgpu_lock protects per-vGPU data and logic, especially the vGPU
    trap emulation path.
  - sched_lock protects gvt scheudler structure, context schedule logic
    and vGPU's schedule data.

Use vgpu_lock to replace the gvt big lock. By doing this, the
mmio read/write trap path, vgpu virtual event emulation and other
vgpu related process, would be protected under per vgpu_lock.

v9:
  - Change commit author since the patches are improved a lot compared
    with original version.
    Original author: Pei Zhang <pei.zhang@intel.com>
  - Rebase to latest gvt-staging.
v8:
  - Correct coding and comment style.
  - Rebase to latest gvt-staging.
v7:
  - Remove gtt_lock since already proteced by gvt_lock and vgpu_lock.
  - Fix a typo in intel_gvt_deactivate_vgpu, unlock the wrong lock.
v6:
  - Rebase to latest gvt-staging.
v5:
  - Rebase to latest gvt-staging.
  - intel_vgpu_page_track_handler should use vgpu_lock.
v4:
  - Rebase to latest gvt-staging.
  - Protect vgpu->active access with vgpu_lock.
  - Do not wait gpu idle in vgpu_lock.
v3: update to latest code base
v2: add gvt->lock in function gvt_check_vblank_emulation

Performance comparison on Kabylake platform.
  - Configuration:
    Host: Ubuntu 16.04.
    Guest 1 & 2: Ubuntu 16.04.

glmark2 score comparison:
  - Configuration:
    Host: glxgears.
    Guests: glmark2.
+--------------------------------+-----------------+
| Setup                          | glmark2 score   |
+--------------------------------+-----------------+
| unified lock, iommu=on         | 58~62 (avg. 60) |
+--------------------------------+-----------------+
| unified lock, iommu=igfx_off   | 57~61 (avg. 59) |
+--------------------------------+-----------------+
| per-logic lock, iommu=on       | 60~68 (avg. 64) |
+--------------------------------+-----------------+
| per-logic lock, iommu=igfx_off | 61~67 (avg. 64) |
+--------------------------------+-----------------+

lock_stat comparison:
  - Configuration:
    Stop lock stat immediately after boot up.
    Boot 2 VM Guests.
    Run glmark2 in guests.
    Start perf lock_stat for 20 seconds and stop again.
  - Legend: c - contentions; w - waittime-avg
+------------+-----------------+-----------+---------------+------------+
|            | gvt_lock        |sched_lock | vgpu_lock     | gtt_lock   |
+ lock type; +-----------------+-----------+---------------+------------+
| iommu set  | c     | w       | c  | w    | c    | w      | c   | w    |
+------------+-------+---------+----+------+------+--------+-----+------+
| unified;   | 20697 | 839     |N/A | N/A  | N/A  | N/A    | N/A | N/A  |
| on         |       |         |    |      |      |        |     |      |
+------------+-------+---------+----+------+------+--------+-----+------+
| unified;   | 21838 | 658.15  |N/A | N/A  | N/A  | N/A    | N/A | N/A  |
| igfx_off   |       |         |    |      |      |        |     |      |
+------------+-------+---------+----+------+------+--------+-----+------+
| per-logic; | 1553  | 1599.96 |9458|429.97| 5846 | 274.33 | 0   | 0.00 |
| on         |       |         |    |      |      |        |     |      |
+------------+-------+---------+----+------+------+--------+-----+------+
| per-logic; | 1911  | 1678.32 |8335|445.16| 5451 | 244.80 | 0   | 0.00 |
| igfx_off   |       |         |    |      |      |        |     |      |
+------------+-------+---------+----+------+------+--------+-----+------+

Signed-off-by: Pei Zhang <pei.zhang@intel.com>
Signed-off-by: Colin Xu <colin.xu@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
2018-05-18 12:39:02 +08:00

1462 lines
40 KiB
C

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Zhi Wang <zhi.a.wang@intel.com>
*
* Contributors:
* Ping Gao <ping.a.gao@intel.com>
* Tina Zhang <tina.zhang@intel.com>
* Chanbin Du <changbin.du@intel.com>
* Min He <min.he@intel.com>
* Bing Niu <bing.niu@intel.com>
* Zhenyu Wang <zhenyuw@linux.intel.com>
*
*/
#include <linux/kthread.h>
#include "i915_drv.h"
#include "gvt.h"
#define RING_CTX_OFF(x) \
offsetof(struct execlist_ring_context, x)
static void set_context_pdp_root_pointer(
struct execlist_ring_context *ring_context,
u32 pdp[8])
{
struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
int i;
for (i = 0; i < 8; i++)
pdp_pair[i].val = pdp[7 - i];
}
static void update_shadow_pdps(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
int ring_id = workload->ring_id;
struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
struct drm_i915_gem_object *ctx_obj =
shadow_ctx->__engine[ring_id].state->obj;
struct execlist_ring_context *shadow_ring_context;
struct page *page;
if (WARN_ON(!workload->shadow_mm))
return;
if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
return;
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
shadow_ring_context = kmap(page);
set_context_pdp_root_pointer(shadow_ring_context,
(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
kunmap(page);
}
/*
* when populating shadow ctx from guest, we should not overrride oa related
* registers, so that they will not be overlapped by guest oa configs. Thus
* made it possible to capture oa data from host for both host and guests.
*/
static void sr_oa_regs(struct intel_vgpu_workload *workload,
u32 *reg_state, bool save)
{
struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
int i = 0;
u32 flex_mmio[] = {
i915_mmio_reg_offset(EU_PERF_CNTL0),
i915_mmio_reg_offset(EU_PERF_CNTL1),
i915_mmio_reg_offset(EU_PERF_CNTL2),
i915_mmio_reg_offset(EU_PERF_CNTL3),
i915_mmio_reg_offset(EU_PERF_CNTL4),
i915_mmio_reg_offset(EU_PERF_CNTL5),
i915_mmio_reg_offset(EU_PERF_CNTL6),
};
if (workload->ring_id != RCS)
return;
if (save) {
workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
u32 state_offset = ctx_flexeu0 + i * 2;
workload->flex_mmio[i] = reg_state[state_offset + 1];
}
} else {
reg_state[ctx_oactxctrl] =
i915_mmio_reg_offset(GEN8_OACTXCONTROL);
reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
u32 state_offset = ctx_flexeu0 + i * 2;
u32 mmio = flex_mmio[i];
reg_state[state_offset] = mmio;
reg_state[state_offset + 1] = workload->flex_mmio[i];
}
}
}
static int populate_shadow_context(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
int ring_id = workload->ring_id;
struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
struct drm_i915_gem_object *ctx_obj =
shadow_ctx->__engine[ring_id].state->obj;
struct execlist_ring_context *shadow_ring_context;
struct page *page;
void *dst;
unsigned long context_gpa, context_page_num;
int i;
gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
workload->ctx_desc.lrca);
context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
context_page_num = context_page_num >> PAGE_SHIFT;
if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
context_page_num = 19;
i = 2;
while (i < context_page_num) {
context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((workload->ctx_desc.lrca + i) <<
I915_GTT_PAGE_SHIFT));
if (context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("Invalid guest context descriptor\n");
return -EFAULT;
}
page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
dst = kmap(page);
intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
I915_GTT_PAGE_SIZE);
kunmap(page);
i++;
}
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
shadow_ring_context = kmap(page);
sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
#define COPY_REG(name) \
intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
#define COPY_REG_MASKED(name) {\
intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
+ RING_CTX_OFF(name.val),\
&shadow_ring_context->name.val, 4);\
shadow_ring_context->name.val |= 0xffff << 16;\
}
COPY_REG_MASKED(ctx_ctrl);
COPY_REG(ctx_timestamp);
if (ring_id == RCS) {
COPY_REG(bb_per_ctx_ptr);
COPY_REG(rcs_indirect_ctx);
COPY_REG(rcs_indirect_ctx_offset);
}
#undef COPY_REG
#undef COPY_REG_MASKED
intel_gvt_hypervisor_read_gpa(vgpu,
workload->ring_context_gpa +
sizeof(*shadow_ring_context),
(void *)shadow_ring_context +
sizeof(*shadow_ring_context),
I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
kunmap(page);
return 0;
}
static inline bool is_gvt_request(struct i915_request *req)
{
return i915_gem_context_force_single_submission(req->ctx);
}
static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
i915_reg_t reg;
reg = RING_INSTDONE(ring_base);
vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
reg = RING_ACTHD(ring_base);
vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
reg = RING_ACTHD_UDW(ring_base);
vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
}
static int shadow_context_status_change(struct notifier_block *nb,
unsigned long action, void *data)
{
struct i915_request *req = data;
struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
shadow_ctx_notifier_block[req->engine->id]);
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
enum intel_engine_id ring_id = req->engine->id;
struct intel_vgpu_workload *workload;
unsigned long flags;
if (!is_gvt_request(req)) {
spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
if (action == INTEL_CONTEXT_SCHEDULE_IN &&
scheduler->engine_owner[ring_id]) {
/* Switch ring from vGPU to host. */
intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
NULL, ring_id);
scheduler->engine_owner[ring_id] = NULL;
}
spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
return NOTIFY_OK;
}
workload = scheduler->current_workload[ring_id];
if (unlikely(!workload))
return NOTIFY_OK;
switch (action) {
case INTEL_CONTEXT_SCHEDULE_IN:
spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
if (workload->vgpu != scheduler->engine_owner[ring_id]) {
/* Switch ring from host to vGPU or vGPU to vGPU. */
intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
workload->vgpu, ring_id);
scheduler->engine_owner[ring_id] = workload->vgpu;
} else
gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
ring_id, workload->vgpu->id);
spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
atomic_set(&workload->shadow_ctx_active, 1);
break;
case INTEL_CONTEXT_SCHEDULE_OUT:
save_ring_hw_state(workload->vgpu, ring_id);
atomic_set(&workload->shadow_ctx_active, 0);
break;
case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
save_ring_hw_state(workload->vgpu, ring_id);
break;
default:
WARN_ON(1);
return NOTIFY_OK;
}
wake_up(&workload->shadow_ctx_status_wq);
return NOTIFY_OK;
}
static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
struct intel_context *ce = to_intel_context(ctx, engine);
u64 desc = 0;
desc = ce->lrc_desc;
/* Update bits 0-11 of the context descriptor which includes flags
* like GEN8_CTX_* cached in desc_template
*/
desc &= U64_MAX << 12;
desc |= ctx->desc_template & ((1ULL << 12) - 1);
ce->lrc_desc = desc;
}
static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
void *shadow_ring_buffer_va;
u32 *cs;
struct i915_request *req = workload->req;
if (IS_KABYLAKE(req->i915) &&
is_inhibit_context(req->ctx, req->engine->id))
intel_vgpu_restore_inhibit_context(vgpu, req);
/* allocate shadow ring buffer */
cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
if (IS_ERR(cs)) {
gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
workload->rb_len);
return PTR_ERR(cs);
}
shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
/* get shadow ring buffer va */
workload->shadow_ring_buffer_va = cs;
memcpy(cs, shadow_ring_buffer_va,
workload->rb_len);
cs += workload->rb_len / sizeof(u32);
intel_ring_advance(workload->req, cs);
return 0;
}
static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
if (!wa_ctx->indirect_ctx.obj)
return;
i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
i915_gem_object_put(wa_ctx->indirect_ctx.obj);
}
/**
* intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
* shadow it as well, include ringbuffer,wa_ctx and ctx.
* @workload: an abstract entity for each execlist submission.
*
* This function is called before the workload submitting to i915, to make
* sure the content of the workload is valid.
*/
int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
struct i915_gem_context *shadow_ctx = s->shadow_ctx;
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
int ring_id = workload->ring_id;
struct intel_engine_cs *engine = dev_priv->engine[ring_id];
struct intel_ring *ring;
int ret;
lockdep_assert_held(&dev_priv->drm.struct_mutex);
if (workload->shadowed)
return 0;
shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
GEN8_CTX_ADDRESSING_MODE_SHIFT;
if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
shadow_context_descriptor_update(shadow_ctx,
dev_priv->engine[ring_id]);
ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
if (ret)
goto err_scan;
if ((workload->ring_id == RCS) &&
(workload->wa_ctx.indirect_ctx.size != 0)) {
ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
if (ret)
goto err_scan;
}
/* pin shadow context by gvt even the shadow context will be pinned
* when i915 alloc request. That is because gvt will update the guest
* context from shadow context when workload is completed, and at that
* moment, i915 may already unpined the shadow context to make the
* shadow_ctx pages invalid. So gvt need to pin itself. After update
* the guest context, gvt can unpin the shadow_ctx safely.
*/
ring = intel_context_pin(shadow_ctx, engine);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
gvt_vgpu_err("fail to pin shadow context\n");
goto err_shadow;
}
ret = populate_shadow_context(workload);
if (ret)
goto err_unpin;
workload->shadowed = true;
return 0;
err_unpin:
intel_context_unpin(shadow_ctx, engine);
err_shadow:
release_shadow_wa_ctx(&workload->wa_ctx);
err_scan:
return ret;
}
static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
{
int ring_id = workload->ring_id;
struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
struct intel_engine_cs *engine = dev_priv->engine[ring_id];
struct i915_request *rq;
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
struct i915_gem_context *shadow_ctx = s->shadow_ctx;
int ret;
rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
if (IS_ERR(rq)) {
gvt_vgpu_err("fail to allocate gem request\n");
ret = PTR_ERR(rq);
goto err_unpin;
}
gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
workload->req = i915_request_get(rq);
ret = copy_workload_to_ring_buffer(workload);
if (ret)
goto err_unpin;
return 0;
err_unpin:
intel_context_unpin(shadow_ctx, engine);
release_shadow_wa_ctx(&workload->wa_ctx);
return ret;
}
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
struct intel_gvt *gvt = workload->vgpu->gvt;
const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
struct intel_vgpu_shadow_bb *bb;
int ret;
list_for_each_entry(bb, &workload->shadow_bb, list) {
/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
* is only updated into ring_scan_buffer, not real ring address
* allocated in later copy_workload_to_ring_buffer. pls be noted
* shadow_ring_buffer_va is now pointed to real ring buffer va
* in copy_workload_to_ring_buffer.
*/
if (bb->bb_offset)
bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
+ bb->bb_offset;
if (bb->ppgtt) {
/* for non-priv bb, scan&shadow is only for
* debugging purpose, so the content of shadow bb
* is the same as original bb. Therefore,
* here, rather than switch to shadow bb's gma
* address, we directly use original batch buffer's
* gma address, and send original bb to hardware
* directly
*/
if (bb->clflush & CLFLUSH_AFTER) {
drm_clflush_virt_range(bb->va,
bb->obj->base.size);
bb->clflush &= ~CLFLUSH_AFTER;
}
i915_gem_obj_finish_shmem_access(bb->obj);
bb->accessing = false;
} else {
bb->vma = i915_gem_object_ggtt_pin(bb->obj,
NULL, 0, 0, 0);
if (IS_ERR(bb->vma)) {
ret = PTR_ERR(bb->vma);
goto err;
}
/* relocate shadow batch buffer */
bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
if (gmadr_bytes == 8)
bb->bb_start_cmd_va[2] = 0;
/* No one is going to touch shadow bb from now on. */
if (bb->clflush & CLFLUSH_AFTER) {
drm_clflush_virt_range(bb->va,
bb->obj->base.size);
bb->clflush &= ~CLFLUSH_AFTER;
}
ret = i915_gem_object_set_to_gtt_domain(bb->obj,
false);
if (ret)
goto err;
i915_gem_obj_finish_shmem_access(bb->obj);
bb->accessing = false;
i915_vma_move_to_active(bb->vma, workload->req, 0);
}
}
return 0;
err:
release_shadow_batch_buffer(workload);
return ret;
}
static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct intel_vgpu_workload *workload = container_of(wa_ctx,
struct intel_vgpu_workload,
wa_ctx);
int ring_id = workload->ring_id;
struct intel_vgpu_submission *s = &workload->vgpu->submission;
struct i915_gem_context *shadow_ctx = s->shadow_ctx;
struct drm_i915_gem_object *ctx_obj =
shadow_ctx->__engine[ring_id].state->obj;
struct execlist_ring_context *shadow_ring_context;
struct page *page;
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
shadow_ring_context = kmap_atomic(page);
shadow_ring_context->bb_per_ctx_ptr.val =
(shadow_ring_context->bb_per_ctx_ptr.val &
(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
shadow_ring_context->rcs_indirect_ctx.val =
(shadow_ring_context->rcs_indirect_ctx.val &
(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
kunmap_atomic(shadow_ring_context);
return 0;
}
static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct i915_vma *vma;
unsigned char *per_ctx_va =
(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
wa_ctx->indirect_ctx.size;
if (wa_ctx->indirect_ctx.size == 0)
return 0;
vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
0, CACHELINE_BYTES, 0);
if (IS_ERR(vma))
return PTR_ERR(vma);
/* FIXME: we are not tracking our pinned VMA leaving it
* up to the core to fix up the stray pin_count upon
* free.
*/
wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
memset(per_ctx_va, 0, CACHELINE_BYTES);
update_wa_ctx_2_shadow_ctx(wa_ctx);
return 0;
}
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
struct intel_vgpu_shadow_bb *bb, *pos;
if (list_empty(&workload->shadow_bb))
return;
bb = list_first_entry(&workload->shadow_bb,
struct intel_vgpu_shadow_bb, list);
mutex_lock(&dev_priv->drm.struct_mutex);
list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
if (bb->obj) {
if (bb->accessing)
i915_gem_obj_finish_shmem_access(bb->obj);
if (bb->va && !IS_ERR(bb->va))
i915_gem_object_unpin_map(bb->obj);
if (bb->vma && !IS_ERR(bb->vma)) {
i915_vma_unpin(bb->vma);
i915_vma_close(bb->vma);
}
__i915_gem_object_release_unless_active(bb->obj);
}
list_del(&bb->list);
kfree(bb);
}
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static int prepare_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
int ret = 0;
ret = intel_vgpu_pin_mm(workload->shadow_mm);
if (ret) {
gvt_vgpu_err("fail to vgpu pin mm\n");
return ret;
}
update_shadow_pdps(workload);
ret = intel_vgpu_sync_oos_pages(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to vgpu sync oos pages\n");
goto err_unpin_mm;
}
ret = intel_vgpu_flush_post_shadow(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to flush post shadow\n");
goto err_unpin_mm;
}
ret = intel_gvt_generate_request(workload);
if (ret) {
gvt_vgpu_err("fail to generate request\n");
goto err_unpin_mm;
}
ret = prepare_shadow_batch_buffer(workload);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
goto err_unpin_mm;
}
ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
goto err_shadow_batch;
}
if (workload->prepare) {
ret = workload->prepare(workload);
if (ret)
goto err_shadow_wa_ctx;
}
return 0;
err_shadow_wa_ctx:
release_shadow_wa_ctx(&workload->wa_ctx);
err_shadow_batch:
release_shadow_batch_buffer(workload);
err_unpin_mm:
intel_vgpu_unpin_mm(workload->shadow_mm);
return ret;
}
static int dispatch_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
struct i915_gem_context *shadow_ctx = s->shadow_ctx;
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
int ring_id = workload->ring_id;
struct intel_engine_cs *engine = dev_priv->engine[ring_id];
int ret = 0;
gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
ring_id, workload);
mutex_lock(&vgpu->vgpu_lock);
mutex_lock(&dev_priv->drm.struct_mutex);
ret = intel_gvt_scan_and_shadow_workload(workload);
if (ret)
goto out;
ret = prepare_workload(workload);
if (ret) {
intel_context_unpin(shadow_ctx, engine);
goto out;
}
out:
if (ret)
workload->status = ret;
if (!IS_ERR_OR_NULL(workload->req)) {
gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
ring_id, workload->req);
i915_request_add(workload->req);
workload->dispatched = true;
}
mutex_unlock(&dev_priv->drm.struct_mutex);
mutex_unlock(&vgpu->vgpu_lock);
return ret;
}
static struct intel_vgpu_workload *pick_next_workload(
struct intel_gvt *gvt, int ring_id)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_vgpu_workload *workload = NULL;
mutex_lock(&gvt->lock);
/*
* no current vgpu / will be scheduled out / no workload
* bail out
*/
if (!scheduler->current_vgpu) {
gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
goto out;
}
if (scheduler->need_reschedule) {
gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
goto out;
}
if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
goto out;
/*
* still have current workload, maybe the workload disptacher
* fail to submit it for some reason, resubmit it.
*/
if (scheduler->current_workload[ring_id]) {
workload = scheduler->current_workload[ring_id];
gvt_dbg_sched("ring id %d still have current workload %p\n",
ring_id, workload);
goto out;
}
/*
* pick a workload as current workload
* once current workload is set, schedule policy routines
* will wait the current workload is finished when trying to
* schedule out a vgpu.
*/
scheduler->current_workload[ring_id] = container_of(
workload_q_head(scheduler->current_vgpu, ring_id)->next,
struct intel_vgpu_workload, list);
workload = scheduler->current_workload[ring_id];
gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
atomic_inc(&workload->vgpu->submission.running_workload_num);
out:
mutex_unlock(&gvt->lock);
return workload;
}
static void update_guest_context(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_vgpu_submission *s = &vgpu->submission;
struct i915_gem_context *shadow_ctx = s->shadow_ctx;
int ring_id = workload->ring_id;
struct drm_i915_gem_object *ctx_obj =
shadow_ctx->__engine[ring_id].state->obj;
struct execlist_ring_context *shadow_ring_context;
struct page *page;
void *src;
unsigned long context_gpa, context_page_num;
int i;
gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
workload->ctx_desc.lrca);
context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
context_page_num = context_page_num >> PAGE_SHIFT;
if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
context_page_num = 19;
i = 2;
while (i < context_page_num) {
context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((workload->ctx_desc.lrca + i) <<
I915_GTT_PAGE_SHIFT));
if (context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("invalid guest context descriptor\n");
return;
}
page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
src = kmap(page);
intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
I915_GTT_PAGE_SIZE);
kunmap(page);
i++;
}
intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
shadow_ring_context = kmap(page);
#define COPY_REG(name) \
intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
COPY_REG(ctx_ctrl);
COPY_REG(ctx_timestamp);
#undef COPY_REG
intel_gvt_hypervisor_write_gpa(vgpu,
workload->ring_context_gpa +
sizeof(*shadow_ring_context),
(void *)shadow_ring_context +
sizeof(*shadow_ring_context),
I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
kunmap(page);
}
static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
struct intel_engine_cs *engine;
struct intel_vgpu_workload *pos, *n;
unsigned int tmp;
/* free the unsubmited workloads in the queues. */
for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
list_for_each_entry_safe(pos, n,
&s->workload_q_head[engine->id], list) {
list_del_init(&pos->list);
intel_vgpu_destroy_workload(pos);
}
clear_bit(engine->id, s->shadow_ctx_desc_updated);
}
}
static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_vgpu_workload *workload =
scheduler->current_workload[ring_id];
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
int event;
mutex_lock(&gvt->lock);
mutex_lock(&vgpu->vgpu_lock);
/* For the workload w/ request, needs to wait for the context
* switch to make sure request is completed.
* For the workload w/o request, directly complete the workload.
*/
if (workload->req) {
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
struct intel_engine_cs *engine =
dev_priv->engine[workload->ring_id];
wait_event(workload->shadow_ctx_status_wq,
!atomic_read(&workload->shadow_ctx_active));
/* If this request caused GPU hang, req->fence.error will
* be set to -EIO. Use -EIO to set workload status so
* that when this request caused GPU hang, didn't trigger
* context switch interrupt to guest.
*/
if (likely(workload->status == -EINPROGRESS)) {
if (workload->req->fence.error == -EIO)
workload->status = -EIO;
else
workload->status = 0;
}
i915_request_put(fetch_and_zero(&workload->req));
if (!workload->status && !(vgpu->resetting_eng &
ENGINE_MASK(ring_id))) {
update_guest_context(workload);
for_each_set_bit(event, workload->pending_events,
INTEL_GVT_EVENT_MAX)
intel_vgpu_trigger_virtual_event(vgpu, event);
}
mutex_lock(&dev_priv->drm.struct_mutex);
/* unpin shadow ctx as the shadow_ctx update is done */
intel_context_unpin(s->shadow_ctx, engine);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
gvt_dbg_sched("ring id %d complete workload %p status %d\n",
ring_id, workload, workload->status);
scheduler->current_workload[ring_id] = NULL;
list_del_init(&workload->list);
if (!workload->status) {
release_shadow_batch_buffer(workload);
release_shadow_wa_ctx(&workload->wa_ctx);
}
if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
/* if workload->status is not successful means HW GPU
* has occurred GPU hang or something wrong with i915/GVT,
* and GVT won't inject context switch interrupt to guest.
* So this error is a vGPU hang actually to the guest.
* According to this we should emunlate a vGPU hang. If
* there are pending workloads which are already submitted
* from guest, we should clean them up like HW GPU does.
*
* if it is in middle of engine resetting, the pending
* workloads won't be submitted to HW GPU and will be
* cleaned up during the resetting process later, so doing
* the workload clean up here doesn't have any impact.
**/
clean_workloads(vgpu, ENGINE_MASK(ring_id));
}
workload->complete(workload);
atomic_dec(&s->running_workload_num);
wake_up(&scheduler->workload_complete_wq);
if (gvt->scheduler.need_reschedule)
intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
mutex_unlock(&vgpu->vgpu_lock);
mutex_unlock(&gvt->lock);
}
struct workload_thread_param {
struct intel_gvt *gvt;
int ring_id;
};
static int workload_thread(void *priv)
{
struct workload_thread_param *p = (struct workload_thread_param *)priv;
struct intel_gvt *gvt = p->gvt;
int ring_id = p->ring_id;
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_vgpu_workload *workload = NULL;
struct intel_vgpu *vgpu = NULL;
int ret;
bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
|| IS_KABYLAKE(gvt->dev_priv);
DEFINE_WAIT_FUNC(wait, woken_wake_function);
kfree(p);
gvt_dbg_core("workload thread for ring %d started\n", ring_id);
while (!kthread_should_stop()) {
add_wait_queue(&scheduler->waitq[ring_id], &wait);
do {
workload = pick_next_workload(gvt, ring_id);
if (workload)
break;
wait_woken(&wait, TASK_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
} while (!kthread_should_stop());
remove_wait_queue(&scheduler->waitq[ring_id], &wait);
if (!workload)
break;
gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
workload->ring_id, workload,
workload->vgpu->id);
intel_runtime_pm_get(gvt->dev_priv);
gvt_dbg_sched("ring id %d will dispatch workload %p\n",
workload->ring_id, workload);
if (need_force_wake)
intel_uncore_forcewake_get(gvt->dev_priv,
FORCEWAKE_ALL);
ret = dispatch_workload(workload);
if (ret) {
vgpu = workload->vgpu;
gvt_vgpu_err("fail to dispatch workload, skip\n");
goto complete;
}
gvt_dbg_sched("ring id %d wait workload %p\n",
workload->ring_id, workload);
i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
complete:
gvt_dbg_sched("will complete workload %p, status: %d\n",
workload, workload->status);
complete_current_workload(gvt, ring_id);
if (need_force_wake)
intel_uncore_forcewake_put(gvt->dev_priv,
FORCEWAKE_ALL);
intel_runtime_pm_put(gvt->dev_priv);
if (ret && (vgpu_is_vm_unhealthy(ret)))
enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
}
return 0;
}
void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
if (atomic_read(&s->running_workload_num)) {
gvt_dbg_sched("wait vgpu idle\n");
wait_event(scheduler->workload_complete_wq,
!atomic_read(&s->running_workload_num));
}
}
void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_engine_cs *engine;
enum intel_engine_id i;
gvt_dbg_core("clean workload scheduler\n");
for_each_engine(engine, gvt->dev_priv, i) {
atomic_notifier_chain_unregister(
&engine->context_status_notifier,
&gvt->shadow_ctx_notifier_block[i]);
kthread_stop(scheduler->thread[i]);
}
}
int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct workload_thread_param *param = NULL;
struct intel_engine_cs *engine;
enum intel_engine_id i;
int ret;
gvt_dbg_core("init workload scheduler\n");
init_waitqueue_head(&scheduler->workload_complete_wq);
for_each_engine(engine, gvt->dev_priv, i) {
init_waitqueue_head(&scheduler->waitq[i]);
param = kzalloc(sizeof(*param), GFP_KERNEL);
if (!param) {
ret = -ENOMEM;
goto err;
}
param->gvt = gvt;
param->ring_id = i;
scheduler->thread[i] = kthread_run(workload_thread, param,
"gvt workload %d", i);
if (IS_ERR(scheduler->thread[i])) {
gvt_err("fail to create workload thread\n");
ret = PTR_ERR(scheduler->thread[i]);
goto err;
}
gvt->shadow_ctx_notifier_block[i].notifier_call =
shadow_context_status_change;
atomic_notifier_chain_register(&engine->context_status_notifier,
&gvt->shadow_ctx_notifier_block[i]);
}
return 0;
err:
intel_gvt_clean_workload_scheduler(gvt);
kfree(param);
param = NULL;
return ret;
}
/**
* intel_vgpu_clean_submission - free submission-related resource for vGPU
* @vgpu: a vGPU
*
* This function is called when a vGPU is being destroyed.
*
*/
void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
i915_gem_context_put(s->shadow_ctx);
kmem_cache_destroy(s->workloads);
}
/**
* intel_vgpu_reset_submission - reset submission-related resource for vGPU
* @vgpu: a vGPU
* @engine_mask: engines expected to be reset
*
* This function is called when a vGPU is being destroyed.
*
*/
void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
unsigned long engine_mask)
{
struct intel_vgpu_submission *s = &vgpu->submission;
if (!s->active)
return;
clean_workloads(vgpu, engine_mask);
s->ops->reset(vgpu, engine_mask);
}
/**
* intel_vgpu_setup_submission - setup submission-related resource for vGPU
* @vgpu: a vGPU
*
* This function is called when a vGPU is being created.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
enum intel_engine_id i;
struct intel_engine_cs *engine;
int ret;
s->shadow_ctx = i915_gem_context_create_gvt(
&vgpu->gvt->dev_priv->drm);
if (IS_ERR(s->shadow_ctx))
return PTR_ERR(s->shadow_ctx);
bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
sizeof(struct intel_vgpu_workload), 0,
SLAB_HWCACHE_ALIGN,
offsetof(struct intel_vgpu_workload, rb_tail),
sizeof_field(struct intel_vgpu_workload, rb_tail),
NULL);
if (!s->workloads) {
ret = -ENOMEM;
goto out_shadow_ctx;
}
for_each_engine(engine, vgpu->gvt->dev_priv, i)
INIT_LIST_HEAD(&s->workload_q_head[i]);
atomic_set(&s->running_workload_num, 0);
bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
return 0;
out_shadow_ctx:
i915_gem_context_put(s->shadow_ctx);
return ret;
}
/**
* intel_vgpu_select_submission_ops - select virtual submission interface
* @vgpu: a vGPU
* @interface: expected vGPU virtual submission interface
*
* This function is called when guest configures submission interface.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
unsigned long engine_mask,
unsigned int interface)
{
struct intel_vgpu_submission *s = &vgpu->submission;
const struct intel_vgpu_submission_ops *ops[] = {
[INTEL_VGPU_EXECLIST_SUBMISSION] =
&intel_vgpu_execlist_submission_ops,
};
int ret;
if (WARN_ON(interface >= ARRAY_SIZE(ops)))
return -EINVAL;
if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
return -EINVAL;
if (s->active)
s->ops->clean(vgpu, engine_mask);
if (interface == 0) {
s->ops = NULL;
s->virtual_submission_interface = 0;
s->active = false;
gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
return 0;
}
ret = ops[interface]->init(vgpu, engine_mask);
if (ret)
return ret;
s->ops = ops[interface];
s->virtual_submission_interface = interface;
s->active = true;
gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
vgpu->id, s->ops->name);
return 0;
}
/**
* intel_vgpu_destroy_workload - destroy a vGPU workload
* @vgpu: a vGPU
*
* This function is called when destroy a vGPU workload.
*
*/
void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu_submission *s = &workload->vgpu->submission;
if (workload->shadow_mm)
intel_vgpu_mm_put(workload->shadow_mm);
kmem_cache_free(s->workloads, workload);
}
static struct intel_vgpu_workload *
alloc_workload(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_vgpu_workload *workload;
workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
if (!workload)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&workload->list);
INIT_LIST_HEAD(&workload->shadow_bb);
init_waitqueue_head(&workload->shadow_ctx_status_wq);
atomic_set(&workload->shadow_ctx_active, 0);
workload->status = -EINPROGRESS;
workload->shadowed = false;
workload->vgpu = vgpu;
return workload;
}
#define RING_CTX_OFF(x) \
offsetof(struct execlist_ring_context, x)
static void read_guest_pdps(struct intel_vgpu *vgpu,
u64 ring_context_gpa, u32 pdp[8])
{
u64 gpa;
int i;
gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
for (i = 0; i < 8; i++)
intel_gvt_hypervisor_read_gpa(vgpu,
gpa + i * 8, &pdp[7 - i], 4);
}
static int prepare_mm(struct intel_vgpu_workload *workload)
{
struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
struct intel_vgpu_mm *mm;
struct intel_vgpu *vgpu = workload->vgpu;
intel_gvt_gtt_type_t root_entry_type;
u64 pdps[GVT_RING_CTX_NR_PDPS];
switch (desc->addressing_mode) {
case 1: /* legacy 32-bit */
root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
break;
case 3: /* legacy 64-bit */
root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
break;
default:
gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
return -EINVAL;
}
read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
if (IS_ERR(mm))
return PTR_ERR(mm);
workload->shadow_mm = mm;
return 0;
}
#define same_context(a, b) (((a)->context_id == (b)->context_id) && \
((a)->lrca == (b)->lrca))
#define get_last_workload(q) \
(list_empty(q) ? NULL : container_of(q->prev, \
struct intel_vgpu_workload, list))
/**
* intel_vgpu_create_workload - create a vGPU workload
* @vgpu: a vGPU
* @desc: a guest context descriptor
*
* This function is called when creating a vGPU workload.
*
* Returns:
* struct intel_vgpu_workload * on success, negative error code in
* pointer if failed.
*
*/
struct intel_vgpu_workload *
intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
struct execlist_ctx_descriptor_format *desc)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct list_head *q = workload_q_head(vgpu, ring_id);
struct intel_vgpu_workload *last_workload = get_last_workload(q);
struct intel_vgpu_workload *workload = NULL;
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
u64 ring_context_gpa;
u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
int ret;
ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
return ERR_PTR(-EINVAL);
}
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ring_header.val), &head, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ring_tail.val), &tail, 4);
head &= RB_HEAD_OFF_MASK;
tail &= RB_TAIL_OFF_MASK;
if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
gvt_dbg_el("ctx head %x real head %lx\n", head,
last_workload->rb_tail);
/*
* cannot use guest context head pointer here,
* as it might not be updated at this time
*/
head = last_workload->rb_tail;
}
gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
/* record some ring buffer register values for scan and shadow */
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rb_start.val), &start, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
workload = alloc_workload(vgpu);
if (IS_ERR(workload))
return workload;
workload->ring_id = ring_id;
workload->ctx_desc = *desc;
workload->ring_context_gpa = ring_context_gpa;
workload->rb_head = head;
workload->rb_tail = tail;
workload->rb_start = start;
workload->rb_ctl = ctl;
if (ring_id == RCS) {
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
workload->wa_ctx.indirect_ctx.guest_gma =
indirect_ctx & INDIRECT_CTX_ADDR_MASK;
workload->wa_ctx.indirect_ctx.size =
(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
CACHELINE_BYTES;
workload->wa_ctx.per_ctx.guest_gma =
per_ctx & PER_CTX_ADDR_MASK;
workload->wa_ctx.per_ctx.valid = per_ctx & 1;
}
gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
workload, ring_id, head, tail, start, ctl);
ret = prepare_mm(workload);
if (ret) {
kmem_cache_free(s->workloads, workload);
return ERR_PTR(ret);
}
/* Only scan and shadow the first workload in the queue
* as there is only one pre-allocated buf-obj for shadow.
*/
if (list_empty(workload_q_head(vgpu, ring_id))) {
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
ret = intel_gvt_scan_and_shadow_workload(workload);
mutex_unlock(&dev_priv->drm.struct_mutex);
intel_runtime_pm_put(dev_priv);
}
if (ret && (vgpu_is_vm_unhealthy(ret))) {
enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
intel_vgpu_destroy_workload(workload);
return ERR_PTR(ret);
}
return workload;
}
/**
* intel_vgpu_queue_workload - Qeue a vGPU workload
* @workload: the workload to queue in
*/
void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
{
list_add_tail(&workload->list,
workload_q_head(workload->vgpu, workload->ring_id));
intel_gvt_kick_schedule(workload->vgpu->gvt);
wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
}