linux/drivers/char/random.c
Jason A. Donenfeld 1ce6c8d68f random: check for signals after page of pool writes
get_random_bytes_user() checks for signals after producing a PAGE_SIZE
worth of output, just like /dev/zero does. write_pool() is doing
basically the same work (actually, slightly more expensive), and so
should stop to check for signals in the same way. Let's also name it
write_pool_user() to match get_random_bytes_user(), so this won't be
misused in the future.

Before this patch, massive writes to /dev/urandom would tie up the
process for an extremely long time and make it unterminatable. After, it
can be successfully interrupted. The following test program can be used
to see this works as intended:

  #include <unistd.h>
  #include <fcntl.h>
  #include <signal.h>
  #include <stdio.h>

  static unsigned char x[~0U];

  static void handle(int) { }

  int main(int argc, char *argv[])
  {
    pid_t pid = getpid(), child;
    int fd;
    signal(SIGUSR1, handle);
    if (!(child = fork())) {
      for (;;)
        kill(pid, SIGUSR1);
    }
    fd = open("/dev/urandom", O_WRONLY);
    pause();
    printf("interrupted after writing %zd bytes\n", write(fd, x, sizeof(x)));
    close(fd);
    kill(child, SIGTERM);
    return 0;
  }

Result before: "interrupted after writing 2147479552 bytes"
Result after: "interrupted after writing 4096 bytes"

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-22 22:34:31 +02:00

1572 lines
47 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
*
* This driver produces cryptographically secure pseudorandom data. It is divided
* into roughly six sections, each with a section header:
*
* - Initialization and readiness waiting.
* - Fast key erasure RNG, the "crng".
* - Entropy accumulation and extraction routines.
* - Entropy collection routines.
* - Userspace reader/writer interfaces.
* - Sysctl interface.
*
* The high level overview is that there is one input pool, into which
* various pieces of data are hashed. Prior to initialization, some of that
* data is then "credited" as having a certain number of bits of entropy.
* When enough bits of entropy are available, the hash is finalized and
* handed as a key to a stream cipher that expands it indefinitely for
* various consumers. This key is periodically refreshed as the various
* entropy collectors, described below, add data to the input pool.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/nodemask.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/percpu.h>
#include <linux/ptrace.h>
#include <linux/workqueue.h>
#include <linux/irq.h>
#include <linux/ratelimit.h>
#include <linux/syscalls.h>
#include <linux/completion.h>
#include <linux/uuid.h>
#include <linux/uaccess.h>
#include <linux/suspend.h>
#include <linux/siphash.h>
#include <crypto/chacha.h>
#include <crypto/blake2s.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/io.h>
/*********************************************************************
*
* Initialization and readiness waiting.
*
* Much of the RNG infrastructure is devoted to various dependencies
* being able to wait until the RNG has collected enough entropy and
* is ready for safe consumption.
*
*********************************************************************/
/*
* crng_init is protected by base_crng->lock, and only increases
* its value (from empty->early->ready).
*/
static enum {
CRNG_EMPTY = 0, /* Little to no entropy collected */
CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
/* Various types of waiters for crng_init->CRNG_READY transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
/* Control how we warn userspace. */
static struct ratelimit_state urandom_warning =
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
static int ratelimit_disable __read_mostly =
IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
/*
* Returns whether or not the input pool has been seeded and thus guaranteed
* to supply cryptographically secure random numbers. This applies to: the
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
* ,u64,int,long} family of functions.
*
* Returns: true if the input pool has been seeded.
* false if the input pool has not been seeded.
*/
bool rng_is_initialized(void)
{
return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);
static void __cold crng_set_ready(struct work_struct *work)
{
static_branch_enable(&crng_is_ready);
}
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);
/*
* Wait for the input pool to be seeded and thus guaranteed to supply
* cryptographically secure random numbers. This applies to: the /dev/urandom
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
* family of functions. Using any of these functions without first calling
* this function forfeits the guarantee of security.
*
* Returns: 0 if the input pool has been seeded.
* -ERESTARTSYS if the function was interrupted by a signal.
*/
int wait_for_random_bytes(void)
{
while (!crng_ready()) {
int ret;
try_to_generate_entropy();
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
if (ret)
return ret > 0 ? 0 : ret;
}
return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);
#define warn_unseeded_randomness() \
if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
__func__, (void *)_RET_IP_, crng_init)
/*********************************************************************
*
* Fast key erasure RNG, the "crng".
*
* These functions expand entropy from the entropy extractor into
* long streams for external consumption using the "fast key erasure"
* RNG described at <https://blog.cr.yp.to/20170723-random.html>.
*
* There are a few exported interfaces for use by other drivers:
*
* void get_random_bytes(void *buf, size_t len)
* u32 get_random_u32()
* u64 get_random_u64()
* unsigned int get_random_int()
* unsigned long get_random_long()
*
* These interfaces will return the requested number of random bytes
* into the given buffer or as a return value. This is equivalent to
* a read from /dev/urandom. The u32, u64, int, and long family of
* functions may be higher performance for one-off random integers,
* because they do a bit of buffering and do not invoke reseeding
* until the buffer is emptied.
*
*********************************************************************/
enum {
CRNG_RESEED_START_INTERVAL = HZ,
CRNG_RESEED_INTERVAL = 60 * HZ
};
static struct {
u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
unsigned long birth;
unsigned long generation;
spinlock_t lock;
} base_crng = {
.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};
struct crng {
u8 key[CHACHA_KEY_SIZE];
unsigned long generation;
local_lock_t lock;
};
static DEFINE_PER_CPU(struct crng, crngs) = {
.generation = ULONG_MAX,
.lock = INIT_LOCAL_LOCK(crngs.lock),
};
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
static void extract_entropy(void *buf, size_t len);
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
{
unsigned long flags;
unsigned long next_gen;
u8 key[CHACHA_KEY_SIZE];
extract_entropy(key, sizeof(key));
/*
* We copy the new key into the base_crng, overwriting the old one,
* and update the generation counter. We avoid hitting ULONG_MAX,
* because the per-cpu crngs are initialized to ULONG_MAX, so this
* forces new CPUs that come online to always initialize.
*/
spin_lock_irqsave(&base_crng.lock, flags);
memcpy(base_crng.key, key, sizeof(base_crng.key));
next_gen = base_crng.generation + 1;
if (next_gen == ULONG_MAX)
++next_gen;
WRITE_ONCE(base_crng.generation, next_gen);
WRITE_ONCE(base_crng.birth, jiffies);
if (!static_branch_likely(&crng_is_ready))
crng_init = CRNG_READY;
spin_unlock_irqrestore(&base_crng.lock, flags);
memzero_explicit(key, sizeof(key));
}
/*
* This generates a ChaCha block using the provided key, and then
* immediately overwites that key with half the block. It returns
* the resultant ChaCha state to the user, along with the second
* half of the block containing 32 bytes of random data that may
* be used; random_data_len may not be greater than 32.
*
* The returned ChaCha state contains within it a copy of the old
* key value, at index 4, so the state should always be zeroed out
* immediately after using in order to maintain forward secrecy.
* If the state cannot be erased in a timely manner, then it is
* safer to set the random_data parameter to &chacha_state[4] so
* that this function overwrites it before returning.
*/
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
u32 chacha_state[CHACHA_STATE_WORDS],
u8 *random_data, size_t random_data_len)
{
u8 first_block[CHACHA_BLOCK_SIZE];
BUG_ON(random_data_len > 32);
chacha_init_consts(chacha_state);
memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
memset(&chacha_state[12], 0, sizeof(u32) * 4);
chacha20_block(chacha_state, first_block);
memcpy(key, first_block, CHACHA_KEY_SIZE);
memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
memzero_explicit(first_block, sizeof(first_block));
}
/*
* Return whether the crng seed is considered to be sufficiently old
* that a reseeding is needed. This happens if the last reseeding
* was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
* proportional to the uptime.
*/
static bool crng_has_old_seed(void)
{
static bool early_boot = true;
unsigned long interval = CRNG_RESEED_INTERVAL;
if (unlikely(READ_ONCE(early_boot))) {
time64_t uptime = ktime_get_seconds();
if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
WRITE_ONCE(early_boot, false);
else
interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
(unsigned int)uptime / 2 * HZ);
}
return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
}
/*
* This function returns a ChaCha state that you may use for generating
* random data. It also returns up to 32 bytes on its own of random data
* that may be used; random_data_len may not be greater than 32.
*/
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
u8 *random_data, size_t random_data_len)
{
unsigned long flags;
struct crng *crng;
BUG_ON(random_data_len > 32);
/*
* For the fast path, we check whether we're ready, unlocked first, and
* then re-check once locked later. In the case where we're really not
* ready, we do fast key erasure with the base_crng directly, extracting
* when crng_init is CRNG_EMPTY.
*/
if (!crng_ready()) {
bool ready;
spin_lock_irqsave(&base_crng.lock, flags);
ready = crng_ready();
if (!ready) {
if (crng_init == CRNG_EMPTY)
extract_entropy(base_crng.key, sizeof(base_crng.key));
crng_fast_key_erasure(base_crng.key, chacha_state,
random_data, random_data_len);
}
spin_unlock_irqrestore(&base_crng.lock, flags);
if (!ready)
return;
}
/*
* If the base_crng is old enough, we reseed, which in turn bumps the
* generation counter that we check below.
*/
if (unlikely(crng_has_old_seed()))
crng_reseed();
local_lock_irqsave(&crngs.lock, flags);
crng = raw_cpu_ptr(&crngs);
/*
* If our per-cpu crng is older than the base_crng, then it means
* somebody reseeded the base_crng. In that case, we do fast key
* erasure on the base_crng, and use its output as the new key
* for our per-cpu crng. This brings us up to date with base_crng.
*/
if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
spin_lock(&base_crng.lock);
crng_fast_key_erasure(base_crng.key, chacha_state,
crng->key, sizeof(crng->key));
crng->generation = base_crng.generation;
spin_unlock(&base_crng.lock);
}
/*
* Finally, when we've made it this far, our per-cpu crng has an up
* to date key, and we can do fast key erasure with it to produce
* some random data and a ChaCha state for the caller. All other
* branches of this function are "unlikely", so most of the time we
* should wind up here immediately.
*/
crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
local_unlock_irqrestore(&crngs.lock, flags);
}
static void _get_random_bytes(void *buf, size_t len)
{
u32 chacha_state[CHACHA_STATE_WORDS];
u8 tmp[CHACHA_BLOCK_SIZE];
size_t first_block_len;
if (!len)
return;
first_block_len = min_t(size_t, 32, len);
crng_make_state(chacha_state, buf, first_block_len);
len -= first_block_len;
buf += first_block_len;
while (len) {
if (len < CHACHA_BLOCK_SIZE) {
chacha20_block(chacha_state, tmp);
memcpy(buf, tmp, len);
memzero_explicit(tmp, sizeof(tmp));
break;
}
chacha20_block(chacha_state, buf);
if (unlikely(chacha_state[12] == 0))
++chacha_state[13];
len -= CHACHA_BLOCK_SIZE;
buf += CHACHA_BLOCK_SIZE;
}
memzero_explicit(chacha_state, sizeof(chacha_state));
}
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for key generation, seeding
* TCP sequence numbers, etc. In order to ensure that the randomness
* by this function is okay, the function wait_for_random_bytes()
* should be called and return 0 at least once at any point prior.
*/
void get_random_bytes(void *buf, size_t len)
{
warn_unseeded_randomness();
_get_random_bytes(buf, len);
}
EXPORT_SYMBOL(get_random_bytes);
static ssize_t get_random_bytes_user(struct iov_iter *iter)
{
u32 chacha_state[CHACHA_STATE_WORDS];
u8 block[CHACHA_BLOCK_SIZE];
size_t ret = 0, copied;
if (unlikely(!iov_iter_count(iter)))
return 0;
/*
* Immediately overwrite the ChaCha key at index 4 with random
* bytes, in case userspace causes copy_to_user() below to sleep
* forever, so that we still retain forward secrecy in that case.
*/
crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
/*
* However, if we're doing a read of len <= 32, we don't need to
* use chacha_state after, so we can simply return those bytes to
* the user directly.
*/
if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
goto out_zero_chacha;
}
for (;;) {
chacha20_block(chacha_state, block);
if (unlikely(chacha_state[12] == 0))
++chacha_state[13];
copied = copy_to_iter(block, sizeof(block), iter);
ret += copied;
if (!iov_iter_count(iter) || copied != sizeof(block))
break;
BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
if (ret % PAGE_SIZE == 0) {
if (signal_pending(current))
break;
cond_resched();
}
}
memzero_explicit(block, sizeof(block));
out_zero_chacha:
memzero_explicit(chacha_state, sizeof(chacha_state));
return ret ? ret : -EFAULT;
}
/*
* Batched entropy returns random integers. The quality of the random
* number is good as /dev/urandom. In order to ensure that the randomness
* provided by this function is okay, the function wait_for_random_bytes()
* should be called and return 0 at least once at any point prior.
*/
#define DEFINE_BATCHED_ENTROPY(type) \
struct batch_ ##type { \
/* \
* We make this 1.5x a ChaCha block, so that we get the \
* remaining 32 bytes from fast key erasure, plus one full \
* block from the detached ChaCha state. We can increase \
* the size of this later if needed so long as we keep the \
* formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
*/ \
type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
local_lock_t lock; \
unsigned long generation; \
unsigned int position; \
}; \
\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
.position = UINT_MAX \
}; \
\
type get_random_ ##type(void) \
{ \
type ret; \
unsigned long flags; \
struct batch_ ##type *batch; \
unsigned long next_gen; \
\
warn_unseeded_randomness(); \
\
if (!crng_ready()) { \
_get_random_bytes(&ret, sizeof(ret)); \
return ret; \
} \
\
local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
batch = raw_cpu_ptr(&batched_entropy_##type); \
\
next_gen = READ_ONCE(base_crng.generation); \
if (batch->position >= ARRAY_SIZE(batch->entropy) || \
next_gen != batch->generation) { \
_get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
batch->position = 0; \
batch->generation = next_gen; \
} \
\
ret = batch->entropy[batch->position]; \
batch->entropy[batch->position] = 0; \
++batch->position; \
local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
return ret; \
} \
EXPORT_SYMBOL(get_random_ ##type);
DEFINE_BATCHED_ENTROPY(u64)
DEFINE_BATCHED_ENTROPY(u32)
#ifdef CONFIG_SMP
/*
* This function is called when the CPU is coming up, with entry
* CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
*/
int __cold random_prepare_cpu(unsigned int cpu)
{
/*
* When the cpu comes back online, immediately invalidate both
* the per-cpu crng and all batches, so that we serve fresh
* randomness.
*/
per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
return 0;
}
#endif
/**********************************************************************
*
* Entropy accumulation and extraction routines.
*
* Callers may add entropy via:
*
* static void mix_pool_bytes(const void *buf, size_t len)
*
* After which, if added entropy should be credited:
*
* static void credit_init_bits(size_t bits)
*
* Finally, extract entropy via:
*
* static void extract_entropy(void *buf, size_t len)
*
**********************************************************************/
enum {
POOL_BITS = BLAKE2S_HASH_SIZE * 8,
POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
};
static struct {
struct blake2s_state hash;
spinlock_t lock;
unsigned int init_bits;
} input_pool = {
.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
.hash.outlen = BLAKE2S_HASH_SIZE,
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};
static void _mix_pool_bytes(const void *buf, size_t len)
{
blake2s_update(&input_pool.hash, buf, len);
}
/*
* This function adds bytes into the input pool. It does not
* update the initialization bit counter; the caller should call
* credit_init_bits if this is appropriate.
*/
static void mix_pool_bytes(const void *buf, size_t len)
{
unsigned long flags;
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(buf, len);
spin_unlock_irqrestore(&input_pool.lock, flags);
}
/*
* This is an HKDF-like construction for using the hashed collected entropy
* as a PRF key, that's then expanded block-by-block.
*/
static void extract_entropy(void *buf, size_t len)
{
unsigned long flags;
u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
struct {
unsigned long rdseed[32 / sizeof(long)];
size_t counter;
} block;
size_t i;
for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
if (!arch_get_random_seed_long(&block.rdseed[i]) &&
!arch_get_random_long(&block.rdseed[i]))
block.rdseed[i] = random_get_entropy();
}
spin_lock_irqsave(&input_pool.lock, flags);
/* seed = HASHPRF(last_key, entropy_input) */
blake2s_final(&input_pool.hash, seed);
/* next_key = HASHPRF(seed, RDSEED || 0) */
block.counter = 0;
blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
spin_unlock_irqrestore(&input_pool.lock, flags);
memzero_explicit(next_key, sizeof(next_key));
while (len) {
i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
/* output = HASHPRF(seed, RDSEED || ++counter) */
++block.counter;
blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
len -= i;
buf += i;
}
memzero_explicit(seed, sizeof(seed));
memzero_explicit(&block, sizeof(block));
}
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
static void __cold _credit_init_bits(size_t bits)
{
static struct execute_work set_ready;
unsigned int new, orig, add;
unsigned long flags;
if (!bits)
return;
add = min_t(size_t, bits, POOL_BITS);
do {
orig = READ_ONCE(input_pool.init_bits);
new = min_t(unsigned int, POOL_BITS, orig + add);
} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
execute_in_process_context(crng_set_ready, &set_ready);
wake_up_interruptible(&crng_init_wait);
kill_fasync(&fasync, SIGIO, POLL_IN);
pr_notice("crng init done\n");
if (urandom_warning.missed)
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
urandom_warning.missed);
} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
spin_lock_irqsave(&base_crng.lock, flags);
/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
if (crng_init == CRNG_EMPTY) {
extract_entropy(base_crng.key, sizeof(base_crng.key));
crng_init = CRNG_EARLY;
}
spin_unlock_irqrestore(&base_crng.lock, flags);
}
}
/**********************************************************************
*
* Entropy collection routines.
*
* The following exported functions are used for pushing entropy into
* the above entropy accumulation routines:
*
* void add_device_randomness(const void *buf, size_t len);
* void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
* void add_bootloader_randomness(const void *buf, size_t len);
* void add_vmfork_randomness(const void *unique_vm_id, size_t len);
* void add_interrupt_randomness(int irq);
* void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
* void add_disk_randomness(struct gendisk *disk);
*
* add_device_randomness() adds data to the input pool that
* is likely to differ between two devices (or possibly even per boot).
* This would be things like MAC addresses or serial numbers, or the
* read-out of the RTC. This does *not* credit any actual entropy to
* the pool, but it initializes the pool to different values for devices
* that might otherwise be identical and have very little entropy
* available to them (particularly common in the embedded world).
*
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
* entropy as specified by the caller. If the entropy pool is full it will
* block until more entropy is needed.
*
* add_bootloader_randomness() is called by bootloader drivers, such as EFI
* and device tree, and credits its input depending on whether or not the
* configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
*
* add_vmfork_randomness() adds a unique (but not necessarily secret) ID
* representing the current instance of a VM to the pool, without crediting,
* and then force-reseeds the crng so that it takes effect immediately.
*
* add_interrupt_randomness() uses the interrupt timing as random
* inputs to the entropy pool. Using the cycle counters and the irq source
* as inputs, it feeds the input pool roughly once a second or after 64
* interrupts, crediting 1 bit of entropy for whichever comes first.
*
* add_input_randomness() uses the input layer interrupt timing, as well
* as the event type information from the hardware.
*
* add_disk_randomness() uses what amounts to the seek time of block
* layer request events, on a per-disk_devt basis, as input to the
* entropy pool. Note that high-speed solid state drives with very low
* seek times do not make for good sources of entropy, as their seek
* times are usually fairly consistent.
*
* The last two routines try to estimate how many bits of entropy
* to credit. They do this by keeping track of the first and second
* order deltas of the event timings.
*
**********************************************************************/
static bool used_arch_random;
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
static int __init parse_trust_cpu(char *arg)
{
return kstrtobool(arg, &trust_cpu);
}
static int __init parse_trust_bootloader(char *arg)
{
return kstrtobool(arg, &trust_bootloader);
}
early_param("random.trust_cpu", parse_trust_cpu);
early_param("random.trust_bootloader", parse_trust_bootloader);
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
unsigned long flags, entropy = random_get_entropy();
/*
* Encode a representation of how long the system has been suspended,
* in a way that is distinct from prior system suspends.
*/
ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(&action, sizeof(action));
_mix_pool_bytes(stamps, sizeof(stamps));
_mix_pool_bytes(&entropy, sizeof(entropy));
spin_unlock_irqrestore(&input_pool.lock, flags);
if (crng_ready() && (action == PM_RESTORE_PREPARE ||
(action == PM_POST_SUSPEND &&
!IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
crng_reseed();
pr_notice("crng reseeded on system resumption\n");
}
return 0;
}
static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
/*
* The first collection of entropy occurs at system boot while interrupts
* are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
* utsname(), and the command line. Depending on the above configuration knob,
* RDSEED may be considered sufficient for initialization. Note that much
* earlier setup may already have pushed entropy into the input pool by the
* time we get here.
*/
int __init random_init(const char *command_line)
{
ktime_t now = ktime_get_real();
unsigned int i, arch_bytes;
unsigned long entropy;
#if defined(LATENT_ENTROPY_PLUGIN)
static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif
for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
if (!arch_get_random_seed_long_early(&entropy) &&
!arch_get_random_long_early(&entropy)) {
entropy = random_get_entropy();
arch_bytes -= sizeof(entropy);
}
_mix_pool_bytes(&entropy, sizeof(entropy));
}
_mix_pool_bytes(&now, sizeof(now));
_mix_pool_bytes(utsname(), sizeof(*(utsname())));
_mix_pool_bytes(command_line, strlen(command_line));
add_latent_entropy();
if (crng_ready())
crng_reseed();
else if (trust_cpu)
credit_init_bits(arch_bytes * 8);
used_arch_random = arch_bytes * 8 >= POOL_READY_BITS;
WARN_ON(register_pm_notifier(&pm_notifier));
WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
"entropy collection will consequently suffer.");
return 0;
}
/*
* Returns whether arch randomness has been mixed into the initial
* state of the RNG, regardless of whether or not that randomness
* was credited. Knowing this is only good for a very limited set
* of uses, such as early init printk pointer obfuscation.
*/
bool rng_has_arch_random(void)
{
return used_arch_random;
}
/*
* Add device- or boot-specific data to the input pool to help
* initialize it.
*
* None of this adds any entropy; it is meant to avoid the problem of
* the entropy pool having similar initial state across largely
* identical devices.
*/
void add_device_randomness(const void *buf, size_t len)
{
unsigned long entropy = random_get_entropy();
unsigned long flags;
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(&entropy, sizeof(entropy));
_mix_pool_bytes(buf, len);
spin_unlock_irqrestore(&input_pool.lock, flags);
}
EXPORT_SYMBOL(add_device_randomness);
/*
* Interface for in-kernel drivers of true hardware RNGs.
* Those devices may produce endless random bits and will be throttled
* when our pool is full.
*/
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
{
mix_pool_bytes(buf, len);
credit_init_bits(entropy);
/*
* Throttle writing to once every CRNG_RESEED_INTERVAL, unless
* we're not yet initialized.
*/
if (!kthread_should_stop() && crng_ready())
schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
/*
* Handle random seed passed by bootloader, and credit it if
* CONFIG_RANDOM_TRUST_BOOTLOADER is set.
*/
void __cold add_bootloader_randomness(const void *buf, size_t len)
{
mix_pool_bytes(buf, len);
if (trust_bootloader)
credit_init_bits(len * 8);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
#if IS_ENABLED(CONFIG_VMGENID)
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
/*
* Handle a new unique VM ID, which is unique, not secret, so we
* don't credit it, but we do immediately force a reseed after so
* that it's used by the crng posthaste.
*/
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
{
add_device_randomness(unique_vm_id, len);
if (crng_ready()) {
crng_reseed();
pr_notice("crng reseeded due to virtual machine fork\n");
}
blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
}
#if IS_MODULE(CONFIG_VMGENID)
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
#endif
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
#endif
struct fast_pool {
struct work_struct mix;
unsigned long pool[4];
unsigned long last;
unsigned int count;
};
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
#define FASTMIX_PERM SIPHASH_PERMUTATION
.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
#else
#define FASTMIX_PERM HSIPHASH_PERMUTATION
.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
#endif
};
/*
* This is [Half]SipHash-1-x, starting from an empty key. Because
* the key is fixed, it assumes that its inputs are non-malicious,
* and therefore this has no security on its own. s represents the
* four-word SipHash state, while v represents a two-word input.
*/
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
{
s[3] ^= v1;
FASTMIX_PERM(s[0], s[1], s[2], s[3]);
s[0] ^= v1;
s[3] ^= v2;
FASTMIX_PERM(s[0], s[1], s[2], s[3]);
s[0] ^= v2;
}
#ifdef CONFIG_SMP
/*
* This function is called when the CPU has just come online, with
* entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
*/
int __cold random_online_cpu(unsigned int cpu)
{
/*
* During CPU shutdown and before CPU onlining, add_interrupt_
* randomness() may schedule mix_interrupt_randomness(), and
* set the MIX_INFLIGHT flag. However, because the worker can
* be scheduled on a different CPU during this period, that
* flag will never be cleared. For that reason, we zero out
* the flag here, which runs just after workqueues are onlined
* for the CPU again. This also has the effect of setting the
* irq randomness count to zero so that new accumulated irqs
* are fresh.
*/
per_cpu_ptr(&irq_randomness, cpu)->count = 0;
return 0;
}
#endif
static void mix_interrupt_randomness(struct work_struct *work)
{
struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
/*
* The size of the copied stack pool is explicitly 2 longs so that we
* only ever ingest half of the siphash output each time, retaining
* the other half as the next "key" that carries over. The entropy is
* supposed to be sufficiently dispersed between bits so on average
* we don't wind up "losing" some.
*/
unsigned long pool[2];
unsigned int count;
/* Check to see if we're running on the wrong CPU due to hotplug. */
local_irq_disable();
if (fast_pool != this_cpu_ptr(&irq_randomness)) {
local_irq_enable();
return;
}
/*
* Copy the pool to the stack so that the mixer always has a
* consistent view, before we reenable irqs again.
*/
memcpy(pool, fast_pool->pool, sizeof(pool));
count = fast_pool->count;
fast_pool->count = 0;
fast_pool->last = jiffies;
local_irq_enable();
mix_pool_bytes(pool, sizeof(pool));
credit_init_bits(max(1u, (count & U16_MAX) / 64));
memzero_explicit(pool, sizeof(pool));
}
void add_interrupt_randomness(int irq)
{
enum { MIX_INFLIGHT = 1U << 31 };
unsigned long entropy = random_get_entropy();
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
struct pt_regs *regs = get_irq_regs();
unsigned int new_count;
fast_mix(fast_pool->pool, entropy,
(regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
new_count = ++fast_pool->count;
if (new_count & MIX_INFLIGHT)
return;
if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
return;
if (unlikely(!fast_pool->mix.func))
INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
fast_pool->count |= MIX_INFLIGHT;
queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
}
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
/* There is one of these per entropy source */
struct timer_rand_state {
unsigned long last_time;
long last_delta, last_delta2;
};
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool. The
* value "num" is also added to the pool; it should somehow describe
* the type of event that just happened.
*/
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
unsigned long entropy = random_get_entropy(), now = jiffies, flags;
long delta, delta2, delta3;
unsigned int bits;
/*
* If we're in a hard IRQ, add_interrupt_randomness() will be called
* sometime after, so mix into the fast pool.
*/
if (in_hardirq()) {
fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
} else {
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(&entropy, sizeof(entropy));
_mix_pool_bytes(&num, sizeof(num));
spin_unlock_irqrestore(&input_pool.lock, flags);
}
if (crng_ready())
return;
/*
* Calculate number of bits of randomness we probably added.
* We take into account the first, second and third-order deltas
* in order to make our estimate.
*/
delta = now - READ_ONCE(state->last_time);
WRITE_ONCE(state->last_time, now);
delta2 = delta - READ_ONCE(state->last_delta);
WRITE_ONCE(state->last_delta, delta);
delta3 = delta2 - READ_ONCE(state->last_delta2);
WRITE_ONCE(state->last_delta2, delta2);
if (delta < 0)
delta = -delta;
if (delta2 < 0)
delta2 = -delta2;
if (delta3 < 0)
delta3 = -delta3;
if (delta > delta2)
delta = delta2;
if (delta > delta3)
delta = delta3;
/*
* delta is now minimum absolute delta. Round down by 1 bit
* on general principles, and limit entropy estimate to 11 bits.
*/
bits = min(fls(delta >> 1), 11);
/*
* As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
* will run after this, which uses a different crediting scheme of 1 bit
* per every 64 interrupts. In order to let that function do accounting
* close to the one in this function, we credit a full 64/64 bit per bit,
* and then subtract one to account for the extra one added.
*/
if (in_hardirq())
this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
else
_credit_init_bits(bits);
}
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
{
static unsigned char last_value;
static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
/* Ignore autorepeat and the like. */
if (value == last_value)
return;
last_value = value;
add_timer_randomness(&input_timer_state,
(type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
if (!disk || !disk->random)
return;
/* First major is 1, so we get >= 0x200 here. */
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);
void __cold rand_initialize_disk(struct gendisk *disk)
{
struct timer_rand_state *state;
/*
* If kzalloc returns null, we just won't use that entropy
* source.
*/
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
if (state) {
state->last_time = INITIAL_JIFFIES;
disk->random = state;
}
}
#endif
struct entropy_timer_state {
unsigned long entropy;
struct timer_list timer;
unsigned int samples, samples_per_bit;
};
/*
* Each time the timer fires, we expect that we got an unpredictable
* jump in the cycle counter. Even if the timer is running on another
* CPU, the timer activity will be touching the stack of the CPU that is
* generating entropy..
*
* Note that we don't re-arm the timer in the timer itself - we are
* happy to be scheduled away, since that just makes the load more
* complex, but we do not want the timer to keep ticking unless the
* entropy loop is running.
*
* So the re-arming always happens in the entropy loop itself.
*/
static void __cold entropy_timer(struct timer_list *timer)
{
struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
if (++state->samples == state->samples_per_bit) {
credit_init_bits(1);
state->samples = 0;
}
}
/*
* If we have an actual cycle counter, see if we can
* generate enough entropy with timing noise
*/
static void __cold try_to_generate_entropy(void)
{
enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
struct entropy_timer_state stack;
unsigned int i, num_different = 0;
unsigned long last = random_get_entropy();
for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
stack.entropy = random_get_entropy();
if (stack.entropy != last)
++num_different;
last = stack.entropy;
}
stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
return;
stack.samples = 0;
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
while (!crng_ready() && !signal_pending(current)) {
if (!timer_pending(&stack.timer))
mod_timer(&stack.timer, jiffies + 1);
mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
schedule();
stack.entropy = random_get_entropy();
}
del_timer_sync(&stack.timer);
destroy_timer_on_stack(&stack.timer);
mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
}
/**********************************************************************
*
* Userspace reader/writer interfaces.
*
* getrandom(2) is the primary modern interface into the RNG and should
* be used in preference to anything else.
*
* Reading from /dev/random has the same functionality as calling
* getrandom(2) with flags=0. In earlier versions, however, it had
* vastly different semantics and should therefore be avoided, to
* prevent backwards compatibility issues.
*
* Reading from /dev/urandom has the same functionality as calling
* getrandom(2) with flags=GRND_INSECURE. Because it does not block
* waiting for the RNG to be ready, it should not be used.
*
* Writing to either /dev/random or /dev/urandom adds entropy to
* the input pool but does not credit it.
*
* Polling on /dev/random indicates when the RNG is initialized, on
* the read side, and when it wants new entropy, on the write side.
*
* Both /dev/random and /dev/urandom have the same set of ioctls for
* adding entropy, getting the entropy count, zeroing the count, and
* reseeding the crng.
*
**********************************************************************/
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
{
struct iov_iter iter;
struct iovec iov;
int ret;
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
return -EINVAL;
/*
* Requesting insecure and blocking randomness at the same time makes
* no sense.
*/
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
return -EINVAL;
if (!crng_ready() && !(flags & GRND_INSECURE)) {
if (flags & GRND_NONBLOCK)
return -EAGAIN;
ret = wait_for_random_bytes();
if (unlikely(ret))
return ret;
}
ret = import_single_range(READ, ubuf, len, &iov, &iter);
if (unlikely(ret))
return ret;
return get_random_bytes_user(&iter);
}
static __poll_t random_poll(struct file *file, poll_table *wait)
{
poll_wait(file, &crng_init_wait, wait);
return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
}
static ssize_t write_pool_user(struct iov_iter *iter)
{
u8 block[BLAKE2S_BLOCK_SIZE];
ssize_t ret = 0;
size_t copied;
if (unlikely(!iov_iter_count(iter)))
return 0;
for (;;) {
copied = copy_from_iter(block, sizeof(block), iter);
ret += copied;
mix_pool_bytes(block, copied);
if (!iov_iter_count(iter) || copied != sizeof(block))
break;
BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
if (ret % PAGE_SIZE == 0) {
if (signal_pending(current))
break;
cond_resched();
}
}
memzero_explicit(block, sizeof(block));
return ret ? ret : -EFAULT;
}
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
{
return write_pool_user(iter);
}
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
{
static int maxwarn = 10;
/*
* Opportunistically attempt to initialize the RNG on platforms that
* have fast cycle counters, but don't (for now) require it to succeed.
*/
if (!crng_ready())
try_to_generate_entropy();
if (!crng_ready()) {
if (!ratelimit_disable && maxwarn <= 0)
++urandom_warning.missed;
else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
--maxwarn;
pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
current->comm, iov_iter_count(iter));
}
}
return get_random_bytes_user(iter);
}
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
{
int ret;
ret = wait_for_random_bytes();
if (ret != 0)
return ret;
return get_random_bytes_user(iter);
}
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
int __user *p = (int __user *)arg;
int ent_count;
switch (cmd) {
case RNDGETENTCNT:
/* Inherently racy, no point locking. */
if (put_user(input_pool.init_bits, p))
return -EFAULT;
return 0;
case RNDADDTOENTCNT:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p))
return -EFAULT;
if (ent_count < 0)
return -EINVAL;
credit_init_bits(ent_count);
return 0;
case RNDADDENTROPY: {
struct iov_iter iter;
struct iovec iov;
ssize_t ret;
int len;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p++))
return -EFAULT;
if (ent_count < 0)
return -EINVAL;
if (get_user(len, p++))
return -EFAULT;
ret = import_single_range(WRITE, p, len, &iov, &iter);
if (unlikely(ret))
return ret;
ret = write_pool_user(&iter);
if (unlikely(ret < 0))
return ret;
/* Since we're crediting, enforce that it was all written into the pool. */
if (unlikely(ret != len))
return -EFAULT;
credit_init_bits(ent_count);
return 0;
}
case RNDZAPENTCNT:
case RNDCLEARPOOL:
/* No longer has any effect. */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
case RNDRESEEDCRNG:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!crng_ready())
return -ENODATA;
crng_reseed();
return 0;
default:
return -EINVAL;
}
}
static int random_fasync(int fd, struct file *filp, int on)
{
return fasync_helper(fd, filp, on, &fasync);
}
const struct file_operations random_fops = {
.read_iter = random_read_iter,
.write_iter = random_write_iter,
.poll = random_poll,
.unlocked_ioctl = random_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
};
const struct file_operations urandom_fops = {
.read_iter = urandom_read_iter,
.write_iter = random_write_iter,
.unlocked_ioctl = random_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
};
/********************************************************************
*
* Sysctl interface.
*
* These are partly unused legacy knobs with dummy values to not break
* userspace and partly still useful things. They are usually accessible
* in /proc/sys/kernel/random/ and are as follows:
*
* - boot_id - a UUID representing the current boot.
*
* - uuid - a random UUID, different each time the file is read.
*
* - poolsize - the number of bits of entropy that the input pool can
* hold, tied to the POOL_BITS constant.
*
* - entropy_avail - the number of bits of entropy currently in the
* input pool. Always <= poolsize.
*
* - write_wakeup_threshold - the amount of entropy in the input pool
* below which write polls to /dev/random will unblock, requesting
* more entropy, tied to the POOL_READY_BITS constant. It is writable
* to avoid breaking old userspaces, but writing to it does not
* change any behavior of the RNG.
*
* - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
* It is writable to avoid breaking old userspaces, but writing
* to it does not change any behavior of the RNG.
*
********************************************************************/
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
static int sysctl_poolsize = POOL_BITS;
static u8 sysctl_bootid[UUID_SIZE];
/*
* This function is used to return both the bootid UUID, and random
* UUID. The difference is in whether table->data is NULL; if it is,
* then a new UUID is generated and returned to the user.
*/
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
size_t *lenp, loff_t *ppos)
{
u8 tmp_uuid[UUID_SIZE], *uuid;
char uuid_string[UUID_STRING_LEN + 1];
struct ctl_table fake_table = {
.data = uuid_string,
.maxlen = UUID_STRING_LEN
};
if (write)
return -EPERM;
uuid = table->data;
if (!uuid) {
uuid = tmp_uuid;
generate_random_uuid(uuid);
} else {
static DEFINE_SPINLOCK(bootid_spinlock);
spin_lock(&bootid_spinlock);
if (!uuid[8])
generate_random_uuid(uuid);
spin_unlock(&bootid_spinlock);
}
snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
return proc_dostring(&fake_table, 0, buf, lenp, ppos);
}
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
size_t *lenp, loff_t *ppos)
{
return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
}
static struct ctl_table random_table[] = {
{
.procname = "poolsize",
.data = &sysctl_poolsize,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
{
.procname = "entropy_avail",
.data = &input_pool.init_bits,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
{
.procname = "write_wakeup_threshold",
.data = &sysctl_random_write_wakeup_bits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_do_rointvec,
},
{
.procname = "urandom_min_reseed_secs",
.data = &sysctl_random_min_urandom_seed,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_do_rointvec,
},
{
.procname = "boot_id",
.data = &sysctl_bootid,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{
.procname = "uuid",
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{ }
};
/*
* random_init() is called before sysctl_init(),
* so we cannot call register_sysctl_init() in random_init()
*/
static int __init random_sysctls_init(void)
{
register_sysctl_init("kernel/random", random_table);
return 0;
}
device_initcall(random_sysctls_init);
#endif