cgrp->root->release_agent_path is protected by both cgroup_mutex and release_agent_path_lock and readers can hold either one. The dual-locking scheme was introduced while breaking a locking dependency issue around cgroup_mutex but doesn't make sense anymore given that the only remaining reader which uses cgroup_mutex is cgroup1_releaes_agent(). This patch updates cgroup1_release_agent() to use release_agent_path_lock so that release_agent_path is always protected only by release_agent_path_lock. While at it, convert strlen() based empty string checks to direct tests on the first character as suggested by Linus. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1274 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1274 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include "cgroup-internal.h"
 | |
| 
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/cgroupstats.h>
 | |
| #include <linux/fs_parser.h>
 | |
| 
 | |
| #include <trace/events/cgroup.h>
 | |
| 
 | |
| /*
 | |
|  * pidlists linger the following amount before being destroyed.  The goal
 | |
|  * is avoiding frequent destruction in the middle of consecutive read calls
 | |
|  * Expiring in the middle is a performance problem not a correctness one.
 | |
|  * 1 sec should be enough.
 | |
|  */
 | |
| #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
 | |
| 
 | |
| /* Controllers blocked by the commandline in v1 */
 | |
| static u16 cgroup_no_v1_mask;
 | |
| 
 | |
| /* disable named v1 mounts */
 | |
| static bool cgroup_no_v1_named;
 | |
| 
 | |
| /*
 | |
|  * pidlist destructions need to be flushed on cgroup destruction.  Use a
 | |
|  * separate workqueue as flush domain.
 | |
|  */
 | |
| static struct workqueue_struct *cgroup_pidlist_destroy_wq;
 | |
| 
 | |
| /* protects cgroup_subsys->release_agent_path */
 | |
| static DEFINE_SPINLOCK(release_agent_path_lock);
 | |
| 
 | |
| bool cgroup1_ssid_disabled(int ssid)
 | |
| {
 | |
| 	return cgroup_no_v1_mask & (1 << ssid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 | |
|  * @from: attach to all cgroups of a given task
 | |
|  * @tsk: the task to be attached
 | |
|  */
 | |
| int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
 | |
| {
 | |
| 	struct cgroup_root *root;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 	percpu_down_write(&cgroup_threadgroup_rwsem);
 | |
| 	for_each_root(root) {
 | |
| 		struct cgroup *from_cgrp;
 | |
| 
 | |
| 		if (root == &cgrp_dfl_root)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irq(&css_set_lock);
 | |
| 		from_cgrp = task_cgroup_from_root(from, root);
 | |
| 		spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 		retval = cgroup_attach_task(from_cgrp, tsk, false);
 | |
| 		if (retval)
 | |
| 			break;
 | |
| 	}
 | |
| 	percpu_up_write(&cgroup_threadgroup_rwsem);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
 | |
| 
 | |
| /**
 | |
|  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
 | |
|  * @to: cgroup to which the tasks will be moved
 | |
|  * @from: cgroup in which the tasks currently reside
 | |
|  *
 | |
|  * Locking rules between cgroup_post_fork() and the migration path
 | |
|  * guarantee that, if a task is forking while being migrated, the new child
 | |
|  * is guaranteed to be either visible in the source cgroup after the
 | |
|  * parent's migration is complete or put into the target cgroup.  No task
 | |
|  * can slip out of migration through forking.
 | |
|  */
 | |
| int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
 | |
| {
 | |
| 	DEFINE_CGROUP_MGCTX(mgctx);
 | |
| 	struct cgrp_cset_link *link;
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *task;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (cgroup_on_dfl(to))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = cgroup_migrate_vet_dst(to);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 
 | |
| 	percpu_down_write(&cgroup_threadgroup_rwsem);
 | |
| 
 | |
| 	/* all tasks in @from are being moved, all csets are source */
 | |
| 	spin_lock_irq(&css_set_lock);
 | |
| 	list_for_each_entry(link, &from->cset_links, cset_link)
 | |
| 		cgroup_migrate_add_src(link->cset, to, &mgctx);
 | |
| 	spin_unlock_irq(&css_set_lock);
 | |
| 
 | |
| 	ret = cgroup_migrate_prepare_dst(&mgctx);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
 | |
| 	 * ->can_attach() fails.
 | |
| 	 */
 | |
| 	do {
 | |
| 		css_task_iter_start(&from->self, 0, &it);
 | |
| 
 | |
| 		do {
 | |
| 			task = css_task_iter_next(&it);
 | |
| 		} while (task && (task->flags & PF_EXITING));
 | |
| 
 | |
| 		if (task)
 | |
| 			get_task_struct(task);
 | |
| 		css_task_iter_end(&it);
 | |
| 
 | |
| 		if (task) {
 | |
| 			ret = cgroup_migrate(task, false, &mgctx);
 | |
| 			if (!ret)
 | |
| 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 | |
| 			put_task_struct(task);
 | |
| 		}
 | |
| 	} while (task && !ret);
 | |
| out_err:
 | |
| 	cgroup_migrate_finish(&mgctx);
 | |
| 	percpu_up_write(&cgroup_threadgroup_rwsem);
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stuff for reading the 'tasks'/'procs' files.
 | |
|  *
 | |
|  * Reading this file can return large amounts of data if a cgroup has
 | |
|  * *lots* of attached tasks. So it may need several calls to read(),
 | |
|  * but we cannot guarantee that the information we produce is correct
 | |
|  * unless we produce it entirely atomically.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* which pidlist file are we talking about? */
 | |
| enum cgroup_filetype {
 | |
| 	CGROUP_FILE_PROCS,
 | |
| 	CGROUP_FILE_TASKS,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A pidlist is a list of pids that virtually represents the contents of one
 | |
|  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 | |
|  * a pair (one each for procs, tasks) for each pid namespace that's relevant
 | |
|  * to the cgroup.
 | |
|  */
 | |
| struct cgroup_pidlist {
 | |
| 	/*
 | |
| 	 * used to find which pidlist is wanted. doesn't change as long as
 | |
| 	 * this particular list stays in the list.
 | |
| 	*/
 | |
| 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 | |
| 	/* array of xids */
 | |
| 	pid_t *list;
 | |
| 	/* how many elements the above list has */
 | |
| 	int length;
 | |
| 	/* each of these stored in a list by its cgroup */
 | |
| 	struct list_head links;
 | |
| 	/* pointer to the cgroup we belong to, for list removal purposes */
 | |
| 	struct cgroup *owner;
 | |
| 	/* for delayed destruction */
 | |
| 	struct delayed_work destroy_dwork;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Used to destroy all pidlists lingering waiting for destroy timer.  None
 | |
|  * should be left afterwards.
 | |
|  */
 | |
| void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 | |
| {
 | |
| 	struct cgroup_pidlist *l, *tmp_l;
 | |
| 
 | |
| 	mutex_lock(&cgrp->pidlist_mutex);
 | |
| 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 | |
| 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 | |
| 	mutex_unlock(&cgrp->pidlist_mutex);
 | |
| 
 | |
| 	flush_workqueue(cgroup_pidlist_destroy_wq);
 | |
| 	BUG_ON(!list_empty(&cgrp->pidlists));
 | |
| }
 | |
| 
 | |
| static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct delayed_work *dwork = to_delayed_work(work);
 | |
| 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 | |
| 						destroy_dwork);
 | |
| 	struct cgroup_pidlist *tofree = NULL;
 | |
| 
 | |
| 	mutex_lock(&l->owner->pidlist_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Destroy iff we didn't get queued again.  The state won't change
 | |
| 	 * as destroy_dwork can only be queued while locked.
 | |
| 	 */
 | |
| 	if (!delayed_work_pending(dwork)) {
 | |
| 		list_del(&l->links);
 | |
| 		kvfree(l->list);
 | |
| 		put_pid_ns(l->key.ns);
 | |
| 		tofree = l;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&l->owner->pidlist_mutex);
 | |
| 	kfree(tofree);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 | |
|  * Returns the number of unique elements.
 | |
|  */
 | |
| static int pidlist_uniq(pid_t *list, int length)
 | |
| {
 | |
| 	int src, dest = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * we presume the 0th element is unique, so i starts at 1. trivial
 | |
| 	 * edge cases first; no work needs to be done for either
 | |
| 	 */
 | |
| 	if (length == 0 || length == 1)
 | |
| 		return length;
 | |
| 	/* src and dest walk down the list; dest counts unique elements */
 | |
| 	for (src = 1; src < length; src++) {
 | |
| 		/* find next unique element */
 | |
| 		while (list[src] == list[src-1]) {
 | |
| 			src++;
 | |
| 			if (src == length)
 | |
| 				goto after;
 | |
| 		}
 | |
| 		/* dest always points to where the next unique element goes */
 | |
| 		list[dest] = list[src];
 | |
| 		dest++;
 | |
| 	}
 | |
| after:
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The two pid files - task and cgroup.procs - guaranteed that the result
 | |
|  * is sorted, which forced this whole pidlist fiasco.  As pid order is
 | |
|  * different per namespace, each namespace needs differently sorted list,
 | |
|  * making it impossible to use, for example, single rbtree of member tasks
 | |
|  * sorted by task pointer.  As pidlists can be fairly large, allocating one
 | |
|  * per open file is dangerous, so cgroup had to implement shared pool of
 | |
|  * pidlists keyed by cgroup and namespace.
 | |
|  */
 | |
| static int cmppid(const void *a, const void *b)
 | |
| {
 | |
| 	return *(pid_t *)a - *(pid_t *)b;
 | |
| }
 | |
| 
 | |
| static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 | |
| 						  enum cgroup_filetype type)
 | |
| {
 | |
| 	struct cgroup_pidlist *l;
 | |
| 	/* don't need task_nsproxy() if we're looking at ourself */
 | |
| 	struct pid_namespace *ns = task_active_pid_ns(current);
 | |
| 
 | |
| 	lockdep_assert_held(&cgrp->pidlist_mutex);
 | |
| 
 | |
| 	list_for_each_entry(l, &cgrp->pidlists, links)
 | |
| 		if (l->key.type == type && l->key.ns == ns)
 | |
| 			return l;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find the appropriate pidlist for our purpose (given procs vs tasks)
 | |
|  * returns with the lock on that pidlist already held, and takes care
 | |
|  * of the use count, or returns NULL with no locks held if we're out of
 | |
|  * memory.
 | |
|  */
 | |
| static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 | |
| 						enum cgroup_filetype type)
 | |
| {
 | |
| 	struct cgroup_pidlist *l;
 | |
| 
 | |
| 	lockdep_assert_held(&cgrp->pidlist_mutex);
 | |
| 
 | |
| 	l = cgroup_pidlist_find(cgrp, type);
 | |
| 	if (l)
 | |
| 		return l;
 | |
| 
 | |
| 	/* entry not found; create a new one */
 | |
| 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 | |
| 	if (!l)
 | |
| 		return l;
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 | |
| 	l->key.type = type;
 | |
| 	/* don't need task_nsproxy() if we're looking at ourself */
 | |
| 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 | |
| 	l->owner = cgrp;
 | |
| 	list_add(&l->links, &cgrp->pidlists);
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 | |
|  */
 | |
| static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 | |
| 			      struct cgroup_pidlist **lp)
 | |
| {
 | |
| 	pid_t *array;
 | |
| 	int length;
 | |
| 	int pid, n = 0; /* used for populating the array */
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *tsk;
 | |
| 	struct cgroup_pidlist *l;
 | |
| 
 | |
| 	lockdep_assert_held(&cgrp->pidlist_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If cgroup gets more users after we read count, we won't have
 | |
| 	 * enough space - tough.  This race is indistinguishable to the
 | |
| 	 * caller from the case that the additional cgroup users didn't
 | |
| 	 * show up until sometime later on.
 | |
| 	 */
 | |
| 	length = cgroup_task_count(cgrp);
 | |
| 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 | |
| 	if (!array)
 | |
| 		return -ENOMEM;
 | |
| 	/* now, populate the array */
 | |
| 	css_task_iter_start(&cgrp->self, 0, &it);
 | |
| 	while ((tsk = css_task_iter_next(&it))) {
 | |
| 		if (unlikely(n == length))
 | |
| 			break;
 | |
| 		/* get tgid or pid for procs or tasks file respectively */
 | |
| 		if (type == CGROUP_FILE_PROCS)
 | |
| 			pid = task_tgid_vnr(tsk);
 | |
| 		else
 | |
| 			pid = task_pid_vnr(tsk);
 | |
| 		if (pid > 0) /* make sure to only use valid results */
 | |
| 			array[n++] = pid;
 | |
| 	}
 | |
| 	css_task_iter_end(&it);
 | |
| 	length = n;
 | |
| 	/* now sort & (if procs) strip out duplicates */
 | |
| 	sort(array, length, sizeof(pid_t), cmppid, NULL);
 | |
| 	if (type == CGROUP_FILE_PROCS)
 | |
| 		length = pidlist_uniq(array, length);
 | |
| 
 | |
| 	l = cgroup_pidlist_find_create(cgrp, type);
 | |
| 	if (!l) {
 | |
| 		kvfree(array);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* store array, freeing old if necessary */
 | |
| 	kvfree(l->list);
 | |
| 	l->list = array;
 | |
| 	l->length = length;
 | |
| 	*lp = l;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * seq_file methods for the tasks/procs files. The seq_file position is the
 | |
|  * next pid to display; the seq_file iterator is a pointer to the pid
 | |
|  * in the cgroup->l->list array.
 | |
|  */
 | |
| 
 | |
| static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initially we receive a position value that corresponds to
 | |
| 	 * one more than the last pid shown (or 0 on the first call or
 | |
| 	 * after a seek to the start). Use a binary-search to find the
 | |
| 	 * next pid to display, if any
 | |
| 	 */
 | |
| 	struct kernfs_open_file *of = s->private;
 | |
| 	struct cgroup *cgrp = seq_css(s)->cgroup;
 | |
| 	struct cgroup_pidlist *l;
 | |
| 	enum cgroup_filetype type = seq_cft(s)->private;
 | |
| 	int index = 0, pid = *pos;
 | |
| 	int *iter, ret;
 | |
| 
 | |
| 	mutex_lock(&cgrp->pidlist_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * !NULL @of->priv indicates that this isn't the first start()
 | |
| 	 * after open.  If the matching pidlist is around, we can use that.
 | |
| 	 * Look for it.  Note that @of->priv can't be used directly.  It
 | |
| 	 * could already have been destroyed.
 | |
| 	 */
 | |
| 	if (of->priv)
 | |
| 		of->priv = cgroup_pidlist_find(cgrp, type);
 | |
| 
 | |
| 	/*
 | |
| 	 * Either this is the first start() after open or the matching
 | |
| 	 * pidlist has been destroyed inbetween.  Create a new one.
 | |
| 	 */
 | |
| 	if (!of->priv) {
 | |
| 		ret = pidlist_array_load(cgrp, type,
 | |
| 					 (struct cgroup_pidlist **)&of->priv);
 | |
| 		if (ret)
 | |
| 			return ERR_PTR(ret);
 | |
| 	}
 | |
| 	l = of->priv;
 | |
| 
 | |
| 	if (pid) {
 | |
| 		int end = l->length;
 | |
| 
 | |
| 		while (index < end) {
 | |
| 			int mid = (index + end) / 2;
 | |
| 			if (l->list[mid] == pid) {
 | |
| 				index = mid;
 | |
| 				break;
 | |
| 			} else if (l->list[mid] <= pid)
 | |
| 				index = mid + 1;
 | |
| 			else
 | |
| 				end = mid;
 | |
| 		}
 | |
| 	}
 | |
| 	/* If we're off the end of the array, we're done */
 | |
| 	if (index >= l->length)
 | |
| 		return NULL;
 | |
| 	/* Update the abstract position to be the actual pid that we found */
 | |
| 	iter = l->list + index;
 | |
| 	*pos = *iter;
 | |
| 	return iter;
 | |
| }
 | |
| 
 | |
| static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 | |
| {
 | |
| 	struct kernfs_open_file *of = s->private;
 | |
| 	struct cgroup_pidlist *l = of->priv;
 | |
| 
 | |
| 	if (l)
 | |
| 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 | |
| 				 CGROUP_PIDLIST_DESTROY_DELAY);
 | |
| 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 | |
| }
 | |
| 
 | |
| static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct kernfs_open_file *of = s->private;
 | |
| 	struct cgroup_pidlist *l = of->priv;
 | |
| 	pid_t *p = v;
 | |
| 	pid_t *end = l->list + l->length;
 | |
| 	/*
 | |
| 	 * Advance to the next pid in the array. If this goes off the
 | |
| 	 * end, we're done
 | |
| 	 */
 | |
| 	p++;
 | |
| 	if (p >= end) {
 | |
| 		(*pos)++;
 | |
| 		return NULL;
 | |
| 	} else {
 | |
| 		*pos = *p;
 | |
| 		return p;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cgroup_pidlist_show(struct seq_file *s, void *v)
 | |
| {
 | |
| 	seq_printf(s, "%d\n", *(int *)v);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 | |
| 				     char *buf, size_t nbytes, loff_t off,
 | |
| 				     bool threadgroup)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct task_struct *task;
 | |
| 	const struct cred *cred, *tcred;
 | |
| 	ssize_t ret;
 | |
| 	bool locked;
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
 | |
| 	ret = PTR_ERR_OR_ZERO(task);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if we're attaching all tasks in the thread group, we only
 | |
| 	 * need to check permissions on one of them.
 | |
| 	 */
 | |
| 	cred = current_cred();
 | |
| 	tcred = get_task_cred(task);
 | |
| 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 | |
| 	    !uid_eq(cred->euid, tcred->uid) &&
 | |
| 	    !uid_eq(cred->euid, tcred->suid))
 | |
| 		ret = -EACCES;
 | |
| 	put_cred(tcred);
 | |
| 	if (ret)
 | |
| 		goto out_finish;
 | |
| 
 | |
| 	ret = cgroup_attach_task(cgrp, task, threadgroup);
 | |
| 
 | |
| out_finish:
 | |
| 	cgroup_procs_write_finish(task, locked);
 | |
| out_unlock:
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 | |
| 				   char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 | |
| 				   char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
 | |
| }
 | |
| 
 | |
| static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 | |
| 					  char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup *cgrp;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 | |
| 
 | |
| 	cgrp = cgroup_kn_lock_live(of->kn, false);
 | |
| 	if (!cgrp)
 | |
| 		return -ENODEV;
 | |
| 	spin_lock(&release_agent_path_lock);
 | |
| 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 | |
| 		sizeof(cgrp->root->release_agent_path));
 | |
| 	spin_unlock(&release_agent_path_lock);
 | |
| 	cgroup_kn_unlock(of->kn);
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct cgroup *cgrp = seq_css(seq)->cgroup;
 | |
| 
 | |
| 	spin_lock(&release_agent_path_lock);
 | |
| 	seq_puts(seq, cgrp->root->release_agent_path);
 | |
| 	spin_unlock(&release_agent_path_lock);
 | |
| 	seq_putc(seq, '\n');
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	seq_puts(seq, "0\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 | |
| 					 struct cftype *cft)
 | |
| {
 | |
| 	return notify_on_release(css->cgroup);
 | |
| }
 | |
| 
 | |
| static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 | |
| 					  struct cftype *cft, u64 val)
 | |
| {
 | |
| 	if (val)
 | |
| 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 | |
| 	else
 | |
| 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 | |
| 				      struct cftype *cft)
 | |
| {
 | |
| 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 | |
| }
 | |
| 
 | |
| static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 | |
| 				       struct cftype *cft, u64 val)
 | |
| {
 | |
| 	if (val)
 | |
| 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 | |
| 	else
 | |
| 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* cgroup core interface files for the legacy hierarchies */
 | |
| struct cftype cgroup1_base_files[] = {
 | |
| 	{
 | |
| 		.name = "cgroup.procs",
 | |
| 		.seq_start = cgroup_pidlist_start,
 | |
| 		.seq_next = cgroup_pidlist_next,
 | |
| 		.seq_stop = cgroup_pidlist_stop,
 | |
| 		.seq_show = cgroup_pidlist_show,
 | |
| 		.private = CGROUP_FILE_PROCS,
 | |
| 		.write = cgroup1_procs_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.clone_children",
 | |
| 		.read_u64 = cgroup_clone_children_read,
 | |
| 		.write_u64 = cgroup_clone_children_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.sane_behavior",
 | |
| 		.flags = CFTYPE_ONLY_ON_ROOT,
 | |
| 		.seq_show = cgroup_sane_behavior_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "tasks",
 | |
| 		.seq_start = cgroup_pidlist_start,
 | |
| 		.seq_next = cgroup_pidlist_next,
 | |
| 		.seq_stop = cgroup_pidlist_stop,
 | |
| 		.seq_show = cgroup_pidlist_show,
 | |
| 		.private = CGROUP_FILE_TASKS,
 | |
| 		.write = cgroup1_tasks_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "notify_on_release",
 | |
| 		.read_u64 = cgroup_read_notify_on_release,
 | |
| 		.write_u64 = cgroup_write_notify_on_release,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "release_agent",
 | |
| 		.flags = CFTYPE_ONLY_ON_ROOT,
 | |
| 		.seq_show = cgroup_release_agent_show,
 | |
| 		.write = cgroup_release_agent_write,
 | |
| 		.max_write_len = PATH_MAX - 1,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| /* Display information about each subsystem and each hierarchy */
 | |
| int proc_cgroupstats_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i;
 | |
| 
 | |
| 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 | |
| 	/*
 | |
| 	 * ideally we don't want subsystems moving around while we do this.
 | |
| 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 | |
| 	 * subsys/hierarchy state.
 | |
| 	 */
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 
 | |
| 	for_each_subsys(ss, i)
 | |
| 		seq_printf(m, "%s\t%d\t%d\t%d\n",
 | |
| 			   ss->legacy_name, ss->root->hierarchy_id,
 | |
| 			   atomic_read(&ss->root->nr_cgrps),
 | |
| 			   cgroup_ssid_enabled(i));
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cgroupstats_build - build and fill cgroupstats
 | |
|  * @stats: cgroupstats to fill information into
 | |
|  * @dentry: A dentry entry belonging to the cgroup for which stats have
 | |
|  * been requested.
 | |
|  *
 | |
|  * Build and fill cgroupstats so that taskstats can export it to user
 | |
|  * space.
 | |
|  */
 | |
| int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 | |
| {
 | |
| 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 | |
| 	struct cgroup *cgrp;
 | |
| 	struct css_task_iter it;
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
 | |
| 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 | |
| 	    kernfs_type(kn) != KERNFS_DIR)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We aren't being called from kernfs and there's no guarantee on
 | |
| 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 | |
| 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 | |
| 	if (!cgrp || cgroup_is_dead(cgrp)) {
 | |
| 		rcu_read_unlock();
 | |
| 		mutex_unlock(&cgroup_mutex);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	css_task_iter_start(&cgrp->self, 0, &it);
 | |
| 	while ((tsk = css_task_iter_next(&it))) {
 | |
| 		switch (tsk->state) {
 | |
| 		case TASK_RUNNING:
 | |
| 			stats->nr_running++;
 | |
| 			break;
 | |
| 		case TASK_INTERRUPTIBLE:
 | |
| 			stats->nr_sleeping++;
 | |
| 			break;
 | |
| 		case TASK_UNINTERRUPTIBLE:
 | |
| 			stats->nr_uninterruptible++;
 | |
| 			break;
 | |
| 		case TASK_STOPPED:
 | |
| 			stats->nr_stopped++;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (delayacct_is_task_waiting_on_io(tsk))
 | |
| 				stats->nr_io_wait++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	css_task_iter_end(&it);
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void cgroup1_check_for_release(struct cgroup *cgrp)
 | |
| {
 | |
| 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 | |
| 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 | |
| 		schedule_work(&cgrp->release_agent_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Notify userspace when a cgroup is released, by running the
 | |
|  * configured release agent with the name of the cgroup (path
 | |
|  * relative to the root of cgroup file system) as the argument.
 | |
|  *
 | |
|  * Most likely, this user command will try to rmdir this cgroup.
 | |
|  *
 | |
|  * This races with the possibility that some other task will be
 | |
|  * attached to this cgroup before it is removed, or that some other
 | |
|  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 | |
|  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 | |
|  * unused, and this cgroup will be reprieved from its death sentence,
 | |
|  * to continue to serve a useful existence.  Next time it's released,
 | |
|  * we will get notified again, if it still has 'notify_on_release' set.
 | |
|  *
 | |
|  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 | |
|  * means only wait until the task is successfully execve()'d.  The
 | |
|  * separate release agent task is forked by call_usermodehelper(),
 | |
|  * then control in this thread returns here, without waiting for the
 | |
|  * release agent task.  We don't bother to wait because the caller of
 | |
|  * this routine has no use for the exit status of the release agent
 | |
|  * task, so no sense holding our caller up for that.
 | |
|  */
 | |
| void cgroup1_release_agent(struct work_struct *work)
 | |
| {
 | |
| 	struct cgroup *cgrp =
 | |
| 		container_of(work, struct cgroup, release_agent_work);
 | |
| 	char *pathbuf, *agentbuf;
 | |
| 	char *argv[3], *envp[3];
 | |
| 	int ret;
 | |
| 
 | |
| 	/* snoop agent path and exit early if empty */
 | |
| 	if (!cgrp->root->release_agent_path[0])
 | |
| 		return;
 | |
| 
 | |
| 	/* prepare argument buffers */
 | |
| 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 	if (!pathbuf || !agentbuf)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	spin_lock(&release_agent_path_lock);
 | |
| 	strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
 | |
| 	spin_unlock(&release_agent_path_lock);
 | |
| 	if (!agentbuf[0])
 | |
| 		goto out_free;
 | |
| 
 | |
| 	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 | |
| 	if (ret < 0 || ret >= PATH_MAX)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	argv[0] = agentbuf;
 | |
| 	argv[1] = pathbuf;
 | |
| 	argv[2] = NULL;
 | |
| 
 | |
| 	/* minimal command environment */
 | |
| 	envp[0] = "HOME=/";
 | |
| 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 | |
| 	envp[2] = NULL;
 | |
| 
 | |
| 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 | |
| out_free:
 | |
| 	kfree(agentbuf);
 | |
| 	kfree(pathbuf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cgroup_rename - Only allow simple rename of directories in place.
 | |
|  */
 | |
| static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 | |
| 			  const char *new_name_str)
 | |
| {
 | |
| 	struct cgroup *cgrp = kn->priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (kernfs_type(kn) != KERNFS_DIR)
 | |
| 		return -ENOTDIR;
 | |
| 	if (kn->parent != new_parent)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're gonna grab cgroup_mutex which nests outside kernfs
 | |
| 	 * active_ref.  kernfs_rename() doesn't require active_ref
 | |
| 	 * protection.  Break them before grabbing cgroup_mutex.
 | |
| 	 */
 | |
| 	kernfs_break_active_protection(new_parent);
 | |
| 	kernfs_break_active_protection(kn);
 | |
| 
 | |
| 	mutex_lock(&cgroup_mutex);
 | |
| 
 | |
| 	ret = kernfs_rename(kn, new_parent, new_name_str);
 | |
| 	if (!ret)
 | |
| 		TRACE_CGROUP_PATH(rename, cgrp);
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 	kernfs_unbreak_active_protection(kn);
 | |
| 	kernfs_unbreak_active_protection(new_parent);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 | |
| {
 | |
| 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int ssid;
 | |
| 
 | |
| 	for_each_subsys(ss, ssid)
 | |
| 		if (root->subsys_mask & (1 << ssid))
 | |
| 			seq_show_option(seq, ss->legacy_name, NULL);
 | |
| 	if (root->flags & CGRP_ROOT_NOPREFIX)
 | |
| 		seq_puts(seq, ",noprefix");
 | |
| 	if (root->flags & CGRP_ROOT_XATTR)
 | |
| 		seq_puts(seq, ",xattr");
 | |
| 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 | |
| 		seq_puts(seq, ",cpuset_v2_mode");
 | |
| 
 | |
| 	spin_lock(&release_agent_path_lock);
 | |
| 	if (strlen(root->release_agent_path))
 | |
| 		seq_show_option(seq, "release_agent",
 | |
| 				root->release_agent_path);
 | |
| 	spin_unlock(&release_agent_path_lock);
 | |
| 
 | |
| 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 | |
| 		seq_puts(seq, ",clone_children");
 | |
| 	if (strlen(root->name))
 | |
| 		seq_show_option(seq, "name", root->name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum cgroup1_param {
 | |
| 	Opt_all,
 | |
| 	Opt_clone_children,
 | |
| 	Opt_cpuset_v2_mode,
 | |
| 	Opt_name,
 | |
| 	Opt_none,
 | |
| 	Opt_noprefix,
 | |
| 	Opt_release_agent,
 | |
| 	Opt_xattr,
 | |
| };
 | |
| 
 | |
| const struct fs_parameter_spec cgroup1_fs_parameters[] = {
 | |
| 	fsparam_flag  ("all",		Opt_all),
 | |
| 	fsparam_flag  ("clone_children", Opt_clone_children),
 | |
| 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 | |
| 	fsparam_string("name",		Opt_name),
 | |
| 	fsparam_flag  ("none",		Opt_none),
 | |
| 	fsparam_flag  ("noprefix",	Opt_noprefix),
 | |
| 	fsparam_string("release_agent",	Opt_release_agent),
 | |
| 	fsparam_flag  ("xattr",		Opt_xattr),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	struct fs_parse_result result;
 | |
| 	int opt, i;
 | |
| 
 | |
| 	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
 | |
| 	if (opt == -ENOPARAM) {
 | |
| 		if (strcmp(param->key, "source") == 0) {
 | |
| 			fc->source = param->string;
 | |
| 			param->string = NULL;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		for_each_subsys(ss, i) {
 | |
| 			if (strcmp(param->key, ss->legacy_name))
 | |
| 				continue;
 | |
| 			ctx->subsys_mask |= (1 << i);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		return invalfc(fc, "Unknown subsys name '%s'", param->key);
 | |
| 	}
 | |
| 	if (opt < 0)
 | |
| 		return opt;
 | |
| 
 | |
| 	switch (opt) {
 | |
| 	case Opt_none:
 | |
| 		/* Explicitly have no subsystems */
 | |
| 		ctx->none = true;
 | |
| 		break;
 | |
| 	case Opt_all:
 | |
| 		ctx->all_ss = true;
 | |
| 		break;
 | |
| 	case Opt_noprefix:
 | |
| 		ctx->flags |= CGRP_ROOT_NOPREFIX;
 | |
| 		break;
 | |
| 	case Opt_clone_children:
 | |
| 		ctx->cpuset_clone_children = true;
 | |
| 		break;
 | |
| 	case Opt_cpuset_v2_mode:
 | |
| 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 | |
| 		break;
 | |
| 	case Opt_xattr:
 | |
| 		ctx->flags |= CGRP_ROOT_XATTR;
 | |
| 		break;
 | |
| 	case Opt_release_agent:
 | |
| 		/* Specifying two release agents is forbidden */
 | |
| 		if (ctx->release_agent)
 | |
| 			return invalfc(fc, "release_agent respecified");
 | |
| 		ctx->release_agent = param->string;
 | |
| 		param->string = NULL;
 | |
| 		break;
 | |
| 	case Opt_name:
 | |
| 		/* blocked by boot param? */
 | |
| 		if (cgroup_no_v1_named)
 | |
| 			return -ENOENT;
 | |
| 		/* Can't specify an empty name */
 | |
| 		if (!param->size)
 | |
| 			return invalfc(fc, "Empty name");
 | |
| 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 | |
| 			return invalfc(fc, "Name too long");
 | |
| 		/* Must match [\w.-]+ */
 | |
| 		for (i = 0; i < param->size; i++) {
 | |
| 			char c = param->string[i];
 | |
| 			if (isalnum(c))
 | |
| 				continue;
 | |
| 			if ((c == '.') || (c == '-') || (c == '_'))
 | |
| 				continue;
 | |
| 			return invalfc(fc, "Invalid name");
 | |
| 		}
 | |
| 		/* Specifying two names is forbidden */
 | |
| 		if (ctx->name)
 | |
| 			return invalfc(fc, "name respecified");
 | |
| 		ctx->name = param->string;
 | |
| 		param->string = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_cgroupfs_options(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	u16 mask = U16_MAX;
 | |
| 	u16 enabled = 0;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i;
 | |
| 
 | |
| #ifdef CONFIG_CPUSETS
 | |
| 	mask = ~((u16)1 << cpuset_cgrp_id);
 | |
| #endif
 | |
| 	for_each_subsys(ss, i)
 | |
| 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
 | |
| 			enabled |= 1 << i;
 | |
| 
 | |
| 	ctx->subsys_mask &= enabled;
 | |
| 
 | |
| 	/*
 | |
| 	 * In absense of 'none', 'name=' or subsystem name options,
 | |
| 	 * let's default to 'all'.
 | |
| 	 */
 | |
| 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
 | |
| 		ctx->all_ss = true;
 | |
| 
 | |
| 	if (ctx->all_ss) {
 | |
| 		/* Mutually exclusive option 'all' + subsystem name */
 | |
| 		if (ctx->subsys_mask)
 | |
| 			return invalfc(fc, "subsys name conflicts with all");
 | |
| 		/* 'all' => select all the subsystems */
 | |
| 		ctx->subsys_mask = enabled;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We either have to specify by name or by subsystems. (So all
 | |
| 	 * empty hierarchies must have a name).
 | |
| 	 */
 | |
| 	if (!ctx->subsys_mask && !ctx->name)
 | |
| 		return invalfc(fc, "Need name or subsystem set");
 | |
| 
 | |
| 	/*
 | |
| 	 * Option noprefix was introduced just for backward compatibility
 | |
| 	 * with the old cpuset, so we allow noprefix only if mounting just
 | |
| 	 * the cpuset subsystem.
 | |
| 	 */
 | |
| 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
 | |
| 		return invalfc(fc, "noprefix used incorrectly");
 | |
| 
 | |
| 	/* Can't specify "none" and some subsystems */
 | |
| 	if (ctx->subsys_mask && ctx->none)
 | |
| 		return invalfc(fc, "none used incorrectly");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cgroup1_reconfigure(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
 | |
| 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 | |
| 	int ret = 0;
 | |
| 	u16 added_mask, removed_mask;
 | |
| 
 | |
| 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
 | |
| 
 | |
| 	/* See what subsystems are wanted */
 | |
| 	ret = check_cgroupfs_options(fc);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
 | |
| 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
 | |
| 			task_tgid_nr(current), current->comm);
 | |
| 
 | |
| 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
 | |
| 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
 | |
| 
 | |
| 	/* Don't allow flags or name to change at remount */
 | |
| 	if ((ctx->flags ^ root->flags) ||
 | |
| 	    (ctx->name && strcmp(ctx->name, root->name))) {
 | |
| 		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
 | |
| 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* remounting is not allowed for populated hierarchies */
 | |
| 	if (!list_empty(&root->cgrp.self.children)) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = rebind_subsystems(root, added_mask);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
 | |
| 
 | |
| 	if (ctx->release_agent) {
 | |
| 		spin_lock(&release_agent_path_lock);
 | |
| 		strcpy(root->release_agent_path, ctx->release_agent);
 | |
| 		spin_unlock(&release_agent_path_lock);
 | |
| 	}
 | |
| 
 | |
| 	trace_cgroup_remount(root);
 | |
| 
 | |
|  out_unlock:
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
 | |
| 	.rename			= cgroup1_rename,
 | |
| 	.show_options		= cgroup1_show_options,
 | |
| 	.mkdir			= cgroup_mkdir,
 | |
| 	.rmdir			= cgroup_rmdir,
 | |
| 	.show_path		= cgroup_show_path,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The guts of cgroup1 mount - find or create cgroup_root to use.
 | |
|  * Called with cgroup_mutex held; returns 0 on success, -E... on
 | |
|  * error and positive - in case when the candidate is busy dying.
 | |
|  * On success it stashes a reference to cgroup_root into given
 | |
|  * cgroup_fs_context; that reference is *NOT* counting towards the
 | |
|  * cgroup_root refcount.
 | |
|  */
 | |
| static int cgroup1_root_to_use(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	struct cgroup_root *root;
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* First find the desired set of subsystems */
 | |
| 	ret = check_cgroupfs_options(fc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Destruction of cgroup root is asynchronous, so subsystems may
 | |
| 	 * still be dying after the previous unmount.  Let's drain the
 | |
| 	 * dying subsystems.  We just need to ensure that the ones
 | |
| 	 * unmounted previously finish dying and don't care about new ones
 | |
| 	 * starting.  Testing ref liveliness is good enough.
 | |
| 	 */
 | |
| 	for_each_subsys(ss, i) {
 | |
| 		if (!(ctx->subsys_mask & (1 << i)) ||
 | |
| 		    ss->root == &cgrp_dfl_root)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
 | |
| 			return 1;	/* restart */
 | |
| 		cgroup_put(&ss->root->cgrp);
 | |
| 	}
 | |
| 
 | |
| 	for_each_root(root) {
 | |
| 		bool name_match = false;
 | |
| 
 | |
| 		if (root == &cgrp_dfl_root)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we asked for a name then it must match.  Also, if
 | |
| 		 * name matches but sybsys_mask doesn't, we should fail.
 | |
| 		 * Remember whether name matched.
 | |
| 		 */
 | |
| 		if (ctx->name) {
 | |
| 			if (strcmp(ctx->name, root->name))
 | |
| 				continue;
 | |
| 			name_match = true;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we asked for subsystems (or explicitly for no
 | |
| 		 * subsystems) then they must match.
 | |
| 		 */
 | |
| 		if ((ctx->subsys_mask || ctx->none) &&
 | |
| 		    (ctx->subsys_mask != root->subsys_mask)) {
 | |
| 			if (!name_match)
 | |
| 				continue;
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 		if (root->flags ^ ctx->flags)
 | |
| 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
 | |
| 
 | |
| 		ctx->root = root;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No such thing, create a new one.  name= matching without subsys
 | |
| 	 * specification is allowed for already existing hierarchies but we
 | |
| 	 * can't create new one without subsys specification.
 | |
| 	 */
 | |
| 	if (!ctx->subsys_mask && !ctx->none)
 | |
| 		return invalfc(fc, "No subsys list or none specified");
 | |
| 
 | |
| 	/* Hierarchies may only be created in the initial cgroup namespace. */
 | |
| 	if (ctx->ns != &init_cgroup_ns)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	root = kzalloc(sizeof(*root), GFP_KERNEL);
 | |
| 	if (!root)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->root = root;
 | |
| 	init_cgroup_root(ctx);
 | |
| 
 | |
| 	ret = cgroup_setup_root(root, ctx->subsys_mask);
 | |
| 	if (ret)
 | |
| 		cgroup_free_root(root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int cgroup1_get_tree(struct fs_context *fc)
 | |
| {
 | |
| 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Check if the caller has permission to mount. */
 | |
| 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
 | |
| 
 | |
| 	ret = cgroup1_root_to_use(fc);
 | |
| 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
 | |
| 		ret = 1;	/* restart */
 | |
| 
 | |
| 	mutex_unlock(&cgroup_mutex);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = cgroup_do_get_tree(fc);
 | |
| 
 | |
| 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
 | |
| 		struct super_block *sb = fc->root->d_sb;
 | |
| 		dput(fc->root);
 | |
| 		deactivate_locked_super(sb);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret > 0)) {
 | |
| 		msleep(10);
 | |
| 		return restart_syscall();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init cgroup1_wq_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Used to destroy pidlists and separate to serve as flush domain.
 | |
| 	 * Cap @max_active to 1 too.
 | |
| 	 */
 | |
| 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
 | |
| 						    0, 1);
 | |
| 	BUG_ON(!cgroup_pidlist_destroy_wq);
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(cgroup1_wq_init);
 | |
| 
 | |
| static int __init cgroup_no_v1(char *str)
 | |
| {
 | |
| 	struct cgroup_subsys *ss;
 | |
| 	char *token;
 | |
| 	int i;
 | |
| 
 | |
| 	while ((token = strsep(&str, ",")) != NULL) {
 | |
| 		if (!*token)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!strcmp(token, "all")) {
 | |
| 			cgroup_no_v1_mask = U16_MAX;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!strcmp(token, "named")) {
 | |
| 			cgroup_no_v1_named = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for_each_subsys(ss, i) {
 | |
| 			if (strcmp(token, ss->name) &&
 | |
| 			    strcmp(token, ss->legacy_name))
 | |
| 				continue;
 | |
| 
 | |
| 			cgroup_no_v1_mask |= 1 << i;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("cgroup_no_v1=", cgroup_no_v1);
 |