linux/drivers/media/usb/dvb-usb/dw2102.c
David Härdeman 120703f9eb [media] rc-core: document the protocol type
Right now the protocol information is not preserved, rc-core gets handed a
scancode but has no idea which protocol it corresponds to.

This patch (which required reading through the source/keymap for all drivers,
not fun) makes the protocol information explicit which is important
documentation and makes it easier to e.g. support multiple protocols with one
decoder (think rc5 and rc-streamzap). The information isn't used yet so there
should be no functional changes.

[m.chehab@samsung.com: rebased, added cxusb and removed bad whitespacing]
Signed-off-by: David Härdeman <david@hardeman.nu>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2014-07-23 21:50:48 -03:00

2169 lines
50 KiB
C

/* DVB USB framework compliant Linux driver for the
* DVBWorld DVB-S 2101, 2102, DVB-S2 2104, DVB-C 3101,
* TeVii S600, S630, S650, S660, S480, S421, S632
* Prof 1100, 7500,
* Geniatech SU3000, T220 Cards
* Copyright (C) 2008-2012 Igor M. Liplianin (liplianin@me.by)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, version 2.
*
* see Documentation/dvb/README.dvb-usb for more information
*/
#include "dw2102.h"
#include "si21xx.h"
#include "stv0299.h"
#include "z0194a.h"
#include "stv0288.h"
#include "stb6000.h"
#include "eds1547.h"
#include "cx24116.h"
#include "tda1002x.h"
#include "mt312.h"
#include "zl10039.h"
#include "ts2020.h"
#include "ds3000.h"
#include "stv0900.h"
#include "stv6110.h"
#include "stb6100.h"
#include "stb6100_proc.h"
#include "m88rs2000.h"
#include "tda18271.h"
#include "cxd2820r.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
#ifndef USB_PID_DW2102
#define USB_PID_DW2102 0x2102
#endif
#ifndef USB_PID_DW2104
#define USB_PID_DW2104 0x2104
#endif
#ifndef USB_PID_DW3101
#define USB_PID_DW3101 0x3101
#endif
#ifndef USB_PID_CINERGY_S
#define USB_PID_CINERGY_S 0x0064
#endif
#ifndef USB_PID_TEVII_S630
#define USB_PID_TEVII_S630 0xd630
#endif
#ifndef USB_PID_TEVII_S650
#define USB_PID_TEVII_S650 0xd650
#endif
#ifndef USB_PID_TEVII_S660
#define USB_PID_TEVII_S660 0xd660
#endif
#ifndef USB_PID_TEVII_S480_1
#define USB_PID_TEVII_S480_1 0xd481
#endif
#ifndef USB_PID_TEVII_S480_2
#define USB_PID_TEVII_S480_2 0xd482
#endif
#ifndef USB_PID_PROF_1100
#define USB_PID_PROF_1100 0xb012
#endif
#ifndef USB_PID_TEVII_S421
#define USB_PID_TEVII_S421 0xd421
#endif
#ifndef USB_PID_TEVII_S632
#define USB_PID_TEVII_S632 0xd632
#endif
#ifndef USB_PID_GOTVIEW_SAT_HD
#define USB_PID_GOTVIEW_SAT_HD 0x5456
#endif
#define DW210X_READ_MSG 0
#define DW210X_WRITE_MSG 1
#define REG_1F_SYMBOLRATE_BYTE0 0x1f
#define REG_20_SYMBOLRATE_BYTE1 0x20
#define REG_21_SYMBOLRATE_BYTE2 0x21
/* on my own*/
#define DW2102_VOLTAGE_CTRL (0x1800)
#define SU3000_STREAM_CTRL (0x1900)
#define DW2102_RC_QUERY (0x1a00)
#define DW2102_LED_CTRL (0x1b00)
#define DW2101_FIRMWARE "dvb-usb-dw2101.fw"
#define DW2102_FIRMWARE "dvb-usb-dw2102.fw"
#define DW2104_FIRMWARE "dvb-usb-dw2104.fw"
#define DW3101_FIRMWARE "dvb-usb-dw3101.fw"
#define S630_FIRMWARE "dvb-usb-s630.fw"
#define S660_FIRMWARE "dvb-usb-s660.fw"
#define P1100_FIRMWARE "dvb-usb-p1100.fw"
#define P7500_FIRMWARE "dvb-usb-p7500.fw"
#define err_str "did not find the firmware file. (%s) " \
"Please see linux/Documentation/dvb/ for more details " \
"on firmware-problems."
struct su3000_state {
u8 initialized;
};
struct s6x0_state {
int (*old_set_voltage)(struct dvb_frontend *f, fe_sec_voltage_t v);
};
/* debug */
static int dvb_usb_dw2102_debug;
module_param_named(debug, dvb_usb_dw2102_debug, int, 0644);
MODULE_PARM_DESC(debug, "set debugging level (1=info 2=xfer 4=rc(or-able))."
DVB_USB_DEBUG_STATUS);
/* demod probe */
static int demod_probe = 1;
module_param_named(demod, demod_probe, int, 0644);
MODULE_PARM_DESC(demod, "demod to probe (1=cx24116 2=stv0903+stv6110 "
"4=stv0903+stb6100(or-able)).");
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static int dw210x_op_rw(struct usb_device *dev, u8 request, u16 value,
u16 index, u8 * data, u16 len, int flags)
{
int ret;
u8 *u8buf;
unsigned int pipe = (flags == DW210X_READ_MSG) ?
usb_rcvctrlpipe(dev, 0) : usb_sndctrlpipe(dev, 0);
u8 request_type = (flags == DW210X_READ_MSG) ? USB_DIR_IN : USB_DIR_OUT;
u8buf = kmalloc(len, GFP_KERNEL);
if (!u8buf)
return -ENOMEM;
if (flags == DW210X_WRITE_MSG)
memcpy(u8buf, data, len);
ret = usb_control_msg(dev, pipe, request, request_type | USB_TYPE_VENDOR,
value, index , u8buf, len, 2000);
if (flags == DW210X_READ_MSG)
memcpy(data, u8buf, len);
kfree(u8buf);
return ret;
}
/* I2C */
static int dw2102_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[],
int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
int i = 0;
u8 buf6[] = {0x2c, 0x05, 0xc0, 0, 0, 0, 0};
u16 value;
if (!d)
return -ENODEV;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
switch (num) {
case 2:
/* read stv0299 register */
value = msg[0].buf[0];/* register */
for (i = 0; i < msg[1].len; i++) {
dw210x_op_rw(d->udev, 0xb5, value + i, 0,
buf6, 2, DW210X_READ_MSG);
msg[1].buf[i] = buf6[0];
}
break;
case 1:
switch (msg[0].addr) {
case 0x68:
/* write to stv0299 register */
buf6[0] = 0x2a;
buf6[1] = msg[0].buf[0];
buf6[2] = msg[0].buf[1];
dw210x_op_rw(d->udev, 0xb2, 0, 0,
buf6, 3, DW210X_WRITE_MSG);
break;
case 0x60:
if (msg[0].flags == 0) {
/* write to tuner pll */
buf6[0] = 0x2c;
buf6[1] = 5;
buf6[2] = 0xc0;
buf6[3] = msg[0].buf[0];
buf6[4] = msg[0].buf[1];
buf6[5] = msg[0].buf[2];
buf6[6] = msg[0].buf[3];
dw210x_op_rw(d->udev, 0xb2, 0, 0,
buf6, 7, DW210X_WRITE_MSG);
} else {
/* read from tuner */
dw210x_op_rw(d->udev, 0xb5, 0, 0,
buf6, 1, DW210X_READ_MSG);
msg[0].buf[0] = buf6[0];
}
break;
case (DW2102_RC_QUERY):
dw210x_op_rw(d->udev, 0xb8, 0, 0,
buf6, 2, DW210X_READ_MSG);
msg[0].buf[0] = buf6[0];
msg[0].buf[1] = buf6[1];
break;
case (DW2102_VOLTAGE_CTRL):
buf6[0] = 0x30;
buf6[1] = msg[0].buf[0];
dw210x_op_rw(d->udev, 0xb2, 0, 0,
buf6, 2, DW210X_WRITE_MSG);
break;
}
break;
}
mutex_unlock(&d->i2c_mutex);
return num;
}
static int dw2102_serit_i2c_transfer(struct i2c_adapter *adap,
struct i2c_msg msg[], int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
u8 buf6[] = {0, 0, 0, 0, 0, 0, 0};
if (!d)
return -ENODEV;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
switch (num) {
case 2:
/* read si2109 register by number */
buf6[0] = msg[0].addr << 1;
buf6[1] = msg[0].len;
buf6[2] = msg[0].buf[0];
dw210x_op_rw(d->udev, 0xc2, 0, 0,
buf6, msg[0].len + 2, DW210X_WRITE_MSG);
/* read si2109 register */
dw210x_op_rw(d->udev, 0xc3, 0xd0, 0,
buf6, msg[1].len + 2, DW210X_READ_MSG);
memcpy(msg[1].buf, buf6 + 2, msg[1].len);
break;
case 1:
switch (msg[0].addr) {
case 0x68:
/* write to si2109 register */
buf6[0] = msg[0].addr << 1;
buf6[1] = msg[0].len;
memcpy(buf6 + 2, msg[0].buf, msg[0].len);
dw210x_op_rw(d->udev, 0xc2, 0, 0, buf6,
msg[0].len + 2, DW210X_WRITE_MSG);
break;
case(DW2102_RC_QUERY):
dw210x_op_rw(d->udev, 0xb8, 0, 0,
buf6, 2, DW210X_READ_MSG);
msg[0].buf[0] = buf6[0];
msg[0].buf[1] = buf6[1];
break;
case(DW2102_VOLTAGE_CTRL):
buf6[0] = 0x30;
buf6[1] = msg[0].buf[0];
dw210x_op_rw(d->udev, 0xb2, 0, 0,
buf6, 2, DW210X_WRITE_MSG);
break;
}
break;
}
mutex_unlock(&d->i2c_mutex);
return num;
}
static int dw2102_earda_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
int ret;
if (!d)
return -ENODEV;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
switch (num) {
case 2: {
/* read */
/* first write first register number */
u8 ibuf[MAX_XFER_SIZE], obuf[3];
if (2 + msg[1].len > sizeof(ibuf)) {
warn("i2c rd: len=%d is too big!\n",
msg[1].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[0].addr << 1;
obuf[1] = msg[0].len;
obuf[2] = msg[0].buf[0];
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, msg[0].len + 2, DW210X_WRITE_MSG);
/* second read registers */
dw210x_op_rw(d->udev, 0xc3, 0xd1 , 0,
ibuf, msg[1].len + 2, DW210X_READ_MSG);
memcpy(msg[1].buf, ibuf + 2, msg[1].len);
break;
}
case 1:
switch (msg[0].addr) {
case 0x68: {
/* write to register */
u8 obuf[MAX_XFER_SIZE];
if (2 + msg[0].len > sizeof(obuf)) {
warn("i2c wr: len=%d is too big!\n",
msg[1].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[0].addr << 1;
obuf[1] = msg[0].len;
memcpy(obuf + 2, msg[0].buf, msg[0].len);
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, msg[0].len + 2, DW210X_WRITE_MSG);
break;
}
case 0x61: {
/* write to tuner */
u8 obuf[MAX_XFER_SIZE];
if (2 + msg[0].len > sizeof(obuf)) {
warn("i2c wr: len=%d is too big!\n",
msg[1].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[0].addr << 1;
obuf[1] = msg[0].len;
memcpy(obuf + 2, msg[0].buf, msg[0].len);
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, msg[0].len + 2, DW210X_WRITE_MSG);
break;
}
case(DW2102_RC_QUERY): {
u8 ibuf[2];
dw210x_op_rw(d->udev, 0xb8, 0, 0,
ibuf, 2, DW210X_READ_MSG);
memcpy(msg[0].buf, ibuf , 2);
break;
}
case(DW2102_VOLTAGE_CTRL): {
u8 obuf[2];
obuf[0] = 0x30;
obuf[1] = msg[0].buf[0];
dw210x_op_rw(d->udev, 0xb2, 0, 0,
obuf, 2, DW210X_WRITE_MSG);
break;
}
}
break;
}
ret = num;
unlock:
mutex_unlock(&d->i2c_mutex);
return ret;
}
static int dw2104_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
int len, i, j, ret;
if (!d)
return -ENODEV;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
for (j = 0; j < num; j++) {
switch (msg[j].addr) {
case(DW2102_RC_QUERY): {
u8 ibuf[2];
dw210x_op_rw(d->udev, 0xb8, 0, 0,
ibuf, 2, DW210X_READ_MSG);
memcpy(msg[j].buf, ibuf , 2);
break;
}
case(DW2102_VOLTAGE_CTRL): {
u8 obuf[2];
obuf[0] = 0x30;
obuf[1] = msg[j].buf[0];
dw210x_op_rw(d->udev, 0xb2, 0, 0,
obuf, 2, DW210X_WRITE_MSG);
break;
}
/*case 0x55: cx24116
case 0x6a: stv0903
case 0x68: ds3000, stv0903
case 0x60: ts2020, stv6110, stb6100 */
default: {
if (msg[j].flags == I2C_M_RD) {
/* read registers */
u8 ibuf[MAX_XFER_SIZE];
if (2 + msg[j].len > sizeof(ibuf)) {
warn("i2c rd: len=%d is too big!\n",
msg[j].len);
ret = -EOPNOTSUPP;
goto unlock;
}
dw210x_op_rw(d->udev, 0xc3,
(msg[j].addr << 1) + 1, 0,
ibuf, msg[j].len + 2,
DW210X_READ_MSG);
memcpy(msg[j].buf, ibuf + 2, msg[j].len);
mdelay(10);
} else if (((msg[j].buf[0] == 0xb0) &&
(msg[j].addr == 0x68)) ||
((msg[j].buf[0] == 0xf7) &&
(msg[j].addr == 0x55))) {
/* write firmware */
u8 obuf[19];
obuf[0] = msg[j].addr << 1;
obuf[1] = (msg[j].len > 15 ? 17 : msg[j].len);
obuf[2] = msg[j].buf[0];
len = msg[j].len - 1;
i = 1;
do {
memcpy(obuf + 3, msg[j].buf + i,
(len > 16 ? 16 : len));
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, (len > 16 ? 16 : len) + 3,
DW210X_WRITE_MSG);
i += 16;
len -= 16;
} while (len > 0);
} else {
/* write registers */
u8 obuf[MAX_XFER_SIZE];
if (2 + msg[j].len > sizeof(obuf)) {
warn("i2c wr: len=%d is too big!\n",
msg[j].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[j].addr << 1;
obuf[1] = msg[j].len;
memcpy(obuf + 2, msg[j].buf, msg[j].len);
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, msg[j].len + 2,
DW210X_WRITE_MSG);
}
break;
}
}
}
ret = num;
unlock:
mutex_unlock(&d->i2c_mutex);
return ret;
}
static int dw3101_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[],
int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
int ret;
int i;
if (!d)
return -ENODEV;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
switch (num) {
case 2: {
/* read */
/* first write first register number */
u8 ibuf[MAX_XFER_SIZE], obuf[3];
if (2 + msg[1].len > sizeof(ibuf)) {
warn("i2c rd: len=%d is too big!\n",
msg[1].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[0].addr << 1;
obuf[1] = msg[0].len;
obuf[2] = msg[0].buf[0];
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, msg[0].len + 2, DW210X_WRITE_MSG);
/* second read registers */
dw210x_op_rw(d->udev, 0xc3, 0x19 , 0,
ibuf, msg[1].len + 2, DW210X_READ_MSG);
memcpy(msg[1].buf, ibuf + 2, msg[1].len);
break;
}
case 1:
switch (msg[0].addr) {
case 0x60:
case 0x0c: {
/* write to register */
u8 obuf[MAX_XFER_SIZE];
if (2 + msg[0].len > sizeof(obuf)) {
warn("i2c wr: len=%d is too big!\n",
msg[0].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[0].addr << 1;
obuf[1] = msg[0].len;
memcpy(obuf + 2, msg[0].buf, msg[0].len);
dw210x_op_rw(d->udev, 0xc2, 0, 0,
obuf, msg[0].len + 2, DW210X_WRITE_MSG);
break;
}
case(DW2102_RC_QUERY): {
u8 ibuf[2];
dw210x_op_rw(d->udev, 0xb8, 0, 0,
ibuf, 2, DW210X_READ_MSG);
memcpy(msg[0].buf, ibuf , 2);
break;
}
}
break;
}
for (i = 0; i < num; i++) {
deb_xfer("%02x:%02x: %s ", i, msg[i].addr,
msg[i].flags == 0 ? ">>>" : "<<<");
debug_dump(msg[i].buf, msg[i].len, deb_xfer);
}
ret = num;
unlock:
mutex_unlock(&d->i2c_mutex);
return ret;
}
static int s6x0_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[],
int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
struct usb_device *udev;
int len, i, j, ret;
if (!d)
return -ENODEV;
udev = d->udev;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
for (j = 0; j < num; j++) {
switch (msg[j].addr) {
case (DW2102_RC_QUERY): {
u8 ibuf[5];
dw210x_op_rw(d->udev, 0xb8, 0, 0,
ibuf, 5, DW210X_READ_MSG);
memcpy(msg[j].buf, ibuf + 3, 2);
break;
}
case (DW2102_VOLTAGE_CTRL): {
u8 obuf[2];
obuf[0] = 1;
obuf[1] = msg[j].buf[1];/* off-on */
dw210x_op_rw(d->udev, 0x8a, 0, 0,
obuf, 2, DW210X_WRITE_MSG);
obuf[0] = 3;
obuf[1] = msg[j].buf[0];/* 13v-18v */
dw210x_op_rw(d->udev, 0x8a, 0, 0,
obuf, 2, DW210X_WRITE_MSG);
break;
}
case (DW2102_LED_CTRL): {
u8 obuf[2];
obuf[0] = 5;
obuf[1] = msg[j].buf[0];
dw210x_op_rw(d->udev, 0x8a, 0, 0,
obuf, 2, DW210X_WRITE_MSG);
break;
}
/*case 0x55: cx24116
case 0x6a: stv0903
case 0x68: ds3000, stv0903, rs2000
case 0x60: ts2020, stv6110, stb6100
case 0xa0: eeprom */
default: {
if (msg[j].flags == I2C_M_RD) {
/* read registers */
u8 ibuf[MAX_XFER_SIZE];
if (msg[j].len > sizeof(ibuf)) {
warn("i2c rd: len=%d is too big!\n",
msg[j].len);
ret = -EOPNOTSUPP;
goto unlock;
}
dw210x_op_rw(d->udev, 0x91, 0, 0,
ibuf, msg[j].len,
DW210X_READ_MSG);
memcpy(msg[j].buf, ibuf, msg[j].len);
break;
} else if ((msg[j].buf[0] == 0xb0) &&
(msg[j].addr == 0x68)) {
/* write firmware */
u8 obuf[19];
obuf[0] = (msg[j].len > 16 ?
18 : msg[j].len + 1);
obuf[1] = msg[j].addr << 1;
obuf[2] = msg[j].buf[0];
len = msg[j].len - 1;
i = 1;
do {
memcpy(obuf + 3, msg[j].buf + i,
(len > 16 ? 16 : len));
dw210x_op_rw(d->udev, 0x80, 0, 0,
obuf, (len > 16 ? 16 : len) + 3,
DW210X_WRITE_MSG);
i += 16;
len -= 16;
} while (len > 0);
} else if (j < (num - 1)) {
/* write register addr before read */
u8 obuf[MAX_XFER_SIZE];
if (2 + msg[j].len > sizeof(obuf)) {
warn("i2c wr: len=%d is too big!\n",
msg[j].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[j + 1].len;
obuf[1] = (msg[j].addr << 1);
memcpy(obuf + 2, msg[j].buf, msg[j].len);
dw210x_op_rw(d->udev,
udev->descriptor.idProduct ==
0x7500 ? 0x92 : 0x90, 0, 0,
obuf, msg[j].len + 2,
DW210X_WRITE_MSG);
break;
} else {
/* write registers */
u8 obuf[MAX_XFER_SIZE];
if (2 + msg[j].len > sizeof(obuf)) {
warn("i2c wr: len=%d is too big!\n",
msg[j].len);
ret = -EOPNOTSUPP;
goto unlock;
}
obuf[0] = msg[j].len + 1;
obuf[1] = (msg[j].addr << 1);
memcpy(obuf + 2, msg[j].buf, msg[j].len);
dw210x_op_rw(d->udev, 0x80, 0, 0,
obuf, msg[j].len + 2,
DW210X_WRITE_MSG);
break;
}
break;
}
}
}
ret = num;
unlock:
mutex_unlock(&d->i2c_mutex);
return ret;
}
static int su3000_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[],
int num)
{
struct dvb_usb_device *d = i2c_get_adapdata(adap);
u8 obuf[0x40], ibuf[0x40];
if (!d)
return -ENODEV;
if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
return -EAGAIN;
switch (num) {
case 1:
switch (msg[0].addr) {
case SU3000_STREAM_CTRL:
obuf[0] = msg[0].buf[0] + 0x36;
obuf[1] = 3;
obuf[2] = 0;
if (dvb_usb_generic_rw(d, obuf, 3, ibuf, 0, 0) < 0)
err("i2c transfer failed.");
break;
case DW2102_RC_QUERY:
obuf[0] = 0x10;
if (dvb_usb_generic_rw(d, obuf, 1, ibuf, 2, 0) < 0)
err("i2c transfer failed.");
msg[0].buf[1] = ibuf[0];
msg[0].buf[0] = ibuf[1];
break;
default:
/* always i2c write*/
obuf[0] = 0x08;
obuf[1] = msg[0].addr;
obuf[2] = msg[0].len;
memcpy(&obuf[3], msg[0].buf, msg[0].len);
if (dvb_usb_generic_rw(d, obuf, msg[0].len + 3,
ibuf, 1, 0) < 0)
err("i2c transfer failed.");
}
break;
case 2:
/* always i2c read */
obuf[0] = 0x09;
obuf[1] = msg[0].len;
obuf[2] = msg[1].len;
obuf[3] = msg[0].addr;
memcpy(&obuf[4], msg[0].buf, msg[0].len);
if (dvb_usb_generic_rw(d, obuf, msg[0].len + 4,
ibuf, msg[1].len + 1, 0) < 0)
err("i2c transfer failed.");
memcpy(msg[1].buf, &ibuf[1], msg[1].len);
break;
default:
warn("more than 2 i2c messages at a time is not handled yet.");
break;
}
mutex_unlock(&d->i2c_mutex);
return num;
}
static u32 dw210x_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm dw2102_i2c_algo = {
.master_xfer = dw2102_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static struct i2c_algorithm dw2102_serit_i2c_algo = {
.master_xfer = dw2102_serit_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static struct i2c_algorithm dw2102_earda_i2c_algo = {
.master_xfer = dw2102_earda_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static struct i2c_algorithm dw2104_i2c_algo = {
.master_xfer = dw2104_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static struct i2c_algorithm dw3101_i2c_algo = {
.master_xfer = dw3101_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static struct i2c_algorithm s6x0_i2c_algo = {
.master_xfer = s6x0_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static struct i2c_algorithm su3000_i2c_algo = {
.master_xfer = su3000_i2c_transfer,
.functionality = dw210x_i2c_func,
};
static int dw210x_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
{
int i;
u8 ibuf[] = {0, 0};
u8 eeprom[256], eepromline[16];
for (i = 0; i < 256; i++) {
if (dw210x_op_rw(d->udev, 0xb6, 0xa0 , i, ibuf, 2, DW210X_READ_MSG) < 0) {
err("read eeprom failed.");
return -1;
} else {
eepromline[i%16] = ibuf[0];
eeprom[i] = ibuf[0];
}
if ((i % 16) == 15) {
deb_xfer("%02x: ", i - 15);
debug_dump(eepromline, 16, deb_xfer);
}
}
memcpy(mac, eeprom + 8, 6);
return 0;
};
static int s6x0_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
{
int i, ret;
u8 ibuf[] = { 0 }, obuf[] = { 0 };
u8 eeprom[256], eepromline[16];
struct i2c_msg msg[] = {
{
.addr = 0xa0 >> 1,
.flags = 0,
.buf = obuf,
.len = 1,
}, {
.addr = 0xa0 >> 1,
.flags = I2C_M_RD,
.buf = ibuf,
.len = 1,
}
};
for (i = 0; i < 256; i++) {
obuf[0] = i;
ret = s6x0_i2c_transfer(&d->i2c_adap, msg, 2);
if (ret != 2) {
err("read eeprom failed.");
return -1;
} else {
eepromline[i % 16] = ibuf[0];
eeprom[i] = ibuf[0];
}
if ((i % 16) == 15) {
deb_xfer("%02x: ", i - 15);
debug_dump(eepromline, 16, deb_xfer);
}
}
memcpy(mac, eeprom + 16, 6);
return 0;
};
static int su3000_streaming_ctrl(struct dvb_usb_adapter *adap, int onoff)
{
static u8 command_start[] = {0x00};
static u8 command_stop[] = {0x01};
struct i2c_msg msg = {
.addr = SU3000_STREAM_CTRL,
.flags = 0,
.buf = onoff ? command_start : command_stop,
.len = 1
};
i2c_transfer(&adap->dev->i2c_adap, &msg, 1);
return 0;
}
static int su3000_power_ctrl(struct dvb_usb_device *d, int i)
{
struct su3000_state *state = (struct su3000_state *)d->priv;
u8 obuf[] = {0xde, 0};
info("%s: %d, initialized %d\n", __func__, i, state->initialized);
if (i && !state->initialized) {
state->initialized = 1;
/* reset board */
dvb_usb_generic_rw(d, obuf, 2, NULL, 0, 0);
}
return 0;
}
static int su3000_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
{
int i;
u8 obuf[] = { 0x1f, 0xf0 };
u8 ibuf[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = 0x51,
.flags = 0,
.buf = obuf,
.len = 2,
}, {
.addr = 0x51,
.flags = I2C_M_RD,
.buf = ibuf,
.len = 1,
}
};
for (i = 0; i < 6; i++) {
obuf[1] = 0xf0 + i;
if (i2c_transfer(&d->i2c_adap, msg, 2) != 2)
break;
else
mac[i] = ibuf[0];
debug_dump(mac, 6, printk);
}
return 0;
}
static int su3000_identify_state(struct usb_device *udev,
struct dvb_usb_device_properties *props,
struct dvb_usb_device_description **desc,
int *cold)
{
info("%s\n", __func__);
*cold = 0;
return 0;
}
static int dw210x_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage)
{
static u8 command_13v[] = {0x00, 0x01};
static u8 command_18v[] = {0x01, 0x01};
static u8 command_off[] = {0x00, 0x00};
struct i2c_msg msg = {
.addr = DW2102_VOLTAGE_CTRL,
.flags = 0,
.buf = command_off,
.len = 2,
};
struct dvb_usb_adapter *udev_adap =
(struct dvb_usb_adapter *)(fe->dvb->priv);
if (voltage == SEC_VOLTAGE_18)
msg.buf = command_18v;
else if (voltage == SEC_VOLTAGE_13)
msg.buf = command_13v;
i2c_transfer(&udev_adap->dev->i2c_adap, &msg, 1);
return 0;
}
static int s660_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage)
{
struct dvb_usb_adapter *d =
(struct dvb_usb_adapter *)(fe->dvb->priv);
struct s6x0_state *st = (struct s6x0_state *)d->dev->priv;
dw210x_set_voltage(fe, voltage);
if (st->old_set_voltage)
st->old_set_voltage(fe, voltage);
return 0;
}
static void dw210x_led_ctrl(struct dvb_frontend *fe, int offon)
{
static u8 led_off[] = { 0 };
static u8 led_on[] = { 1 };
struct i2c_msg msg = {
.addr = DW2102_LED_CTRL,
.flags = 0,
.buf = led_off,
.len = 1
};
struct dvb_usb_adapter *udev_adap =
(struct dvb_usb_adapter *)(fe->dvb->priv);
if (offon)
msg.buf = led_on;
i2c_transfer(&udev_adap->dev->i2c_adap, &msg, 1);
}
static struct stv0299_config sharp_z0194a_config = {
.demod_address = 0x68,
.inittab = sharp_z0194a_inittab,
.mclk = 88000000UL,
.invert = 1,
.skip_reinit = 0,
.lock_output = STV0299_LOCKOUTPUT_1,
.volt13_op0_op1 = STV0299_VOLT13_OP1,
.min_delay_ms = 100,
.set_symbol_rate = sharp_z0194a_set_symbol_rate,
};
static struct cx24116_config dw2104_config = {
.demod_address = 0x55,
.mpg_clk_pos_pol = 0x01,
};
static struct si21xx_config serit_sp1511lhb_config = {
.demod_address = 0x68,
.min_delay_ms = 100,
};
static struct tda10023_config dw3101_tda10023_config = {
.demod_address = 0x0c,
.invert = 1,
};
static struct mt312_config zl313_config = {
.demod_address = 0x0e,
};
static struct ds3000_config dw2104_ds3000_config = {
.demod_address = 0x68,
};
static struct ts2020_config dw2104_ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 1,
.frequency_div = 1060000,
};
static struct ds3000_config s660_ds3000_config = {
.demod_address = 0x68,
.ci_mode = 1,
.set_lock_led = dw210x_led_ctrl,
};
static struct ts2020_config s660_ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 1,
.frequency_div = 1146000,
};
static struct stv0900_config dw2104a_stv0900_config = {
.demod_address = 0x6a,
.demod_mode = 0,
.xtal = 27000000,
.clkmode = 3,/* 0-CLKI, 2-XTALI, else AUTO */
.diseqc_mode = 2,/* 2/3 PWM */
.tun1_maddress = 0,/* 0x60 */
.tun1_adc = 0,/* 2 Vpp */
.path1_mode = 3,
};
static struct stb6100_config dw2104a_stb6100_config = {
.tuner_address = 0x60,
.refclock = 27000000,
};
static struct stv0900_config dw2104_stv0900_config = {
.demod_address = 0x68,
.demod_mode = 0,
.xtal = 8000000,
.clkmode = 3,
.diseqc_mode = 2,
.tun1_maddress = 0,
.tun1_adc = 1,/* 1 Vpp */
.path1_mode = 3,
};
static struct stv6110_config dw2104_stv6110_config = {
.i2c_address = 0x60,
.mclk = 16000000,
.clk_div = 1,
};
static struct stv0900_config prof_7500_stv0900_config = {
.demod_address = 0x6a,
.demod_mode = 0,
.xtal = 27000000,
.clkmode = 3,/* 0-CLKI, 2-XTALI, else AUTO */
.diseqc_mode = 2,/* 2/3 PWM */
.tun1_maddress = 0,/* 0x60 */
.tun1_adc = 0,/* 2 Vpp */
.path1_mode = 3,
.tun1_type = 3,
.set_lock_led = dw210x_led_ctrl,
};
static struct ds3000_config su3000_ds3000_config = {
.demod_address = 0x68,
.ci_mode = 1,
.set_lock_led = dw210x_led_ctrl,
};
static struct cxd2820r_config cxd2820r_config = {
.i2c_address = 0x6c, /* (0xd8 >> 1) */
.ts_mode = 0x38,
.ts_clock_inv = 1,
};
static struct tda18271_config tda18271_config = {
.output_opt = TDA18271_OUTPUT_LT_OFF,
.gate = TDA18271_GATE_DIGITAL,
};
static u8 m88rs2000_inittab[] = {
DEMOD_WRITE, 0x9a, 0x30,
DEMOD_WRITE, 0x00, 0x01,
WRITE_DELAY, 0x19, 0x00,
DEMOD_WRITE, 0x00, 0x00,
DEMOD_WRITE, 0x9a, 0xb0,
DEMOD_WRITE, 0x81, 0xc1,
DEMOD_WRITE, 0x81, 0x81,
DEMOD_WRITE, 0x86, 0xc6,
DEMOD_WRITE, 0x9a, 0x30,
DEMOD_WRITE, 0xf0, 0x80,
DEMOD_WRITE, 0xf1, 0xbf,
DEMOD_WRITE, 0xb0, 0x45,
DEMOD_WRITE, 0xb2, 0x01,
DEMOD_WRITE, 0x9a, 0xb0,
0xff, 0xaa, 0xff
};
static struct m88rs2000_config s421_m88rs2000_config = {
.demod_addr = 0x68,
.inittab = m88rs2000_inittab,
};
static int dw2104_frontend_attach(struct dvb_usb_adapter *d)
{
struct dvb_tuner_ops *tuner_ops = NULL;
if (demod_probe & 4) {
d->fe_adap[0].fe = dvb_attach(stv0900_attach, &dw2104a_stv0900_config,
&d->dev->i2c_adap, 0);
if (d->fe_adap[0].fe != NULL) {
if (dvb_attach(stb6100_attach, d->fe_adap[0].fe,
&dw2104a_stb6100_config,
&d->dev->i2c_adap)) {
tuner_ops = &d->fe_adap[0].fe->ops.tuner_ops;
tuner_ops->set_frequency = stb6100_set_freq;
tuner_ops->get_frequency = stb6100_get_freq;
tuner_ops->set_bandwidth = stb6100_set_bandw;
tuner_ops->get_bandwidth = stb6100_get_bandw;
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached STV0900+STB6100!\n");
return 0;
}
}
}
if (demod_probe & 2) {
d->fe_adap[0].fe = dvb_attach(stv0900_attach, &dw2104_stv0900_config,
&d->dev->i2c_adap, 0);
if (d->fe_adap[0].fe != NULL) {
if (dvb_attach(stv6110_attach, d->fe_adap[0].fe,
&dw2104_stv6110_config,
&d->dev->i2c_adap)) {
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached STV0900+STV6110A!\n");
return 0;
}
}
}
if (demod_probe & 1) {
d->fe_adap[0].fe = dvb_attach(cx24116_attach, &dw2104_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe != NULL) {
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached cx24116!\n");
return 0;
}
}
d->fe_adap[0].fe = dvb_attach(ds3000_attach, &dw2104_ds3000_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe != NULL) {
dvb_attach(ts2020_attach, d->fe_adap[0].fe,
&dw2104_ts2020_config, &d->dev->i2c_adap);
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached DS3000!\n");
return 0;
}
return -EIO;
}
static struct dvb_usb_device_properties dw2102_properties;
static struct dvb_usb_device_properties dw2104_properties;
static struct dvb_usb_device_properties s6x0_properties;
static int dw2102_frontend_attach(struct dvb_usb_adapter *d)
{
if (dw2102_properties.i2c_algo == &dw2102_serit_i2c_algo) {
/*dw2102_properties.adapter->tuner_attach = NULL;*/
d->fe_adap[0].fe = dvb_attach(si21xx_attach, &serit_sp1511lhb_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe != NULL) {
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached si21xx!\n");
return 0;
}
}
if (dw2102_properties.i2c_algo == &dw2102_earda_i2c_algo) {
d->fe_adap[0].fe = dvb_attach(stv0288_attach, &earda_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe != NULL) {
if (dvb_attach(stb6000_attach, d->fe_adap[0].fe, 0x61,
&d->dev->i2c_adap)) {
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached stv0288!\n");
return 0;
}
}
}
if (dw2102_properties.i2c_algo == &dw2102_i2c_algo) {
/*dw2102_properties.adapter->tuner_attach = dw2102_tuner_attach;*/
d->fe_adap[0].fe = dvb_attach(stv0299_attach, &sharp_z0194a_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe != NULL) {
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached stv0299!\n");
return 0;
}
}
return -EIO;
}
static int dw3101_frontend_attach(struct dvb_usb_adapter *d)
{
d->fe_adap[0].fe = dvb_attach(tda10023_attach, &dw3101_tda10023_config,
&d->dev->i2c_adap, 0x48);
if (d->fe_adap[0].fe != NULL) {
info("Attached tda10023!\n");
return 0;
}
return -EIO;
}
static int zl100313_frontend_attach(struct dvb_usb_adapter *d)
{
d->fe_adap[0].fe = dvb_attach(mt312_attach, &zl313_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe != NULL) {
if (dvb_attach(zl10039_attach, d->fe_adap[0].fe, 0x60,
&d->dev->i2c_adap)) {
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
info("Attached zl100313+zl10039!\n");
return 0;
}
}
return -EIO;
}
static int stv0288_frontend_attach(struct dvb_usb_adapter *d)
{
u8 obuf[] = {7, 1};
d->fe_adap[0].fe = dvb_attach(stv0288_attach, &earda_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe == NULL)
return -EIO;
if (NULL == dvb_attach(stb6000_attach, d->fe_adap[0].fe, 0x61, &d->dev->i2c_adap))
return -EIO;
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
dw210x_op_rw(d->dev->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG);
info("Attached stv0288+stb6000!\n");
return 0;
}
static int ds3000_frontend_attach(struct dvb_usb_adapter *d)
{
struct s6x0_state *st = (struct s6x0_state *)d->dev->priv;
u8 obuf[] = {7, 1};
d->fe_adap[0].fe = dvb_attach(ds3000_attach, &s660_ds3000_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe == NULL)
return -EIO;
dvb_attach(ts2020_attach, d->fe_adap[0].fe, &s660_ts2020_config,
&d->dev->i2c_adap);
st->old_set_voltage = d->fe_adap[0].fe->ops.set_voltage;
d->fe_adap[0].fe->ops.set_voltage = s660_set_voltage;
dw210x_op_rw(d->dev->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG);
info("Attached ds3000+ts2020!\n");
return 0;
}
static int prof_7500_frontend_attach(struct dvb_usb_adapter *d)
{
u8 obuf[] = {7, 1};
d->fe_adap[0].fe = dvb_attach(stv0900_attach, &prof_7500_stv0900_config,
&d->dev->i2c_adap, 0);
if (d->fe_adap[0].fe == NULL)
return -EIO;
d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage;
dw210x_op_rw(d->dev->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG);
info("Attached STV0900+STB6100A!\n");
return 0;
}
static int su3000_frontend_attach(struct dvb_usb_adapter *d)
{
u8 obuf[3] = { 0xe, 0x80, 0 };
u8 ibuf[] = { 0 };
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0xe;
obuf[1] = 0x02;
obuf[2] = 1;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
msleep(300);
obuf[0] = 0xe;
obuf[1] = 0x83;
obuf[2] = 0;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0xe;
obuf[1] = 0x83;
obuf[2] = 1;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0x51;
if (dvb_usb_generic_rw(d->dev, obuf, 1, ibuf, 1, 0) < 0)
err("command 0x51 transfer failed.");
d->fe_adap[0].fe = dvb_attach(ds3000_attach, &su3000_ds3000_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe == NULL)
return -EIO;
if (dvb_attach(ts2020_attach, d->fe_adap[0].fe,
&dw2104_ts2020_config,
&d->dev->i2c_adap)) {
info("Attached DS3000/TS2020!\n");
return 0;
}
info("Failed to attach DS3000/TS2020!\n");
return -EIO;
}
static int t220_frontend_attach(struct dvb_usb_adapter *d)
{
u8 obuf[3] = { 0xe, 0x87, 0 };
u8 ibuf[] = { 0 };
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0xe;
obuf[1] = 0x86;
obuf[2] = 1;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0xe;
obuf[1] = 0x80;
obuf[2] = 0;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
msleep(50);
obuf[0] = 0xe;
obuf[1] = 0x80;
obuf[2] = 1;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0x51;
if (dvb_usb_generic_rw(d->dev, obuf, 1, ibuf, 1, 0) < 0)
err("command 0x51 transfer failed.");
d->fe_adap[0].fe = dvb_attach(cxd2820r_attach, &cxd2820r_config,
&d->dev->i2c_adap, NULL);
if (d->fe_adap[0].fe != NULL) {
if (dvb_attach(tda18271_attach, d->fe_adap[0].fe, 0x60,
&d->dev->i2c_adap, &tda18271_config)) {
info("Attached TDA18271HD/CXD2820R!\n");
return 0;
}
}
info("Failed to attach TDA18271HD/CXD2820R!\n");
return -EIO;
}
static int m88rs2000_frontend_attach(struct dvb_usb_adapter *d)
{
u8 obuf[] = { 0x51 };
u8 ibuf[] = { 0 };
if (dvb_usb_generic_rw(d->dev, obuf, 1, ibuf, 1, 0) < 0)
err("command 0x51 transfer failed.");
d->fe_adap[0].fe = dvb_attach(m88rs2000_attach, &s421_m88rs2000_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe == NULL)
return -EIO;
if (dvb_attach(ts2020_attach, d->fe_adap[0].fe,
&dw2104_ts2020_config,
&d->dev->i2c_adap)) {
info("Attached RS2000/TS2020!\n");
return 0;
}
info("Failed to attach RS2000/TS2020!\n");
return -EIO;
}
static int dw2102_tuner_attach(struct dvb_usb_adapter *adap)
{
dvb_attach(dvb_pll_attach, adap->fe_adap[0].fe, 0x60,
&adap->dev->i2c_adap, DVB_PLL_OPERA1);
return 0;
}
static int dw3101_tuner_attach(struct dvb_usb_adapter *adap)
{
dvb_attach(dvb_pll_attach, adap->fe_adap[0].fe, 0x60,
&adap->dev->i2c_adap, DVB_PLL_TUA6034);
return 0;
}
static int dw2102_rc_query(struct dvb_usb_device *d)
{
u8 key[2];
struct i2c_msg msg = {
.addr = DW2102_RC_QUERY,
.flags = I2C_M_RD,
.buf = key,
.len = 2
};
if (d->props.i2c_algo->master_xfer(&d->i2c_adap, &msg, 1) == 1) {
if (msg.buf[0] != 0xff) {
deb_rc("%s: rc code: %x, %x\n",
__func__, key[0], key[1]);
rc_keydown(d->rc_dev, RC_TYPE_UNKNOWN, key[0], 0);
}
}
return 0;
}
static int prof_rc_query(struct dvb_usb_device *d)
{
u8 key[2];
struct i2c_msg msg = {
.addr = DW2102_RC_QUERY,
.flags = I2C_M_RD,
.buf = key,
.len = 2
};
if (d->props.i2c_algo->master_xfer(&d->i2c_adap, &msg, 1) == 1) {
if (msg.buf[0] != 0xff) {
deb_rc("%s: rc code: %x, %x\n",
__func__, key[0], key[1]);
rc_keydown(d->rc_dev, RC_TYPE_UNKNOWN, key[0]^0xff, 0);
}
}
return 0;
}
static int su3000_rc_query(struct dvb_usb_device *d)
{
u8 key[2];
struct i2c_msg msg = {
.addr = DW2102_RC_QUERY,
.flags = I2C_M_RD,
.buf = key,
.len = 2
};
if (d->props.i2c_algo->master_xfer(&d->i2c_adap, &msg, 1) == 1) {
if (msg.buf[0] != 0xff) {
deb_rc("%s: rc code: %x, %x\n",
__func__, key[0], key[1]);
rc_keydown(d->rc_dev, RC_TYPE_RC5,
RC_SCANCODE_RC5(key[1], key[0]), 0);
}
}
return 0;
}
enum dw2102_table_entry {
CYPRESS_DW2102,
CYPRESS_DW2101,
CYPRESS_DW2104,
TEVII_S650,
TERRATEC_CINERGY_S,
CYPRESS_DW3101,
TEVII_S630,
PROF_1100,
TEVII_S660,
PROF_7500,
GENIATECH_SU3000,
TERRATEC_CINERGY_S2,
TEVII_S480_1,
TEVII_S480_2,
X3M_SPC1400HD,
TEVII_S421,
TEVII_S632,
TERRATEC_CINERGY_S2_R2,
GOTVIEW_SAT_HD,
GENIATECH_T220,
};
static struct usb_device_id dw2102_table[] = {
[CYPRESS_DW2102] = {USB_DEVICE(USB_VID_CYPRESS, USB_PID_DW2102)},
[CYPRESS_DW2101] = {USB_DEVICE(USB_VID_CYPRESS, 0x2101)},
[CYPRESS_DW2104] = {USB_DEVICE(USB_VID_CYPRESS, USB_PID_DW2104)},
[TEVII_S650] = {USB_DEVICE(0x9022, USB_PID_TEVII_S650)},
[TERRATEC_CINERGY_S] = {USB_DEVICE(USB_VID_TERRATEC, USB_PID_CINERGY_S)},
[CYPRESS_DW3101] = {USB_DEVICE(USB_VID_CYPRESS, USB_PID_DW3101)},
[TEVII_S630] = {USB_DEVICE(0x9022, USB_PID_TEVII_S630)},
[PROF_1100] = {USB_DEVICE(0x3011, USB_PID_PROF_1100)},
[TEVII_S660] = {USB_DEVICE(0x9022, USB_PID_TEVII_S660)},
[PROF_7500] = {USB_DEVICE(0x3034, 0x7500)},
[GENIATECH_SU3000] = {USB_DEVICE(0x1f4d, 0x3000)},
[TERRATEC_CINERGY_S2] = {USB_DEVICE(USB_VID_TERRATEC, 0x00a8)},
[TEVII_S480_1] = {USB_DEVICE(0x9022, USB_PID_TEVII_S480_1)},
[TEVII_S480_2] = {USB_DEVICE(0x9022, USB_PID_TEVII_S480_2)},
[X3M_SPC1400HD] = {USB_DEVICE(0x1f4d, 0x3100)},
[TEVII_S421] = {USB_DEVICE(0x9022, USB_PID_TEVII_S421)},
[TEVII_S632] = {USB_DEVICE(0x9022, USB_PID_TEVII_S632)},
[TERRATEC_CINERGY_S2_R2] = {USB_DEVICE(USB_VID_TERRATEC, 0x00b0)},
[GOTVIEW_SAT_HD] = {USB_DEVICE(0x1FE1, USB_PID_GOTVIEW_SAT_HD)},
[GENIATECH_T220] = {USB_DEVICE(0x1f4d, 0xD220)},
{ }
};
MODULE_DEVICE_TABLE(usb, dw2102_table);
static int dw2102_load_firmware(struct usb_device *dev,
const struct firmware *frmwr)
{
u8 *b, *p;
int ret = 0, i;
u8 reset;
u8 reset16[] = {0, 0, 0, 0, 0, 0, 0};
const struct firmware *fw;
switch (dev->descriptor.idProduct) {
case 0x2101:
ret = request_firmware(&fw, DW2101_FIRMWARE, &dev->dev);
if (ret != 0) {
err(err_str, DW2101_FIRMWARE);
return ret;
}
break;
default:
fw = frmwr;
break;
}
info("start downloading DW210X firmware");
p = kmalloc(fw->size, GFP_KERNEL);
reset = 1;
/*stop the CPU*/
dw210x_op_rw(dev, 0xa0, 0x7f92, 0, &reset, 1, DW210X_WRITE_MSG);
dw210x_op_rw(dev, 0xa0, 0xe600, 0, &reset, 1, DW210X_WRITE_MSG);
if (p != NULL) {
memcpy(p, fw->data, fw->size);
for (i = 0; i < fw->size; i += 0x40) {
b = (u8 *) p + i;
if (dw210x_op_rw(dev, 0xa0, i, 0, b , 0x40,
DW210X_WRITE_MSG) != 0x40) {
err("error while transferring firmware");
ret = -EINVAL;
break;
}
}
/* restart the CPU */
reset = 0;
if (ret || dw210x_op_rw(dev, 0xa0, 0x7f92, 0, &reset, 1,
DW210X_WRITE_MSG) != 1) {
err("could not restart the USB controller CPU.");
ret = -EINVAL;
}
if (ret || dw210x_op_rw(dev, 0xa0, 0xe600, 0, &reset, 1,
DW210X_WRITE_MSG) != 1) {
err("could not restart the USB controller CPU.");
ret = -EINVAL;
}
/* init registers */
switch (dev->descriptor.idProduct) {
case USB_PID_TEVII_S650:
dw2104_properties.rc.core.rc_codes = RC_MAP_TEVII_NEC;
case USB_PID_DW2104:
reset = 1;
dw210x_op_rw(dev, 0xc4, 0x0000, 0, &reset, 1,
DW210X_WRITE_MSG);
/* break omitted intentionally */
case USB_PID_DW3101:
reset = 0;
dw210x_op_rw(dev, 0xbf, 0x0040, 0, &reset, 0,
DW210X_WRITE_MSG);
break;
case USB_PID_CINERGY_S:
case USB_PID_DW2102:
dw210x_op_rw(dev, 0xbf, 0x0040, 0, &reset, 0,
DW210X_WRITE_MSG);
dw210x_op_rw(dev, 0xb9, 0x0000, 0, &reset16[0], 2,
DW210X_READ_MSG);
/* check STV0299 frontend */
dw210x_op_rw(dev, 0xb5, 0, 0, &reset16[0], 2,
DW210X_READ_MSG);
if ((reset16[0] == 0xa1) || (reset16[0] == 0x80)) {
dw2102_properties.i2c_algo = &dw2102_i2c_algo;
dw2102_properties.adapter->fe[0].tuner_attach = &dw2102_tuner_attach;
break;
} else {
/* check STV0288 frontend */
reset16[0] = 0xd0;
reset16[1] = 1;
reset16[2] = 0;
dw210x_op_rw(dev, 0xc2, 0, 0, &reset16[0], 3,
DW210X_WRITE_MSG);
dw210x_op_rw(dev, 0xc3, 0xd1, 0, &reset16[0], 3,
DW210X_READ_MSG);
if (reset16[2] == 0x11) {
dw2102_properties.i2c_algo = &dw2102_earda_i2c_algo;
break;
}
}
case 0x2101:
dw210x_op_rw(dev, 0xbc, 0x0030, 0, &reset16[0], 2,
DW210X_READ_MSG);
dw210x_op_rw(dev, 0xba, 0x0000, 0, &reset16[0], 7,
DW210X_READ_MSG);
dw210x_op_rw(dev, 0xba, 0x0000, 0, &reset16[0], 7,
DW210X_READ_MSG);
dw210x_op_rw(dev, 0xb9, 0x0000, 0, &reset16[0], 2,
DW210X_READ_MSG);
break;
}
msleep(100);
kfree(p);
}
return ret;
}
static struct dvb_usb_device_properties dw2102_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.firmware = DW2102_FIRMWARE,
.no_reconnect = 1,
.i2c_algo = &dw2102_serit_i2c_algo,
.rc.core = {
.rc_interval = 150,
.rc_codes = RC_MAP_DM1105_NEC,
.module_name = "dw2102",
.allowed_protos = RC_BIT_NEC,
.rc_query = dw2102_rc_query,
},
.generic_bulk_ctrl_endpoint = 0x81,
/* parameter for the MPEG2-data transfer */
.num_adapters = 1,
.download_firmware = dw2102_load_firmware,
.read_mac_address = dw210x_read_mac_address,
.adapter = {
{
.num_frontends = 1,
.fe = {{
.frontend_attach = dw2102_frontend_attach,
.stream = {
.type = USB_BULK,
.count = 8,
.endpoint = 0x82,
.u = {
.bulk = {
.buffersize = 4096,
}
}
},
}},
}
},
.num_device_descs = 3,
.devices = {
{"DVBWorld DVB-S 2102 USB2.0",
{&dw2102_table[CYPRESS_DW2102], NULL},
{NULL},
},
{"DVBWorld DVB-S 2101 USB2.0",
{&dw2102_table[CYPRESS_DW2101], NULL},
{NULL},
},
{"TerraTec Cinergy S USB",
{&dw2102_table[TERRATEC_CINERGY_S], NULL},
{NULL},
},
}
};
static struct dvb_usb_device_properties dw2104_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.firmware = DW2104_FIRMWARE,
.no_reconnect = 1,
.i2c_algo = &dw2104_i2c_algo,
.rc.core = {
.rc_interval = 150,
.rc_codes = RC_MAP_DM1105_NEC,
.module_name = "dw2102",
.allowed_protos = RC_BIT_NEC,
.rc_query = dw2102_rc_query,
},
.generic_bulk_ctrl_endpoint = 0x81,
/* parameter for the MPEG2-data transfer */
.num_adapters = 1,
.download_firmware = dw2102_load_firmware,
.read_mac_address = dw210x_read_mac_address,
.adapter = {
{
.num_frontends = 1,
.fe = {{
.frontend_attach = dw2104_frontend_attach,
.stream = {
.type = USB_BULK,
.count = 8,
.endpoint = 0x82,
.u = {
.bulk = {
.buffersize = 4096,
}
}
},
}},
}
},
.num_device_descs = 2,
.devices = {
{ "DVBWorld DW2104 USB2.0",
{&dw2102_table[CYPRESS_DW2104], NULL},
{NULL},
},
{ "TeVii S650 USB2.0",
{&dw2102_table[TEVII_S650], NULL},
{NULL},
},
}
};
static struct dvb_usb_device_properties dw3101_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.firmware = DW3101_FIRMWARE,
.no_reconnect = 1,
.i2c_algo = &dw3101_i2c_algo,
.rc.core = {
.rc_interval = 150,
.rc_codes = RC_MAP_DM1105_NEC,
.module_name = "dw2102",
.allowed_protos = RC_BIT_NEC,
.rc_query = dw2102_rc_query,
},
.generic_bulk_ctrl_endpoint = 0x81,
/* parameter for the MPEG2-data transfer */
.num_adapters = 1,
.download_firmware = dw2102_load_firmware,
.read_mac_address = dw210x_read_mac_address,
.adapter = {
{
.num_frontends = 1,
.fe = {{
.frontend_attach = dw3101_frontend_attach,
.tuner_attach = dw3101_tuner_attach,
.stream = {
.type = USB_BULK,
.count = 8,
.endpoint = 0x82,
.u = {
.bulk = {
.buffersize = 4096,
}
}
},
}},
}
},
.num_device_descs = 1,
.devices = {
{ "DVBWorld DVB-C 3101 USB2.0",
{&dw2102_table[CYPRESS_DW3101], NULL},
{NULL},
},
}
};
static struct dvb_usb_device_properties s6x0_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.size_of_priv = sizeof(struct s6x0_state),
.firmware = S630_FIRMWARE,
.no_reconnect = 1,
.i2c_algo = &s6x0_i2c_algo,
.rc.core = {
.rc_interval = 150,
.rc_codes = RC_MAP_TEVII_NEC,
.module_name = "dw2102",
.allowed_protos = RC_BIT_NEC,
.rc_query = dw2102_rc_query,
},
.generic_bulk_ctrl_endpoint = 0x81,
.num_adapters = 1,
.download_firmware = dw2102_load_firmware,
.read_mac_address = s6x0_read_mac_address,
.adapter = {
{
.num_frontends = 1,
.fe = {{
.frontend_attach = zl100313_frontend_attach,
.stream = {
.type = USB_BULK,
.count = 8,
.endpoint = 0x82,
.u = {
.bulk = {
.buffersize = 4096,
}
}
},
}},
}
},
.num_device_descs = 1,
.devices = {
{"TeVii S630 USB",
{&dw2102_table[TEVII_S630], NULL},
{NULL},
},
}
};
struct dvb_usb_device_properties *p1100;
static struct dvb_usb_device_description d1100 = {
"Prof 1100 USB ",
{&dw2102_table[PROF_1100], NULL},
{NULL},
};
struct dvb_usb_device_properties *s660;
static struct dvb_usb_device_description d660 = {
"TeVii S660 USB",
{&dw2102_table[TEVII_S660], NULL},
{NULL},
};
static struct dvb_usb_device_description d480_1 = {
"TeVii S480.1 USB",
{&dw2102_table[TEVII_S480_1], NULL},
{NULL},
};
static struct dvb_usb_device_description d480_2 = {
"TeVii S480.2 USB",
{&dw2102_table[TEVII_S480_2], NULL},
{NULL},
};
struct dvb_usb_device_properties *p7500;
static struct dvb_usb_device_description d7500 = {
"Prof 7500 USB DVB-S2",
{&dw2102_table[PROF_7500], NULL},
{NULL},
};
struct dvb_usb_device_properties *s421;
static struct dvb_usb_device_description d421 = {
"TeVii S421 PCI",
{&dw2102_table[TEVII_S421], NULL},
{NULL},
};
static struct dvb_usb_device_description d632 = {
"TeVii S632 USB",
{&dw2102_table[TEVII_S632], NULL},
{NULL},
};
static struct dvb_usb_device_properties su3000_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.size_of_priv = sizeof(struct su3000_state),
.power_ctrl = su3000_power_ctrl,
.num_adapters = 1,
.identify_state = su3000_identify_state,
.i2c_algo = &su3000_i2c_algo,
.rc.core = {
.rc_interval = 150,
.rc_codes = RC_MAP_SU3000,
.module_name = "dw2102",
.allowed_protos = RC_BIT_RC5,
.rc_query = su3000_rc_query,
},
.read_mac_address = su3000_read_mac_address,
.generic_bulk_ctrl_endpoint = 0x01,
.adapter = {
{
.num_frontends = 1,
.fe = {{
.streaming_ctrl = su3000_streaming_ctrl,
.frontend_attach = su3000_frontend_attach,
.stream = {
.type = USB_BULK,
.count = 8,
.endpoint = 0x82,
.u = {
.bulk = {
.buffersize = 4096,
}
}
}
}},
}
},
.num_device_descs = 5,
.devices = {
{ "SU3000HD DVB-S USB2.0",
{ &dw2102_table[GENIATECH_SU3000], NULL },
{ NULL },
},
{ "Terratec Cinergy S2 USB HD",
{ &dw2102_table[TERRATEC_CINERGY_S2], NULL },
{ NULL },
},
{ "X3M TV SPC1400HD PCI",
{ &dw2102_table[X3M_SPC1400HD], NULL },
{ NULL },
},
{ "Terratec Cinergy S2 USB HD Rev.2",
{ &dw2102_table[TERRATEC_CINERGY_S2_R2], NULL },
{ NULL },
},
{ "GOTVIEW Satellite HD",
{ &dw2102_table[GOTVIEW_SAT_HD], NULL },
{ NULL },
},
}
};
static struct dvb_usb_device_properties t220_properties = {
.caps = DVB_USB_IS_AN_I2C_ADAPTER,
.usb_ctrl = DEVICE_SPECIFIC,
.size_of_priv = sizeof(struct su3000_state),
.power_ctrl = su3000_power_ctrl,
.num_adapters = 1,
.identify_state = su3000_identify_state,
.i2c_algo = &su3000_i2c_algo,
.rc.core = {
.rc_interval = 150,
.rc_codes = RC_MAP_SU3000,
.module_name = "dw2102",
.allowed_protos = RC_BIT_RC5,
.rc_query = su3000_rc_query,
},
.read_mac_address = su3000_read_mac_address,
.generic_bulk_ctrl_endpoint = 0x01,
.adapter = {
{
.num_frontends = 1,
.fe = { {
.streaming_ctrl = su3000_streaming_ctrl,
.frontend_attach = t220_frontend_attach,
.stream = {
.type = USB_BULK,
.count = 8,
.endpoint = 0x82,
.u = {
.bulk = {
.buffersize = 4096,
}
}
}
} },
}
},
.num_device_descs = 1,
.devices = {
{ "Geniatech T220 DVB-T/T2 USB2.0",
{ &dw2102_table[GENIATECH_T220], NULL },
{ NULL },
},
}
};
static int dw2102_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
p1100 = kmemdup(&s6x0_properties,
sizeof(struct dvb_usb_device_properties), GFP_KERNEL);
if (!p1100)
return -ENOMEM;
/* copy default structure */
/* fill only different fields */
p1100->firmware = P1100_FIRMWARE;
p1100->devices[0] = d1100;
p1100->rc.core.rc_query = prof_rc_query;
p1100->rc.core.rc_codes = RC_MAP_TBS_NEC;
p1100->adapter->fe[0].frontend_attach = stv0288_frontend_attach;
s660 = kmemdup(&s6x0_properties,
sizeof(struct dvb_usb_device_properties), GFP_KERNEL);
if (!s660) {
kfree(p1100);
return -ENOMEM;
}
s660->firmware = S660_FIRMWARE;
s660->num_device_descs = 3;
s660->devices[0] = d660;
s660->devices[1] = d480_1;
s660->devices[2] = d480_2;
s660->adapter->fe[0].frontend_attach = ds3000_frontend_attach;
p7500 = kmemdup(&s6x0_properties,
sizeof(struct dvb_usb_device_properties), GFP_KERNEL);
if (!p7500) {
kfree(p1100);
kfree(s660);
return -ENOMEM;
}
p7500->firmware = P7500_FIRMWARE;
p7500->devices[0] = d7500;
p7500->rc.core.rc_query = prof_rc_query;
p7500->rc.core.rc_codes = RC_MAP_TBS_NEC;
p7500->adapter->fe[0].frontend_attach = prof_7500_frontend_attach;
s421 = kmemdup(&su3000_properties,
sizeof(struct dvb_usb_device_properties), GFP_KERNEL);
if (!s421) {
kfree(p1100);
kfree(s660);
kfree(p7500);
return -ENOMEM;
}
s421->num_device_descs = 2;
s421->devices[0] = d421;
s421->devices[1] = d632;
s421->adapter->fe[0].frontend_attach = m88rs2000_frontend_attach;
if (0 == dvb_usb_device_init(intf, &dw2102_properties,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, &dw2104_properties,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, &dw3101_properties,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, &s6x0_properties,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, p1100,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, s660,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, p7500,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, s421,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, &su3000_properties,
THIS_MODULE, NULL, adapter_nr) ||
0 == dvb_usb_device_init(intf, &t220_properties,
THIS_MODULE, NULL, adapter_nr))
return 0;
return -ENODEV;
}
static struct usb_driver dw2102_driver = {
.name = "dw2102",
.probe = dw2102_probe,
.disconnect = dvb_usb_device_exit,
.id_table = dw2102_table,
};
module_usb_driver(dw2102_driver);
MODULE_AUTHOR("Igor M. Liplianin (c) liplianin@me.by");
MODULE_DESCRIPTION("Driver for DVBWorld DVB-S 2101, 2102, DVB-S2 2104,"
" DVB-C 3101 USB2.0,"
" TeVii S600, S630, S650, S660, S480, S421, S632"
" Prof 1100, 7500 USB2.0,"
" Geniatech SU3000, T220 devices");
MODULE_VERSION("0.1");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(DW2101_FIRMWARE);
MODULE_FIRMWARE(DW2102_FIRMWARE);
MODULE_FIRMWARE(DW2104_FIRMWARE);
MODULE_FIRMWARE(DW3101_FIRMWARE);
MODULE_FIRMWARE(S630_FIRMWARE);
MODULE_FIRMWARE(S660_FIRMWARE);
MODULE_FIRMWARE(P1100_FIRMWARE);
MODULE_FIRMWARE(P7500_FIRMWARE);