linux/arch/arm64/kvm/sys_regs.c
Linus Torvalds 7af8a0f808 arm64 updates for 4.9:
- Support for execute-only page permissions
 - Support for hibernate and DEBUG_PAGEALLOC
 - Support for heterogeneous systems with mismatches cache line sizes
 - Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
 - arm64 PMU perf updates, including cpumasks for heterogeneous systems
 - Set UTS_MACHINE for building rpm packages
 - Yet another head.S tidy-up
 - Some cleanups and refactoring, particularly in the NUMA code
 - Lots of random, non-critical fixes across the board
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
 XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
 AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
 XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
 ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
 YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
 =gdPM
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "It's a bit all over the place this time with no "killer feature" to
  speak of.  Support for mismatched cache line sizes should help people
  seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
  updates have been a long time coming, but a lot of the changes here
  are cleanups.

  We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
  workaround is acked by Russell, the DT/OF bits are acked by Rob, the
  arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
  jump_label by Peter (all CC'd).

  Summary:

   - Support for execute-only page permissions
   - Support for hibernate and DEBUG_PAGEALLOC
   - Support for heterogeneous systems with mismatches cache line sizes
   - Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
   - arm64 PMU perf updates, including cpumasks for heterogeneous systems
   - Set UTS_MACHINE for building rpm packages
   - Yet another head.S tidy-up
   - Some cleanups and refactoring, particularly in the NUMA code
   - Lots of random, non-critical fixes across the board"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
  arm64: tlbflush.h: add __tlbi() macro
  arm64: Kconfig: remove SMP dependence for NUMA
  arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
  arm64: fix dump_backtrace/unwind_frame with NULL tsk
  arm/arm64: arch_timer: Use archdata to indicate vdso suitability
  arm64: arch_timer: Work around QorIQ Erratum A-008585
  arm64: arch_timer: Add device tree binding for A-008585 erratum
  arm64: Correctly bounds check virt_addr_valid
  arm64: migrate exception table users off module.h and onto extable.h
  arm64: pmu: Hoist pmu platform device name
  arm64: pmu: Probe default hw/cache counters
  arm64: pmu: add fallback probe table
  MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
  arm64: Improve kprobes test for atomic sequence
  arm64/kvm: use alternative auto-nop
  arm64: use alternative auto-nop
  arm64: alternative: add auto-nop infrastructure
  arm64: lse: convert lse alternatives NOP padding to use __nops
  arm64: barriers: introduce nops and __nops macros for NOP sequences
  arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
  ...
2016-10-03 08:58:35 -07:00

2268 lines
61 KiB
C

/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/coproc.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Authors: Rusty Russell <rusty@rustcorp.com.au>
* Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bsearch.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_mmu.h>
#include <asm/perf_event.h>
#include <asm/sysreg.h>
#include <trace/events/kvm.h>
#include "sys_regs.h"
#include "trace.h"
/*
* All of this file is extremly similar to the ARM coproc.c, but the
* types are different. My gut feeling is that it should be pretty
* easy to merge, but that would be an ABI breakage -- again. VFP
* would also need to be abstracted.
*
* For AArch32, we only take care of what is being trapped. Anything
* that has to do with init and userspace access has to go via the
* 64bit interface.
*/
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12
/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
u32 ccsidr;
/* Make sure noone else changes CSSELR during this! */
local_irq_disable();
write_sysreg(csselr, csselr_el1);
isb();
ccsidr = read_sysreg(ccsidr_el1);
local_irq_enable();
return ccsidr;
}
/*
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
*/
static bool access_dcsw(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p);
kvm_set_way_flush(vcpu);
return true;
}
/*
* Generic accessor for VM registers. Only called as long as HCR_TVM
* is set. If the guest enables the MMU, we stop trapping the VM
* sys_regs and leave it in complete control of the caches.
*/
static bool access_vm_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
bool was_enabled = vcpu_has_cache_enabled(vcpu);
BUG_ON(!p->is_write);
if (!p->is_aarch32) {
vcpu_sys_reg(vcpu, r->reg) = p->regval;
} else {
if (!p->is_32bit)
vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
}
kvm_toggle_cache(vcpu, was_enabled);
return true;
}
/*
* Trap handler for the GICv3 SGI generation system register.
* Forward the request to the VGIC emulation.
* The cp15_64 code makes sure this automatically works
* for both AArch64 and AArch32 accesses.
*/
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p);
vgic_v3_dispatch_sgi(vcpu, p->regval);
return true;
}
static bool access_gic_sre(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
return true;
}
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
else
return read_zero(vcpu, p);
}
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = (1 << 3);
return true;
}
}
static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
p->regval = read_sysreg(dbgauthstatus_el1);
return true;
}
}
/*
* We want to avoid world-switching all the DBG registers all the
* time:
*
* - If we've touched any debug register, it is likely that we're
* going to touch more of them. It then makes sense to disable the
* traps and start doing the save/restore dance
* - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
* then mandatory to save/restore the registers, as the guest
* depends on them.
*
* For this, we use a DIRTY bit, indicating the guest has modified the
* debug registers, used as follow:
*
* On guest entry:
* - If the dirty bit is set (because we're coming back from trapping),
* disable the traps, save host registers, restore guest registers.
* - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
* set the dirty bit, disable the traps, save host registers,
* restore guest registers.
* - Otherwise, enable the traps
*
* On guest exit:
* - If the dirty bit is set, save guest registers, restore host
* registers and clear the dirty bit. This ensure that the host can
* now use the debug registers.
*/
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
vcpu_sys_reg(vcpu, r->reg) = p->regval;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = vcpu_sys_reg(vcpu, r->reg);
}
trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
return true;
}
/*
* reg_to_dbg/dbg_to_reg
*
* A 32 bit write to a debug register leave top bits alone
* A 32 bit read from a debug register only returns the bottom bits
*
* All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
* hyp.S code switches between host and guest values in future.
*/
static void reg_to_dbg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
u64 *dbg_reg)
{
u64 val = p->regval;
if (p->is_32bit) {
val &= 0xffffffffUL;
val |= ((*dbg_reg >> 32) << 32);
}
*dbg_reg = val;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
}
static void dbg_to_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
u64 *dbg_reg)
{
p->regval = *dbg_reg;
if (p->is_32bit)
p->regval &= 0xffffffffUL;
}
static bool trap_bvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}
static bool trap_bcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_bcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}
static bool trap_wvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write,
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
return true;
}
static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}
static bool trap_wcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (p->is_write)
reg_to_dbg(vcpu, p, dbg_reg);
else
dbg_to_reg(vcpu, p, dbg_reg);
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
const struct kvm_one_reg *reg, void __user *uaddr)
{
__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
return -EFAULT;
return 0;
}
static void reset_wcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
}
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 mpidr;
/*
* Map the vcpu_id into the first three affinity level fields of
* the MPIDR. We limit the number of VCPUs in level 0 due to a
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
* of the GICv3 to be able to address each CPU directly when
* sending IPIs.
*/
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
}
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 pmcr, val;
pmcr = read_sysreg(pmcr_el0);
/*
* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
* except PMCR.E resetting to zero.
*/
val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
| (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
vcpu_sys_reg(vcpu, PMCR_EL0) = val;
}
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
}
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
}
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
}
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
}
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
/* Only update writeable bits of PMCR */
val = vcpu_sys_reg(vcpu, PMCR_EL0);
val &= ~ARMV8_PMU_PMCR_MASK;
val |= p->regval & ARMV8_PMU_PMCR_MASK;
vcpu_sys_reg(vcpu, PMCR_EL0) = val;
kvm_pmu_handle_pmcr(vcpu, val);
} else {
/* PMCR.P & PMCR.C are RAZ */
val = vcpu_sys_reg(vcpu, PMCR_EL0)
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
p->regval = val;
}
return true;
}
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
if (p->is_write)
vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
else
/* return PMSELR.SEL field */
p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
return true;
}
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 pmceid;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
BUG_ON(p->is_write);
if (pmu_access_el0_disabled(vcpu))
return false;
if (!(p->Op2 & 1))
pmceid = read_sysreg(pmceid0_el0);
else
pmceid = read_sysreg(pmceid1_el0);
p->regval = pmceid;
return true;
}
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
u64 pmcr, val;
pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
return false;
return true;
}
static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (r->CRn == 9 && r->CRm == 13) {
if (r->Op2 == 2) {
/* PMXEVCNTR_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
& ARMV8_PMU_COUNTER_MASK;
} else if (r->Op2 == 0) {
/* PMCCNTR_EL0 */
if (pmu_access_cycle_counter_el0_disabled(vcpu))
return false;
idx = ARMV8_PMU_CYCLE_IDX;
} else {
BUG();
}
} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
/* PMEVCNTRn_EL0 */
if (pmu_access_event_counter_el0_disabled(vcpu))
return false;
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
} else {
BUG();
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
if (pmu_access_el0_disabled(vcpu))
return false;
kvm_pmu_set_counter_value(vcpu, idx, p->regval);
} else {
p->regval = kvm_pmu_get_counter_value(vcpu, idx);
}
return true;
}
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 idx, reg;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
/* PMXEVTYPER_EL0 */
idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
reg = PMEVTYPER0_EL0 + idx;
} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
if (idx == ARMV8_PMU_CYCLE_IDX)
reg = PMCCFILTR_EL0;
else
/* PMEVTYPERn_EL0 */
reg = PMEVTYPER0_EL0 + idx;
} else {
BUG();
}
if (!pmu_counter_idx_valid(vcpu, idx))
return false;
if (p->is_write) {
kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
} else {
p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
}
return true;
}
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val, mask;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
mask = kvm_pmu_valid_counter_mask(vcpu);
if (p->is_write) {
val = p->regval & mask;
if (r->Op2 & 0x1) {
/* accessing PMCNTENSET_EL0 */
vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
kvm_pmu_enable_counter(vcpu, val);
} else {
/* accessing PMCNTENCLR_EL0 */
vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
kvm_pmu_disable_counter(vcpu, val);
}
} else {
p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
}
return true;
}
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (!vcpu_mode_priv(vcpu))
return false;
if (p->is_write) {
u64 val = p->regval & mask;
if (r->Op2 & 0x1)
/* accessing PMINTENSET_EL1 */
vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
else
/* accessing PMINTENCLR_EL1 */
vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
} else {
p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
}
return true;
}
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_access_el0_disabled(vcpu))
return false;
if (p->is_write) {
if (r->CRm & 0x2)
/* accessing PMOVSSET_EL0 */
kvm_pmu_overflow_set(vcpu, p->regval & mask);
else
/* accessing PMOVSCLR_EL0 */
vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
} else {
p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
}
return true;
}
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 mask;
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (pmu_write_swinc_el0_disabled(vcpu))
return false;
if (p->is_write) {
mask = kvm_pmu_valid_counter_mask(vcpu);
kvm_pmu_software_increment(vcpu, p->regval & mask);
return true;
}
return false;
}
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (p->is_write) {
if (!vcpu_mode_priv(vcpu))
return false;
vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
& ARMV8_PMU_USERENR_MASK;
} else {
p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
& ARMV8_PMU_USERENR_MASK;
}
return true;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
/* DBGBVRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
/* DBGBCRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
/* DBGWVRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
/* DBGWCRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n) \
/* PMEVCNTRn_EL0 */ \
{ Op0(0b11), Op1(0b011), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n) \
/* PMEVTYPERn_EL0 */ \
{ Op0(0b11), Op1(0b011), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
/*
* Architected system registers.
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
*
* Debug handling: We do trap most, if not all debug related system
* registers. The implementation is good enough to ensure that a guest
* can use these with minimal performance degradation. The drawback is
* that we don't implement any of the external debug, none of the
* OSlock protocol. This should be revisited if we ever encounter a
* more demanding guest...
*/
static const struct sys_reg_desc sys_reg_descs[] = {
/* DC ISW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
access_dcsw },
/* DC CSW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
access_dcsw },
/* DC CISW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
access_dcsw },
DBG_BCR_BVR_WCR_WVR_EL1(0),
DBG_BCR_BVR_WCR_WVR_EL1(1),
/* MDCCINT_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
/* MDSCR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
trap_debug_regs, reset_val, MDSCR_EL1, 0 },
DBG_BCR_BVR_WCR_WVR_EL1(2),
DBG_BCR_BVR_WCR_WVR_EL1(3),
DBG_BCR_BVR_WCR_WVR_EL1(4),
DBG_BCR_BVR_WCR_WVR_EL1(5),
DBG_BCR_BVR_WCR_WVR_EL1(6),
DBG_BCR_BVR_WCR_WVR_EL1(7),
DBG_BCR_BVR_WCR_WVR_EL1(8),
DBG_BCR_BVR_WCR_WVR_EL1(9),
DBG_BCR_BVR_WCR_WVR_EL1(10),
DBG_BCR_BVR_WCR_WVR_EL1(11),
DBG_BCR_BVR_WCR_WVR_EL1(12),
DBG_BCR_BVR_WCR_WVR_EL1(13),
DBG_BCR_BVR_WCR_WVR_EL1(14),
DBG_BCR_BVR_WCR_WVR_EL1(15),
/* MDRAR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
trap_raz_wi },
/* OSLAR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
trap_raz_wi },
/* OSLSR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
trap_oslsr_el1 },
/* OSDLR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
trap_raz_wi },
/* DBGPRCR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
trap_raz_wi },
/* DBGCLAIMSET_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
trap_raz_wi },
/* DBGCLAIMCLR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
trap_raz_wi },
/* DBGAUTHSTATUS_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
trap_dbgauthstatus_el1 },
/* MDCCSR_EL1 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
trap_raz_wi },
/* DBGDTR_EL0 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
trap_raz_wi },
/* DBGDTR[TR]X_EL0 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
trap_raz_wi },
/* DBGVCR32_EL2 */
{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
NULL, reset_val, DBGVCR32_EL2, 0 },
/* MPIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
NULL, reset_mpidr, MPIDR_EL1 },
/* SCTLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
/* CPACR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
NULL, reset_val, CPACR_EL1, 0 },
/* TTBR0_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_unknown, TTBR0_EL1 },
/* TTBR1_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
access_vm_reg, reset_unknown, TTBR1_EL1 },
/* TCR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
access_vm_reg, reset_val, TCR_EL1, 0 },
/* AFSR0_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
access_vm_reg, reset_unknown, AFSR0_EL1 },
/* AFSR1_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
access_vm_reg, reset_unknown, AFSR1_EL1 },
/* ESR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
access_vm_reg, reset_unknown, ESR_EL1 },
/* FAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_unknown, FAR_EL1 },
/* PAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
NULL, reset_unknown, PAR_EL1 },
/* PMINTENSET_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
access_pminten, reset_unknown, PMINTENSET_EL1 },
/* PMINTENCLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
access_pminten, NULL, PMINTENSET_EL1 },
/* MAIR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
access_vm_reg, reset_unknown, MAIR_EL1 },
/* AMAIR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
access_vm_reg, reset_amair_el1, AMAIR_EL1 },
/* VBAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
NULL, reset_val, VBAR_EL1, 0 },
/* ICC_SGI1R_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
access_gic_sgi },
/* ICC_SRE_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
access_gic_sre },
/* CONTEXTIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
/* TPIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
NULL, reset_unknown, TPIDR_EL1 },
/* CNTKCTL_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
NULL, reset_val, CNTKCTL_EL1, 0},
/* CSSELR_EL1 */
{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
NULL, reset_unknown, CSSELR_EL1 },
/* PMCR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
access_pmcr, reset_pmcr, },
/* PMCNTENSET_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
/* PMCNTENCLR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
access_pmcnten, NULL, PMCNTENSET_EL0 },
/* PMOVSCLR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
access_pmovs, NULL, PMOVSSET_EL0 },
/* PMSWINC_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
access_pmswinc, reset_unknown, PMSWINC_EL0 },
/* PMSELR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
access_pmselr, reset_unknown, PMSELR_EL0 },
/* PMCEID0_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
access_pmceid },
/* PMCEID1_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
access_pmceid },
/* PMCCNTR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
/* PMXEVTYPER_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
access_pmu_evtyper },
/* PMXEVCNTR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
access_pmu_evcntr },
/* PMUSERENR_EL0
* This register resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
/* PMOVSSET_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
access_pmovs, reset_unknown, PMOVSSET_EL0 },
/* TPIDR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
NULL, reset_unknown, TPIDR_EL0 },
/* TPIDRRO_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
NULL, reset_unknown, TPIDRRO_EL0 },
/* PMEVCNTRn_EL0 */
PMU_PMEVCNTR_EL0(0),
PMU_PMEVCNTR_EL0(1),
PMU_PMEVCNTR_EL0(2),
PMU_PMEVCNTR_EL0(3),
PMU_PMEVCNTR_EL0(4),
PMU_PMEVCNTR_EL0(5),
PMU_PMEVCNTR_EL0(6),
PMU_PMEVCNTR_EL0(7),
PMU_PMEVCNTR_EL0(8),
PMU_PMEVCNTR_EL0(9),
PMU_PMEVCNTR_EL0(10),
PMU_PMEVCNTR_EL0(11),
PMU_PMEVCNTR_EL0(12),
PMU_PMEVCNTR_EL0(13),
PMU_PMEVCNTR_EL0(14),
PMU_PMEVCNTR_EL0(15),
PMU_PMEVCNTR_EL0(16),
PMU_PMEVCNTR_EL0(17),
PMU_PMEVCNTR_EL0(18),
PMU_PMEVCNTR_EL0(19),
PMU_PMEVCNTR_EL0(20),
PMU_PMEVCNTR_EL0(21),
PMU_PMEVCNTR_EL0(22),
PMU_PMEVCNTR_EL0(23),
PMU_PMEVCNTR_EL0(24),
PMU_PMEVCNTR_EL0(25),
PMU_PMEVCNTR_EL0(26),
PMU_PMEVCNTR_EL0(27),
PMU_PMEVCNTR_EL0(28),
PMU_PMEVCNTR_EL0(29),
PMU_PMEVCNTR_EL0(30),
/* PMEVTYPERn_EL0 */
PMU_PMEVTYPER_EL0(0),
PMU_PMEVTYPER_EL0(1),
PMU_PMEVTYPER_EL0(2),
PMU_PMEVTYPER_EL0(3),
PMU_PMEVTYPER_EL0(4),
PMU_PMEVTYPER_EL0(5),
PMU_PMEVTYPER_EL0(6),
PMU_PMEVTYPER_EL0(7),
PMU_PMEVTYPER_EL0(8),
PMU_PMEVTYPER_EL0(9),
PMU_PMEVTYPER_EL0(10),
PMU_PMEVTYPER_EL0(11),
PMU_PMEVTYPER_EL0(12),
PMU_PMEVTYPER_EL0(13),
PMU_PMEVTYPER_EL0(14),
PMU_PMEVTYPER_EL0(15),
PMU_PMEVTYPER_EL0(16),
PMU_PMEVTYPER_EL0(17),
PMU_PMEVTYPER_EL0(18),
PMU_PMEVTYPER_EL0(19),
PMU_PMEVTYPER_EL0(20),
PMU_PMEVTYPER_EL0(21),
PMU_PMEVTYPER_EL0(22),
PMU_PMEVTYPER_EL0(23),
PMU_PMEVTYPER_EL0(24),
PMU_PMEVTYPER_EL0(25),
PMU_PMEVTYPER_EL0(26),
PMU_PMEVTYPER_EL0(27),
PMU_PMEVTYPER_EL0(28),
PMU_PMEVTYPER_EL0(29),
PMU_PMEVTYPER_EL0(30),
/* PMCCFILTR_EL0
* This register resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
/* DACR32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
NULL, reset_unknown, DACR32_EL2 },
/* IFSR32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
NULL, reset_unknown, IFSR32_EL2 },
/* FPEXC32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
NULL, reset_val, FPEXC32_EL2, 0x70 },
};
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
return ignore_write(vcpu, p);
} else {
u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
(((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
(((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
| (6 << 16) | (el3 << 14) | (el3 << 12));
return true;
}
}
static bool trap_debug32(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write) {
vcpu_cp14(vcpu, r->reg) = p->regval;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = vcpu_cp14(vcpu, r->reg);
}
return true;
}
/* AArch32 debug register mappings
*
* AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
* AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
*
* All control registers and watchpoint value registers are mapped to
* the lower 32 bits of their AArch64 equivalents. We share the trap
* handlers with the above AArch64 code which checks what mode the
* system is in.
*/
static bool trap_xvr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *rd)
{
u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
if (p->is_write) {
u64 val = *dbg_reg;
val &= 0xffffffffUL;
val |= p->regval << 32;
*dbg_reg = val;
vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
} else {
p->regval = *dbg_reg >> 32;
}
trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
return true;
}
#define DBG_BCR_BVR_WCR_WVR(n) \
/* DBGBVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
/* DBGBCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
/* DBGWVRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
/* DBGWCRn */ \
{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
#define DBGBXVR(n) \
{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
/*
* Trapped cp14 registers. We generally ignore most of the external
* debug, on the principle that they don't really make sense to a
* guest. Revisit this one day, would this principle change.
*/
static const struct sys_reg_desc cp14_regs[] = {
/* DBGIDR */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
/* DBGDTRRXext */
{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(0),
/* DBGDSCRint */
{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(1),
/* DBGDCCINT */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
/* DBGDSCRext */
{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
DBG_BCR_BVR_WCR_WVR(2),
/* DBGDTR[RT]Xint */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
/* DBGDTR[RT]Xext */
{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(3),
DBG_BCR_BVR_WCR_WVR(4),
DBG_BCR_BVR_WCR_WVR(5),
/* DBGWFAR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
/* DBGOSECCR */
{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
DBG_BCR_BVR_WCR_WVR(6),
/* DBGVCR */
{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
DBG_BCR_BVR_WCR_WVR(7),
DBG_BCR_BVR_WCR_WVR(8),
DBG_BCR_BVR_WCR_WVR(9),
DBG_BCR_BVR_WCR_WVR(10),
DBG_BCR_BVR_WCR_WVR(11),
DBG_BCR_BVR_WCR_WVR(12),
DBG_BCR_BVR_WCR_WVR(13),
DBG_BCR_BVR_WCR_WVR(14),
DBG_BCR_BVR_WCR_WVR(15),
/* DBGDRAR (32bit) */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
DBGBXVR(0),
/* DBGOSLAR */
{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
DBGBXVR(1),
/* DBGOSLSR */
{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
DBGBXVR(2),
DBGBXVR(3),
/* DBGOSDLR */
{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
DBGBXVR(4),
/* DBGPRCR */
{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
DBGBXVR(5),
DBGBXVR(6),
DBGBXVR(7),
DBGBXVR(8),
DBGBXVR(9),
DBGBXVR(10),
DBGBXVR(11),
DBGBXVR(12),
DBGBXVR(13),
DBGBXVR(14),
DBGBXVR(15),
/* DBGDSAR (32bit) */
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
/* DBGDEVID2 */
{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
/* DBGDEVID1 */
{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
/* DBGDEVID */
{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
/* DBGCLAIMSET */
{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
/* DBGCLAIMCLR */
{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
/* DBGAUTHSTATUS */
{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
};
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
/* DBGDRAR (64bit) */
{ Op1( 0), CRm( 1), .access = trap_raz_wi },
/* DBGDSAR (64bit) */
{ Op1( 0), CRm( 2), .access = trap_raz_wi },
};
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n) \
/* PMEVCNTRn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evcntr }
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n) \
/* PMEVTYPERn */ \
{ Op1(0), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
access_pmu_evtyper }
/*
* Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
* depending on the way they are accessed (as a 32bit or a 64bit
* register).
*/
static const struct sys_reg_desc cp15_regs[] = {
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
/*
* DC{C,I,CI}SW operations:
*/
{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
/* PMU */
{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
/* ICC_SRE */
{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
/* PMEVCNTRn */
PMU_PMEVCNTR(0),
PMU_PMEVCNTR(1),
PMU_PMEVCNTR(2),
PMU_PMEVCNTR(3),
PMU_PMEVCNTR(4),
PMU_PMEVCNTR(5),
PMU_PMEVCNTR(6),
PMU_PMEVCNTR(7),
PMU_PMEVCNTR(8),
PMU_PMEVCNTR(9),
PMU_PMEVCNTR(10),
PMU_PMEVCNTR(11),
PMU_PMEVCNTR(12),
PMU_PMEVCNTR(13),
PMU_PMEVCNTR(14),
PMU_PMEVCNTR(15),
PMU_PMEVCNTR(16),
PMU_PMEVCNTR(17),
PMU_PMEVCNTR(18),
PMU_PMEVCNTR(19),
PMU_PMEVCNTR(20),
PMU_PMEVCNTR(21),
PMU_PMEVCNTR(22),
PMU_PMEVCNTR(23),
PMU_PMEVCNTR(24),
PMU_PMEVCNTR(25),
PMU_PMEVCNTR(26),
PMU_PMEVCNTR(27),
PMU_PMEVCNTR(28),
PMU_PMEVCNTR(29),
PMU_PMEVCNTR(30),
/* PMEVTYPERn */
PMU_PMEVTYPER(0),
PMU_PMEVTYPER(1),
PMU_PMEVTYPER(2),
PMU_PMEVTYPER(3),
PMU_PMEVTYPER(4),
PMU_PMEVTYPER(5),
PMU_PMEVTYPER(6),
PMU_PMEVTYPER(7),
PMU_PMEVTYPER(8),
PMU_PMEVTYPER(9),
PMU_PMEVTYPER(10),
PMU_PMEVTYPER(11),
PMU_PMEVTYPER(12),
PMU_PMEVTYPER(13),
PMU_PMEVTYPER(14),
PMU_PMEVTYPER(15),
PMU_PMEVTYPER(16),
PMU_PMEVTYPER(17),
PMU_PMEVTYPER(18),
PMU_PMEVTYPER(19),
PMU_PMEVTYPER(20),
PMU_PMEVTYPER(21),
PMU_PMEVTYPER(22),
PMU_PMEVTYPER(23),
PMU_PMEVTYPER(24),
PMU_PMEVTYPER(25),
PMU_PMEVTYPER(26),
PMU_PMEVTYPER(27),
PMU_PMEVTYPER(28),
PMU_PMEVTYPER(29),
PMU_PMEVTYPER(30),
/* PMCCFILTR */
{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
};
static const struct sys_reg_desc cp15_64_regs[] = {
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
};
/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table)
{
target_tables[target] = table;
}
/* Get specific register table for this target. */
static const struct sys_reg_desc *get_target_table(unsigned target,
bool mode_is_64,
size_t *num)
{
struct kvm_sys_reg_target_table *table;
table = target_tables[target];
if (mode_is_64) {
*num = table->table64.num;
return table->table64.table;
} else {
*num = table->table32.num;
return table->table32.table;
}
}
#define reg_to_match_value(x) \
({ \
unsigned long val; \
val = (x)->Op0 << 14; \
val |= (x)->Op1 << 11; \
val |= (x)->CRn << 7; \
val |= (x)->CRm << 3; \
val |= (x)->Op2; \
val; \
})
static int match_sys_reg(const void *key, const void *elt)
{
const unsigned long pval = (unsigned long)key;
const struct sys_reg_desc *r = elt;
return pval - reg_to_match_value(r);
}
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
const struct sys_reg_desc table[],
unsigned int num)
{
unsigned long pval = reg_to_match_value(params);
return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
}
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
kvm_inject_undefined(vcpu);
return 1;
}
/*
* emulate_cp -- tries to match a sys_reg access in a handling table, and
* call the corresponding trap handler.
*
* @params: pointer to the descriptor of the access
* @table: array of trap descriptors
* @num: size of the trap descriptor array
*
* Return 0 if the access has been handled, and -1 if not.
*/
static int emulate_cp(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *table,
size_t num)
{
const struct sys_reg_desc *r;
if (!table)
return -1; /* Not handled */
r = find_reg(params, table, num);
if (r) {
/*
* Not having an accessor means that we have
* configured a trap that we don't know how to
* handle. This certainly qualifies as a gross bug
* that should be fixed right away.
*/
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
/* Handled */
return 0;
}
}
/* Not handled */
return -1;
}
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
int cp = -1;
switch(hsr_ec) {
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
cp = 15;
break;
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_64:
cp = 14;
break;
default:
WARN_ON(1);
}
kvm_err("Unsupported guest CP%d access at: %08lx\n",
cp, *vcpu_pc(vcpu));
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
}
/**
* kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = (hsr >> 5) & 0xf;
int Rt2 = (hsr >> 10) & 0xf;
params.is_aarch32 = true;
params.is_32bit = false;
params.CRm = (hsr >> 1) & 0xf;
params.is_write = ((hsr & 1) == 0);
params.Op0 = 0;
params.Op1 = (hsr >> 16) & 0xf;
params.Op2 = 0;
params.CRn = 0;
/*
* Make a 64-bit value out of Rt and Rt2. As we use the same trap
* backends between AArch32 and AArch64, we get away with it.
*/
if (params.is_write) {
params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
}
if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
goto out;
if (!emulate_cp(vcpu, &params, global, nr_global))
goto out;
unhandled_cp_access(vcpu, &params);
out:
/* Split up the value between registers for the read side */
if (!params.is_write) {
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
}
return 1;
}
/**
* kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
int Rt = (hsr >> 5) & 0xf;
params.is_aarch32 = true;
params.is_32bit = true;
params.CRm = (hsr >> 1) & 0xf;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = ((hsr & 1) == 0);
params.CRn = (hsr >> 10) & 0xf;
params.Op0 = 0;
params.Op1 = (hsr >> 14) & 0x7;
params.Op2 = (hsr >> 17) & 0x7;
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_64(vcpu,
cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
target_specific, num);
}
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_32(vcpu,
cp15_regs, ARRAY_SIZE(cp15_regs),
target_specific, num);
}
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
return kvm_handle_cp_64(vcpu,
cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
NULL, 0);
}
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
return kvm_handle_cp_32(vcpu,
cp14_regs, ARRAY_SIZE(cp14_regs),
NULL, 0);
}
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
size_t num;
const struct sys_reg_desc *table, *r;
table = get_target_table(vcpu->arch.target, true, &num);
/* Search target-specific then generic table. */
r = find_reg(params, table, num);
if (!r)
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (likely(r)) {
/*
* Not having an accessor means that we have
* configured a trap that we don't know how to
* handle. This certainly qualifies as a gross bug
* that should be fixed right away.
*/
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
return 1;
}
/* If access function fails, it should complain. */
} else {
kvm_err("Unsupported guest sys_reg access at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(params);
}
kvm_inject_undefined(vcpu);
return 1;
}
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *table, size_t num)
{
unsigned long i;
for (i = 0; i < num; i++)
if (table[i].reset)
table[i].reset(vcpu, &table[i]);
}
/**
* kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct sys_reg_params params;
unsigned long esr = kvm_vcpu_get_hsr(vcpu);
int Rt = (esr >> 5) & 0x1f;
int ret;
trace_kvm_handle_sys_reg(esr);
params.is_aarch32 = false;
params.is_32bit = false;
params.Op0 = (esr >> 20) & 3;
params.Op1 = (esr >> 14) & 0x7;
params.CRn = (esr >> 10) & 0xf;
params.CRm = (esr >> 1) & 0xf;
params.Op2 = (esr >> 17) & 0x7;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = !(esr & 1);
ret = emulate_sys_reg(vcpu, &params);
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return ret;
}
/******************************************************************************
* Userspace API
*****************************************************************************/
static bool index_to_params(u64 id, struct sys_reg_params *params)
{
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U64:
/* Any unused index bits means it's not valid. */
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
| KVM_REG_ARM_COPROC_MASK
| KVM_REG_ARM64_SYSREG_OP0_MASK
| KVM_REG_ARM64_SYSREG_OP1_MASK
| KVM_REG_ARM64_SYSREG_CRN_MASK
| KVM_REG_ARM64_SYSREG_CRM_MASK
| KVM_REG_ARM64_SYSREG_OP2_MASK))
return false;
params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
>> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
>> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
>> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
>> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
>> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
return true;
default:
return false;
}
}
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
u64 id)
{
size_t num;
const struct sys_reg_desc *table, *r;
struct sys_reg_params params;
/* We only do sys_reg for now. */
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
return NULL;
if (!index_to_params(id, &params))
return NULL;
table = get_target_table(vcpu->arch.target, true, &num);
r = find_reg(&params, table, num);
if (!r)
r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
/* Not saved in the sys_reg array? */
if (r && !r->reg)
r = NULL;
return r;
}
/*
* These are the invariant sys_reg registers: we let the guest see the
* host versions of these, so they're part of the guest state.
*
* A future CPU may provide a mechanism to present different values to
* the guest, or a future kvm may trap them.
*/
#define FUNCTION_INVARIANT(reg) \
static void get_##reg(struct kvm_vcpu *v, \
const struct sys_reg_desc *r) \
{ \
((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
}
FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(id_pfr0_el1)
FUNCTION_INVARIANT(id_pfr1_el1)
FUNCTION_INVARIANT(id_dfr0_el1)
FUNCTION_INVARIANT(id_afr0_el1)
FUNCTION_INVARIANT(id_mmfr0_el1)
FUNCTION_INVARIANT(id_mmfr1_el1)
FUNCTION_INVARIANT(id_mmfr2_el1)
FUNCTION_INVARIANT(id_mmfr3_el1)
FUNCTION_INVARIANT(id_isar0_el1)
FUNCTION_INVARIANT(id_isar1_el1)
FUNCTION_INVARIANT(id_isar2_el1)
FUNCTION_INVARIANT(id_isar3_el1)
FUNCTION_INVARIANT(id_isar4_el1)
FUNCTION_INVARIANT(id_isar5_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
NULL, get_midr_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
NULL, get_revidr_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
NULL, get_id_pfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
NULL, get_id_pfr1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
NULL, get_id_dfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
NULL, get_id_afr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
NULL, get_id_mmfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
NULL, get_id_mmfr1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
NULL, get_id_mmfr2_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
NULL, get_id_mmfr3_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
NULL, get_id_isar0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
NULL, get_id_isar1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
NULL, get_id_isar2_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
NULL, get_id_isar3_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
NULL, get_id_isar4_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
NULL, get_id_isar5_el1 },
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
NULL, get_clidr_el1 },
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
NULL, get_aidr_el1 },
{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
NULL, get_ctr_el0 },
};
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
{
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
{
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
if (!index_to_params(id, &params))
return -ENOENT;
r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
return reg_to_user(uaddr, &r->val, id);
}
static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
struct sys_reg_params params;
const struct sys_reg_desc *r;
int err;
u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
if (!index_to_params(id, &params))
return -ENOENT;
r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
if (!r)
return -ENOENT;
err = reg_from_user(&val, uaddr, id);
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (r->val != val)
return -EINVAL;
return 0;
}
static bool is_valid_cache(u32 val)
{
u32 level, ctype;
if (val >= CSSELR_MAX)
return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1);
ctype = (cache_levels >> (level * 3)) & 7;
switch (ctype) {
case 0: /* No cache */
return false;
case 1: /* Instruction cache only */
return (val & 1);
case 2: /* Data cache only */
case 4: /* Unified cache */
return !(val & 1);
case 3: /* Separate instruction and data caches */
return true;
default: /* Reserved: we can't know instruction or data. */
return false;
}
}
static int demux_c15_get(u64 id, void __user *uaddr)
{
u32 val;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
return put_user(get_ccsidr(val), uval);
default:
return -ENOENT;
}
}
static int demux_c15_set(u64 id, void __user *uaddr)
{
u32 val, newval;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
if (get_user(newval, uval))
return -EFAULT;
/* This is also invariant: you can't change it. */
if (newval != get_ccsidr(val))
return -EINVAL;
return 0;
default:
return -ENOENT;
}
}
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_get(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return get_invariant_sys_reg(reg->id, uaddr);
if (r->get_user)
return (r->get_user)(vcpu, r, reg, uaddr);
return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
}
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct sys_reg_desc *r;
void __user *uaddr = (void __user *)(unsigned long)reg->addr;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_set(reg->id, uaddr);
if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
return -ENOENT;
r = index_to_sys_reg_desc(vcpu, reg->id);
if (!r)
return set_invariant_sys_reg(reg->id, uaddr);
if (r->set_user)
return (r->set_user)(vcpu, r, reg, uaddr);
return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}
static unsigned int num_demux_regs(void)
{
unsigned int i, count = 0;
for (i = 0; i < CSSELR_MAX; i++)
if (is_valid_cache(i))
count++;
return count;
}
static int write_demux_regids(u64 __user *uindices)
{
u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
unsigned int i;
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
for (i = 0; i < CSSELR_MAX; i++) {
if (!is_valid_cache(i))
continue;
if (put_user(val | i, uindices))
return -EFAULT;
uindices++;
}
return 0;
}
static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
KVM_REG_ARM64_SYSREG |
(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}
static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
if (!*uind)
return true;
if (put_user(sys_reg_to_index(reg), *uind))
return false;
(*uind)++;
return true;
}
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
const struct sys_reg_desc *i1, *i2, *end1, *end2;
unsigned int total = 0;
size_t num;
/* We check for duplicates here, to allow arch-specific overrides. */
i1 = get_target_table(vcpu->arch.target, true, &num);
end1 = i1 + num;
i2 = sys_reg_descs;
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
BUG_ON(i1 == end1 || i2 == end2);
/* Walk carefully, as both tables may refer to the same register. */
while (i1 || i2) {
int cmp = cmp_sys_reg(i1, i2);
/* target-specific overrides generic entry. */
if (cmp <= 0) {
/* Ignore registers we trap but don't save. */
if (i1->reg) {
if (!copy_reg_to_user(i1, &uind))
return -EFAULT;
total++;
}
} else {
/* Ignore registers we trap but don't save. */
if (i2->reg) {
if (!copy_reg_to_user(i2, &uind))
return -EFAULT;
total++;
}
}
if (cmp <= 0 && ++i1 == end1)
i1 = NULL;
if (cmp >= 0 && ++i2 == end2)
i2 = NULL;
}
return total;
}
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
return ARRAY_SIZE(invariant_sys_regs)
+ num_demux_regs()
+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
unsigned int i;
int err;
/* Then give them all the invariant registers' indices. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
return -EFAULT;
uindices++;
}
err = walk_sys_regs(vcpu, uindices);
if (err < 0)
return err;
uindices += err;
return write_demux_regids(uindices);
}
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
unsigned int i;
for (i = 1; i < n; i++) {
if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
void kvm_sys_reg_table_init(void)
{
unsigned int i;
struct sys_reg_desc clidr;
/* Make sure tables are unique and in order. */
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
/*
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
*
* If software reads the Cache Type fields from Ctype1
* upwards, once it has seen a value of 0b000, no caches
* exist at further-out levels of the hierarchy. So, for
* example, if Ctype3 is the first Cache Type field with a
* value of 0b000, the values of Ctype4 to Ctype7 must be
* ignored.
*/
get_clidr_el1(NULL, &clidr); /* Ugly... */
cache_levels = clidr.val;
for (i = 0; i < 7; i++)
if (((cache_levels >> (i*3)) & 7) == 0)
break;
/* Clear all higher bits. */
cache_levels &= (1 << (i*3))-1;
}
/**
* kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct sys_reg_desc *table;
/* Catch someone adding a register without putting in reset entry. */
memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
/* Generic chip reset first (so target could override). */
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
table = get_target_table(vcpu->arch.target, true, &num);
reset_sys_reg_descs(vcpu, table, num);
for (num = 1; num < NR_SYS_REGS; num++)
if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
panic("Didn't reset vcpu_sys_reg(%zi)", num);
}