The patch introduces flag EEH_DEV_SYSFS to keep track that the sysfs entries for the corresponding EEH device (then PCI device) has been added or removed, in order to avoid race condition. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			716 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			716 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The file intends to implement the platform dependent EEH operations on pseries.
 | |
|  * Actually, the pseries platform is built based on RTAS heavily. That means the
 | |
|  * pseries platform dependent EEH operations will be built on RTAS calls. The functions
 | |
|  * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
 | |
|  * been done.
 | |
|  *
 | |
|  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
 | |
|  * Copyright IBM Corporation 2001, 2005, 2006
 | |
|  * Copyright Dave Engebretsen & Todd Inglett 2001
 | |
|  * Copyright Linas Vepstas 2005, 2006
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| #include <asm/eeh.h>
 | |
| #include <asm/eeh_event.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/ppc-pci.h>
 | |
| #include <asm/rtas.h>
 | |
| 
 | |
| /* RTAS tokens */
 | |
| static int ibm_set_eeh_option;
 | |
| static int ibm_set_slot_reset;
 | |
| static int ibm_read_slot_reset_state;
 | |
| static int ibm_read_slot_reset_state2;
 | |
| static int ibm_slot_error_detail;
 | |
| static int ibm_get_config_addr_info;
 | |
| static int ibm_get_config_addr_info2;
 | |
| static int ibm_configure_bridge;
 | |
| static int ibm_configure_pe;
 | |
| 
 | |
| /*
 | |
|  * Buffer for reporting slot-error-detail rtas calls. Its here
 | |
|  * in BSS, and not dynamically alloced, so that it ends up in
 | |
|  * RMO where RTAS can access it.
 | |
|  */
 | |
| static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
 | |
| static DEFINE_SPINLOCK(slot_errbuf_lock);
 | |
| static int eeh_error_buf_size;
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_init - EEH platform dependent initialization
 | |
|  *
 | |
|  * EEH platform dependent initialization on pseries.
 | |
|  */
 | |
| static int pseries_eeh_init(void)
 | |
| {
 | |
| 	/* figure out EEH RTAS function call tokens */
 | |
| 	ibm_set_eeh_option		= rtas_token("ibm,set-eeh-option");
 | |
| 	ibm_set_slot_reset		= rtas_token("ibm,set-slot-reset");
 | |
| 	ibm_read_slot_reset_state2	= rtas_token("ibm,read-slot-reset-state2");
 | |
| 	ibm_read_slot_reset_state	= rtas_token("ibm,read-slot-reset-state");
 | |
| 	ibm_slot_error_detail		= rtas_token("ibm,slot-error-detail");
 | |
| 	ibm_get_config_addr_info2	= rtas_token("ibm,get-config-addr-info2");
 | |
| 	ibm_get_config_addr_info	= rtas_token("ibm,get-config-addr-info");
 | |
| 	ibm_configure_pe		= rtas_token("ibm,configure-pe");
 | |
| 	ibm_configure_bridge		= rtas_token("ibm,configure-bridge");
 | |
| 
 | |
| 	/*
 | |
| 	 * Necessary sanity check. We needn't check "get-config-addr-info"
 | |
| 	 * and its variant since the old firmware probably support address
 | |
| 	 * of domain/bus/slot/function for EEH RTAS operations.
 | |
| 	 */
 | |
| 	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
 | |
| 		pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	} else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
 | |
| 		pr_warning("%s: RTAS service <ibm,set-slot-reset> invalid\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	} else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
 | |
| 		   ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
 | |
| 		pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
 | |
| 			"<ibm,read-slot-reset-state> invalid\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	} else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
 | |
| 		pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	} else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
 | |
| 		   ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
 | |
| 		pr_warning("%s: RTAS service <ibm,configure-pe> and "
 | |
| 			"<ibm,configure-bridge> invalid\n",
 | |
| 			__func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize error log lock and size */
 | |
| 	spin_lock_init(&slot_errbuf_lock);
 | |
| 	eeh_error_buf_size = rtas_token("rtas-error-log-max");
 | |
| 	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
 | |
| 		pr_warning("%s: unknown EEH error log size\n",
 | |
| 			__func__);
 | |
| 		eeh_error_buf_size = 1024;
 | |
| 	} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
 | |
| 		pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
 | |
| 			__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
 | |
| 		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
 | |
| 	}
 | |
| 
 | |
| 	/* Set EEH probe mode */
 | |
| 	eeh_probe_mode_set(EEH_PROBE_MODE_DEVTREE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pseries_eeh_cap_start(struct device_node *dn)
 | |
| {
 | |
| 	struct pci_dn *pdn = PCI_DN(dn);
 | |
| 	u32 status;
 | |
| 
 | |
| 	if (!pdn)
 | |
| 		return 0;
 | |
| 
 | |
| 	rtas_read_config(pdn, PCI_STATUS, 2, &status);
 | |
| 	if (!(status & PCI_STATUS_CAP_LIST))
 | |
| 		return 0;
 | |
| 
 | |
| 	return PCI_CAPABILITY_LIST;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int pseries_eeh_find_cap(struct device_node *dn, int cap)
 | |
| {
 | |
| 	struct pci_dn *pdn = PCI_DN(dn);
 | |
| 	int pos = pseries_eeh_cap_start(dn);
 | |
| 	int cnt = 48;	/* Maximal number of capabilities */
 | |
| 	u32 id;
 | |
| 
 | |
| 	if (!pos)
 | |
| 		return 0;
 | |
| 
 | |
|         while (cnt--) {
 | |
| 		rtas_read_config(pdn, pos, 1, &pos);
 | |
| 		if (pos < 0x40)
 | |
| 			break;
 | |
| 		pos &= ~3;
 | |
| 		rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
 | |
| 		if (id == 0xff)
 | |
| 			break;
 | |
| 		if (id == cap)
 | |
| 			return pos;
 | |
| 		pos += PCI_CAP_LIST_NEXT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_of_probe - EEH probe on the given device
 | |
|  * @dn: OF node
 | |
|  * @flag: Unused
 | |
|  *
 | |
|  * When EEH module is installed during system boot, all PCI devices
 | |
|  * are checked one by one to see if it supports EEH. The function
 | |
|  * is introduced for the purpose.
 | |
|  */
 | |
| static void *pseries_eeh_of_probe(struct device_node *dn, void *flag)
 | |
| {
 | |
| 	struct eeh_dev *edev;
 | |
| 	struct eeh_pe pe;
 | |
| 	struct pci_dn *pdn = PCI_DN(dn);
 | |
| 	const u32 *class_code, *vendor_id, *device_id;
 | |
| 	const u32 *regs;
 | |
| 	u32 pcie_flags;
 | |
| 	int enable = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Retrieve OF node and eeh device */
 | |
| 	edev = of_node_to_eeh_dev(dn);
 | |
| 	if (edev->pe || !of_device_is_available(dn))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Retrieve class/vendor/device IDs */
 | |
| 	class_code = of_get_property(dn, "class-code", NULL);
 | |
| 	vendor_id  = of_get_property(dn, "vendor-id", NULL);
 | |
| 	device_id  = of_get_property(dn, "device-id", NULL);
 | |
| 
 | |
| 	/* Skip for bad OF node or PCI-ISA bridge */
 | |
| 	if (!class_code || !vendor_id || !device_id)
 | |
| 		return NULL;
 | |
| 	if (dn->type && !strcmp(dn->type, "isa"))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update class code and mode of eeh device. We need
 | |
| 	 * correctly reflects that current device is root port
 | |
| 	 * or PCIe switch downstream port.
 | |
| 	 */
 | |
| 	edev->class_code = *class_code;
 | |
| 	edev->pcie_cap = pseries_eeh_find_cap(dn, PCI_CAP_ID_EXP);
 | |
| 	edev->mode &= 0xFFFFFF00;
 | |
| 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
 | |
| 		edev->mode |= EEH_DEV_BRIDGE;
 | |
| 		if (edev->pcie_cap) {
 | |
| 			rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
 | |
| 					 2, &pcie_flags);
 | |
| 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
 | |
| 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
 | |
| 				edev->mode |= EEH_DEV_ROOT_PORT;
 | |
| 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
 | |
| 				edev->mode |= EEH_DEV_DS_PORT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve the device address */
 | |
| 	regs = of_get_property(dn, "reg", NULL);
 | |
| 	if (!regs) {
 | |
| 		pr_warning("%s: OF node property %s::reg not found\n",
 | |
| 			__func__, dn->full_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the fake PE */
 | |
| 	memset(&pe, 0, sizeof(struct eeh_pe));
 | |
| 	pe.phb = edev->phb;
 | |
| 	pe.config_addr = regs[0];
 | |
| 
 | |
| 	/* Enable EEH on the device */
 | |
| 	ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
 | |
| 	if (!ret) {
 | |
| 		edev->config_addr = regs[0];
 | |
| 		/* Retrieve PE address */
 | |
| 		edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
 | |
| 		pe.addr = edev->pe_config_addr;
 | |
| 
 | |
| 		/* Some older systems (Power4) allow the ibm,set-eeh-option
 | |
| 		 * call to succeed even on nodes where EEH is not supported.
 | |
| 		 * Verify support explicitly.
 | |
| 		 */
 | |
| 		ret = eeh_ops->get_state(&pe, NULL);
 | |
| 		if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
 | |
| 			enable = 1;
 | |
| 
 | |
| 		if (enable) {
 | |
| 			eeh_subsystem_enabled = 1;
 | |
| 			eeh_add_to_parent_pe(edev);
 | |
| 
 | |
| 			pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n",
 | |
| 				__func__, dn->full_name, pe.phb->global_number,
 | |
| 				pe.addr, pe.config_addr);
 | |
| 		} else if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
 | |
| 			   (of_node_to_eeh_dev(dn->parent))->pe) {
 | |
| 			/* This device doesn't support EEH, but it may have an
 | |
| 			 * EEH parent, in which case we mark it as supported.
 | |
| 			 */
 | |
| 			edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
 | |
| 			edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr;
 | |
| 			eeh_add_to_parent_pe(edev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Save memory bars */
 | |
| 	eeh_save_bars(edev);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
 | |
|  * @pe: EEH PE
 | |
|  * @option: operation to be issued
 | |
|  *
 | |
|  * The function is used to control the EEH functionality globally.
 | |
|  * Currently, following options are support according to PAPR:
 | |
|  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
 | |
|  */
 | |
| static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int config_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * When we're enabling or disabling EEH functioality on
 | |
| 	 * the particular PE, the PE config address is possibly
 | |
| 	 * unavailable. Therefore, we have to figure it out from
 | |
| 	 * the FDT node.
 | |
| 	 */
 | |
| 	switch (option) {
 | |
| 	case EEH_OPT_DISABLE:
 | |
| 	case EEH_OPT_ENABLE:
 | |
| 	case EEH_OPT_THAW_MMIO:
 | |
| 	case EEH_OPT_THAW_DMA:
 | |
| 		config_addr = pe->config_addr;
 | |
| 		if (pe->addr)
 | |
| 			config_addr = pe->addr;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		pr_err("%s: Invalid option %d\n",
 | |
| 			__func__, option);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
 | |
| 			config_addr, BUID_HI(pe->phb->buid),
 | |
| 			BUID_LO(pe->phb->buid), option);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_get_pe_addr - Retrieve PE address
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * Retrieve the assocated PE address. Actually, there're 2 RTAS
 | |
|  * function calls dedicated for the purpose. We need implement
 | |
|  * it through the new function and then the old one. Besides,
 | |
|  * you should make sure the config address is figured out from
 | |
|  * FDT node before calling the function.
 | |
|  *
 | |
|  * It's notable that zero'ed return value means invalid PE config
 | |
|  * address.
 | |
|  */
 | |
| static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int rets[3];
 | |
| 
 | |
| 	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
 | |
| 		/*
 | |
| 		 * First of all, we need to make sure there has one PE
 | |
| 		 * associated with the device. Otherwise, PE address is
 | |
| 		 * meaningless.
 | |
| 		 */
 | |
| 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
 | |
| 				pe->config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid), 1);
 | |
| 		if (ret || (rets[0] == 0))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* Retrieve the associated PE config address */
 | |
| 		ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
 | |
| 				pe->config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid), 0);
 | |
| 		if (ret) {
 | |
| 			pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
 | |
| 				__func__, pe->phb->global_number, pe->config_addr);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		return rets[0];
 | |
| 	}
 | |
| 
 | |
| 	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
 | |
| 		ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
 | |
| 				pe->config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid), 0);
 | |
| 		if (ret) {
 | |
| 			pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
 | |
| 				__func__, pe->phb->global_number, pe->config_addr);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		return rets[0];
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_get_state - Retrieve PE state
 | |
|  * @pe: EEH PE
 | |
|  * @state: return value
 | |
|  *
 | |
|  * Retrieve the state of the specified PE. On RTAS compliant
 | |
|  * pseries platform, there already has one dedicated RTAS function
 | |
|  * for the purpose. It's notable that the associated PE config address
 | |
|  * might be ready when calling the function. Therefore, endeavour to
 | |
|  * use the PE config address if possible. Further more, there're 2
 | |
|  * RTAS calls for the purpose, we need to try the new one and back
 | |
|  * to the old one if the new one couldn't work properly.
 | |
|  */
 | |
| static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	int ret;
 | |
| 	int rets[4];
 | |
| 	int result;
 | |
| 
 | |
| 	/* Figure out PE config address if possible */
 | |
| 	config_addr = pe->config_addr;
 | |
| 	if (pe->addr)
 | |
| 		config_addr = pe->addr;
 | |
| 
 | |
| 	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
 | |
| 		ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
 | |
| 				config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid));
 | |
| 	} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
 | |
| 		/* Fake PE unavailable info */
 | |
| 		rets[2] = 0;
 | |
| 		ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
 | |
| 				config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid));
 | |
| 	} else {
 | |
| 		return EEH_STATE_NOT_SUPPORT;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Parse the result out */
 | |
| 	result = 0;
 | |
| 	if (rets[1]) {
 | |
| 		switch(rets[0]) {
 | |
| 		case 0:
 | |
| 			result &= ~EEH_STATE_RESET_ACTIVE;
 | |
| 			result |= EEH_STATE_MMIO_ACTIVE;
 | |
| 			result |= EEH_STATE_DMA_ACTIVE;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			result |= EEH_STATE_RESET_ACTIVE;
 | |
| 			result |= EEH_STATE_MMIO_ACTIVE;
 | |
| 			result |= EEH_STATE_DMA_ACTIVE;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			result &= ~EEH_STATE_RESET_ACTIVE;
 | |
| 			result &= ~EEH_STATE_MMIO_ACTIVE;
 | |
| 			result &= ~EEH_STATE_DMA_ACTIVE;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			result &= ~EEH_STATE_RESET_ACTIVE;
 | |
| 			result &= ~EEH_STATE_MMIO_ACTIVE;
 | |
| 			result &= ~EEH_STATE_DMA_ACTIVE;
 | |
| 			result |= EEH_STATE_MMIO_ENABLED;
 | |
| 			break;
 | |
| 		case 5:
 | |
| 			if (rets[2]) {
 | |
| 				if (state) *state = rets[2];
 | |
| 				result = EEH_STATE_UNAVAILABLE;
 | |
| 			} else {
 | |
| 				result = EEH_STATE_NOT_SUPPORT;
 | |
| 			}
 | |
| 		default:
 | |
| 			result = EEH_STATE_NOT_SUPPORT;
 | |
| 		}
 | |
| 	} else {
 | |
| 		result = EEH_STATE_NOT_SUPPORT;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_reset - Reset the specified PE
 | |
|  * @pe: EEH PE
 | |
|  * @option: reset option
 | |
|  *
 | |
|  * Reset the specified PE
 | |
|  */
 | |
| static int pseries_eeh_reset(struct eeh_pe *pe, int option)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Figure out PE address */
 | |
| 	config_addr = pe->config_addr;
 | |
| 	if (pe->addr)
 | |
| 		config_addr = pe->addr;
 | |
| 
 | |
| 	/* Reset PE through RTAS call */
 | |
| 	ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
 | |
| 			config_addr, BUID_HI(pe->phb->buid),
 | |
| 			BUID_LO(pe->phb->buid), option);
 | |
| 
 | |
| 	/* If fundamental-reset not supported, try hot-reset */
 | |
| 	if (option == EEH_RESET_FUNDAMENTAL &&
 | |
| 	    ret == -8) {
 | |
| 		ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
 | |
| 				config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid), EEH_RESET_HOT);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_wait_state - Wait for PE state
 | |
|  * @pe: EEH PE
 | |
|  * @max_wait: maximal period in microsecond
 | |
|  *
 | |
|  * Wait for the state of associated PE. It might take some time
 | |
|  * to retrieve the PE's state.
 | |
|  */
 | |
| static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
 | |
| {
 | |
| 	int ret;
 | |
| 	int mwait;
 | |
| 
 | |
| 	/*
 | |
| 	 * According to PAPR, the state of PE might be temporarily
 | |
| 	 * unavailable. Under the circumstance, we have to wait
 | |
| 	 * for indicated time determined by firmware. The maximal
 | |
| 	 * wait time is 5 minutes, which is acquired from the original
 | |
| 	 * EEH implementation. Also, the original implementation
 | |
| 	 * also defined the minimal wait time as 1 second.
 | |
| 	 */
 | |
| #define EEH_STATE_MIN_WAIT_TIME	(1000)
 | |
| #define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = pseries_eeh_get_state(pe, &mwait);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the PE's state is temporarily unavailable,
 | |
| 		 * we have to wait for the specified time. Otherwise,
 | |
| 		 * the PE's state will be returned immediately.
 | |
| 		 */
 | |
| 		if (ret != EEH_STATE_UNAVAILABLE)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (max_wait <= 0) {
 | |
| 			pr_warning("%s: Timeout when getting PE's state (%d)\n",
 | |
| 				__func__, max_wait);
 | |
| 			return EEH_STATE_NOT_SUPPORT;
 | |
| 		}
 | |
| 
 | |
| 		if (mwait <= 0) {
 | |
| 			pr_warning("%s: Firmware returned bad wait value %d\n",
 | |
| 				__func__, mwait);
 | |
| 			mwait = EEH_STATE_MIN_WAIT_TIME;
 | |
| 		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
 | |
| 			pr_warning("%s: Firmware returned too long wait value %d\n",
 | |
| 				__func__, mwait);
 | |
| 			mwait = EEH_STATE_MAX_WAIT_TIME;
 | |
| 		}
 | |
| 
 | |
| 		max_wait -= mwait;
 | |
| 		msleep(mwait);
 | |
| 	}
 | |
| 
 | |
| 	return EEH_STATE_NOT_SUPPORT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_get_log - Retrieve error log
 | |
|  * @pe: EEH PE
 | |
|  * @severity: temporary or permanent error log
 | |
|  * @drv_log: driver log to be combined with retrieved error log
 | |
|  * @len: length of driver log
 | |
|  *
 | |
|  * Retrieve the temporary or permanent error from the PE.
 | |
|  * Actually, the error will be retrieved through the dedicated
 | |
|  * RTAS call.
 | |
|  */
 | |
| static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&slot_errbuf_lock, flags);
 | |
| 	memset(slot_errbuf, 0, eeh_error_buf_size);
 | |
| 
 | |
| 	/* Figure out the PE address */
 | |
| 	config_addr = pe->config_addr;
 | |
| 	if (pe->addr)
 | |
| 		config_addr = pe->addr;
 | |
| 
 | |
| 	ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
 | |
| 			BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
 | |
| 			virt_to_phys(drv_log), len,
 | |
| 			virt_to_phys(slot_errbuf), eeh_error_buf_size,
 | |
| 			severity);
 | |
| 	if (!ret)
 | |
| 		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
 | |
| 	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * The function will be called to reconfigure the bridges included
 | |
|  * in the specified PE so that the mulfunctional PE would be recovered
 | |
|  * again.
 | |
|  */
 | |
| static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Figure out the PE address */
 | |
| 	config_addr = pe->config_addr;
 | |
| 	if (pe->addr)
 | |
| 		config_addr = pe->addr;
 | |
| 
 | |
| 	/* Use new configure-pe function, if supported */
 | |
| 	if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
 | |
| 		ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
 | |
| 				config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid));
 | |
| 	} else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
 | |
| 		ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
 | |
| 				config_addr, BUID_HI(pe->phb->buid),
 | |
| 				BUID_LO(pe->phb->buid));
 | |
| 	} else {
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_warning("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
 | |
| 			__func__, pe->phb->global_number, pe->addr, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_read_config - Read PCI config space
 | |
|  * @dn: device node
 | |
|  * @where: PCI address
 | |
|  * @size: size to read
 | |
|  * @val: return value
 | |
|  *
 | |
|  * Read config space from the speicifed device
 | |
|  */
 | |
| static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
 | |
| {
 | |
| 	struct pci_dn *pdn;
 | |
| 
 | |
| 	pdn = PCI_DN(dn);
 | |
| 
 | |
| 	return rtas_read_config(pdn, where, size, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pseries_eeh_write_config - Write PCI config space
 | |
|  * @dn: device node
 | |
|  * @where: PCI address
 | |
|  * @size: size to write
 | |
|  * @val: value to be written
 | |
|  *
 | |
|  * Write config space to the specified device
 | |
|  */
 | |
| static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
 | |
| {
 | |
| 	struct pci_dn *pdn;
 | |
| 
 | |
| 	pdn = PCI_DN(dn);
 | |
| 
 | |
| 	return rtas_write_config(pdn, where, size, val);
 | |
| }
 | |
| 
 | |
| static struct eeh_ops pseries_eeh_ops = {
 | |
| 	.name			= "pseries",
 | |
| 	.init			= pseries_eeh_init,
 | |
| 	.of_probe		= pseries_eeh_of_probe,
 | |
| 	.dev_probe		= NULL,
 | |
| 	.set_option		= pseries_eeh_set_option,
 | |
| 	.get_pe_addr		= pseries_eeh_get_pe_addr,
 | |
| 	.get_state		= pseries_eeh_get_state,
 | |
| 	.reset			= pseries_eeh_reset,
 | |
| 	.wait_state		= pseries_eeh_wait_state,
 | |
| 	.get_log		= pseries_eeh_get_log,
 | |
| 	.configure_bridge       = pseries_eeh_configure_bridge,
 | |
| 	.read_config		= pseries_eeh_read_config,
 | |
| 	.write_config		= pseries_eeh_write_config
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * eeh_pseries_init - Register platform dependent EEH operations
 | |
|  *
 | |
|  * EEH initialization on pseries platform. This function should be
 | |
|  * called before any EEH related functions.
 | |
|  */
 | |
| static int __init eeh_pseries_init(void)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (!machine_is(pseries))
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = eeh_ops_register(&pseries_eeh_ops);
 | |
| 	if (!ret)
 | |
| 		pr_info("EEH: pSeries platform initialized\n");
 | |
| 	else
 | |
| 		pr_info("EEH: pSeries platform initialization failure (%d)\n",
 | |
| 			ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| early_initcall(eeh_pseries_init);
 |