linux/drivers/gpu/drm/amd/amdkfd/kfd_crat.c
Felix Kuehling 389056e5fe drm/amdkfd: Add Vega10 topology and device info
* Report 64-bit doorbells as HSA_CAP_DOORBELL_TYPE_2_0 in topology
* Report cache information in topology (duplicates GFXv8 info for now)
* Add device info for Vega10 support in KFD

Raven is not enabled at this time as it needs additional changes in
DQM to work with a single SDMA engine.

Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
2018-04-10 17:33:18 -04:00

1274 lines
37 KiB
C

/*
* Copyright 2015-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include "kfd_crat.h"
#include "kfd_priv.h"
#include "kfd_topology.h"
#include "kfd_iommu.h"
/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
* GPU processor ID are expressed with Bit[31]=1.
* The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
* used in the CRAT.
*/
static uint32_t gpu_processor_id_low = 0x80001000;
/* Return the next available gpu_processor_id and increment it for next GPU
* @total_cu_count - Total CUs present in the GPU including ones
* masked off
*/
static inline unsigned int get_and_inc_gpu_processor_id(
unsigned int total_cu_count)
{
int current_id = gpu_processor_id_low;
gpu_processor_id_low += total_cu_count;
return current_id;
}
/* Static table to describe GPU Cache information */
struct kfd_gpu_cache_info {
uint32_t cache_size;
uint32_t cache_level;
uint32_t flags;
/* Indicates how many Compute Units share this cache
* Value = 1 indicates the cache is not shared
*/
uint32_t num_cu_shared;
};
static struct kfd_gpu_cache_info kaveri_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
/* TODO: Add L2 Cache information */
};
static struct kfd_gpu_cache_info carrizo_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank. */
.cache_size = 4,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
/* TODO: Add L2 Cache information */
};
/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
* the following ASICs may need a separate table.
*/
#define hawaii_cache_info kaveri_cache_info
#define tonga_cache_info carrizo_cache_info
#define fiji_cache_info carrizo_cache_info
#define polaris10_cache_info carrizo_cache_info
#define polaris11_cache_info carrizo_cache_info
/* TODO - check & update Vega10 cache details */
#define vega10_cache_info carrizo_cache_info
#define raven_cache_info carrizo_cache_info
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.array_count = cu->array_count;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
}
/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
struct list_head *device_list)
{
struct kfd_topology_device *dev;
pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, device_list, list) {
if (cu->proximity_domain == dev->proximity_domain) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
}
return 0;
}
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
struct list_head *device_list)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->proximity_domain);
list_for_each_entry(dev, device_list, list) {
if (mem->proximity_domain == dev->proximity_domain) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
/* We're on GPU node */
if (dev->node_props.cpu_cores_count == 0) {
/* APU */
if (mem->visibility_type == 0)
props->heap_type =
HSA_MEM_HEAP_TYPE_FB_PRIVATE;
/* dGPU */
else
props->heap_type = mem->visibility_type;
} else
props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
props->size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
props->width = mem->width;
dev->node_props.mem_banks_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
struct list_head *device_list)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
uint32_t total_num_of_cu;
id = cache->processor_id_low;
pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, device_list, list) {
total_num_of_cu = (dev->node_props.array_count *
dev->node_props.cu_per_simd_array);
/* Cache infomration in CRAT doesn't have proximity_domain
* information as it is associated with a CPU core or GPU
* Compute Unit. So map the cache using CPU core Id or SIMD
* (GPU) ID.
* TODO: This works because currently we can safely assume that
* Compute Units are parsed before caches are parsed. In
* future, remove this dependency
*/
if ((id >= dev->node_props.cpu_core_id_base &&
id <= dev->node_props.cpu_core_id_base +
dev->node_props.cpu_cores_count) ||
(id >= dev->node_props.simd_id_base &&
id < dev->node_props.simd_id_base +
total_num_of_cu)) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
memcpy(props->sibling_map, cache->sibling_map,
sizeof(props->sibling_map));
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
struct list_head *device_list)
{
struct kfd_iolink_properties *props = NULL, *props2;
struct kfd_topology_device *dev, *cpu_dev;
uint32_t id_from;
uint32_t id_to;
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
id_from);
list_for_each_entry(dev, device_list, list) {
if (id_from == dev->proximity_domain) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
props->iolink_type = iolink->io_interface_type;
if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
props->weight = 20;
else
props->weight = node_distance(id_from, id_to);
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->io_link_count++;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
break;
}
}
/* CPU topology is created before GPUs are detected, so CPU->GPU
* links are not built at that time. If a PCIe type is discovered, it
* means a GPU is detected and we are adding GPU->CPU to the topology.
* At this time, also add the corresponded CPU->GPU link.
*/
if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
if (!cpu_dev)
return -ENODEV;
/* same everything but the other direction */
props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
props2->node_from = id_to;
props2->node_to = id_from;
props2->kobj = NULL;
cpu_dev->io_link_count++;
cpu_dev->node_props.io_links_count++;
list_add_tail(&props2->list, &cpu_dev->io_link_props);
}
return 0;
}
/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
* present in the device_list
* @sub_type_hdr - subtype section of crat_image
* @device_list - list of topology devices present in this crat_image
*/
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
struct list_head *device_list)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu, device_list);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem, device_list);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache, device_list);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink, device_list);
break;
default:
pr_warn("Unknown subtype %d in CRAT\n",
sub_type_hdr->type);
}
return ret;
}
/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
* create a kfd_topology_device and add in to device_list. Also parse
* CRAT subtypes and attach it to appropriate kfd_topology_device
* @crat_image - input image containing CRAT
* @device_list - [OUT] list of kfd_topology_device generated after
* parsing crat_image
* @proximity_domain - Proximity domain of the first device in the table
*
* Return - 0 if successful else -ve value
*/
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
uint32_t proximity_domain)
{
struct kfd_topology_device *top_dev = NULL;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret = 0;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
if (!list_empty(device_list)) {
pr_warn("Error device list should be empty\n");
return -EINVAL;
}
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device(device_list);
if (!top_dev)
break;
top_dev->proximity_domain = proximity_domain++;
}
if (!top_dev) {
ret = -ENOMEM;
goto err;
}
memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
top_dev->oem_revision = crat_table->oem_revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr, device_list);
if (ret)
break;
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
err:
if (ret)
kfd_release_topology_device_list(device_list);
return ret;
}
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_pcache(struct crat_subtype_cache *pcache,
struct kfd_gpu_cache_info *pcache_info,
struct kfd_cu_info *cu_info,
int mem_available,
int cu_bitmask,
int cache_type, unsigned int cu_processor_id,
int cu_block)
{
unsigned int cu_sibling_map_mask;
int first_active_cu;
/* First check if enough memory is available */
if (sizeof(struct crat_subtype_cache) > mem_available)
return -ENOMEM;
cu_sibling_map_mask = cu_bitmask;
cu_sibling_map_mask >>= cu_block;
cu_sibling_map_mask &=
((1 << pcache_info[cache_type].num_cu_shared) - 1);
first_active_cu = ffs(cu_sibling_map_mask);
/* CU could be inactive. In case of shared cache find the first active
* CU. and incase of non-shared cache check if the CU is inactive. If
* inactive active skip it
*/
if (first_active_cu) {
memset(pcache, 0, sizeof(struct crat_subtype_cache));
pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
pcache->length = sizeof(struct crat_subtype_cache);
pcache->flags = pcache_info[cache_type].flags;
pcache->processor_id_low = cu_processor_id
+ (first_active_cu - 1);
pcache->cache_level = pcache_info[cache_type].cache_level;
pcache->cache_size = pcache_info[cache_type].cache_size;
/* Sibling map is w.r.t processor_id_low, so shift out
* inactive CU
*/
cu_sibling_map_mask =
cu_sibling_map_mask >> (first_active_cu - 1);
pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
pcache->sibling_map[1] =
(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
pcache->sibling_map[2] =
(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
pcache->sibling_map[3] =
(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
return 0;
}
return 1;
}
/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
* tables
*
* @kdev - [IN] GPU device
* @gpu_processor_id - [IN] GPU processor ID to which these caches
* associate
* @available_size - [IN] Amount of memory available in pcache
* @cu_info - [IN] Compute Unit info obtained from KGD
* @pcache - [OUT] memory into which cache data is to be filled in.
* @size_filled - [OUT] amount of data used up in pcache.
* @num_of_entries - [OUT] number of caches added
*/
static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
int gpu_processor_id,
int available_size,
struct kfd_cu_info *cu_info,
struct crat_subtype_cache *pcache,
int *size_filled,
int *num_of_entries)
{
struct kfd_gpu_cache_info *pcache_info;
int num_of_cache_types = 0;
int i, j, k;
int ct = 0;
int mem_available = available_size;
unsigned int cu_processor_id;
int ret;
switch (kdev->device_info->asic_family) {
case CHIP_KAVERI:
pcache_info = kaveri_cache_info;
num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
break;
case CHIP_HAWAII:
pcache_info = hawaii_cache_info;
num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
break;
case CHIP_CARRIZO:
pcache_info = carrizo_cache_info;
num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
break;
case CHIP_TONGA:
pcache_info = tonga_cache_info;
num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
break;
case CHIP_FIJI:
pcache_info = fiji_cache_info;
num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
break;
case CHIP_POLARIS10:
pcache_info = polaris10_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
break;
case CHIP_POLARIS11:
pcache_info = polaris11_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
break;
case CHIP_VEGA10:
pcache_info = vega10_cache_info;
num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
break;
case CHIP_RAVEN:
pcache_info = raven_cache_info;
num_of_cache_types = ARRAY_SIZE(raven_cache_info);
break;
default:
return -EINVAL;
}
*size_filled = 0;
*num_of_entries = 0;
/* For each type of cache listed in the kfd_gpu_cache_info table,
* go through all available Compute Units.
* The [i,j,k] loop will
* if kfd_gpu_cache_info.num_cu_shared = 1
* will parse through all available CU
* If (kfd_gpu_cache_info.num_cu_shared != 1)
* then it will consider only one CU from
* the shared unit
*/
for (ct = 0; ct < num_of_cache_types; ct++) {
cu_processor_id = gpu_processor_id;
for (i = 0; i < cu_info->num_shader_engines; i++) {
for (j = 0; j < cu_info->num_shader_arrays_per_engine;
j++) {
for (k = 0; k < cu_info->num_cu_per_sh;
k += pcache_info[ct].num_cu_shared) {
ret = fill_in_pcache(pcache,
pcache_info,
cu_info,
mem_available,
cu_info->cu_bitmap[i][j],
ct,
cu_processor_id,
k);
if (ret < 0)
break;
if (!ret) {
pcache++;
(*num_of_entries)++;
mem_available -=
sizeof(*pcache);
(*size_filled) +=
sizeof(*pcache);
}
/* Move to next CU block */
cu_processor_id +=
pcache_info[ct].num_cu_shared;
}
}
}
}
pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
return 0;
}
/*
* kfd_create_crat_image_acpi - Allocates memory for CRAT image and
* copies CRAT from ACPI (if available).
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
* crat_image will be NULL
* @size: [OUT] size of crat_image
*
* Return 0 if successful else return error code
*/
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
{
struct acpi_table_header *crat_table;
acpi_status status;
void *pcrat_image;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Fetch the CRAT table from ACPI */
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_warn("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
if (ignore_crat) {
pr_info("CRAT table disabled by module option\n");
return -ENODATA;
}
pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
memcpy(pcrat_image, crat_table, crat_table->length);
*crat_image = pcrat_image;
*size = crat_table->length;
return 0;
}
/* Memory required to create Virtual CRAT.
* Since there is no easy way to predict the amount of memory required, the
* following amount are allocated for CPU and GPU Virtual CRAT. This is
* expected to cover all known conditions. But to be safe additional check
* is put in the code to ensure we don't overwrite.
*/
#define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE)
#define VCRAT_SIZE_FOR_GPU (3 * PAGE_SIZE)
/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_computeunit *sub_type_hdr)
{
const struct cpumask *cpumask;
*avail_size -= sizeof(struct crat_subtype_computeunit);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
cpumask = cpumask_of_node(numa_node_id);
/* Fill in CU data */
sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
sub_type_hdr->proximity_domain = proximity_domain;
sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
if (sub_type_hdr->processor_id_low == -1)
return -EINVAL;
sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
return 0;
}
/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_memory *sub_type_hdr)
{
uint64_t mem_in_bytes = 0;
pg_data_t *pgdat;
int zone_type;
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in Memory Subunit data */
/* Unlike si_meminfo, si_meminfo_node is not exported. So
* the following lines are duplicated from si_meminfo_node
* function
*/
pgdat = NODE_DATA(numa_node_id);
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
mem_in_bytes <<= PAGE_SHIFT;
sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
sub_type_hdr->proximity_domain = proximity_domain;
return 0;
}
static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
uint32_t *num_entries,
struct crat_subtype_iolink *sub_type_hdr)
{
int nid;
struct cpuinfo_x86 *c = &cpu_data(0);
uint8_t link_type;
if (c->x86_vendor == X86_VENDOR_AMD)
link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
else
link_type = CRAT_IOLINK_TYPE_QPI_1_1;
*num_entries = 0;
/* Create IO links from this node to other CPU nodes */
for_each_online_node(nid) {
if (nid == numa_node_id) /* node itself */
continue;
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in IO link data */
sub_type_hdr->proximity_domain_from = numa_node_id;
sub_type_hdr->proximity_domain_to = nid;
sub_type_hdr->io_interface_type = link_type;
(*num_entries)++;
sub_type_hdr++;
}
return 0;
}
/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for CPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct acpi_table_header *acpi_table;
acpi_status status;
struct crat_subtype_generic *sub_type_hdr;
int avail_size = *size;
int numa_node_id;
uint32_t entries = 0;
int ret = 0;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
return -EINVAL;
/* Fill in CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
crat_table->length = sizeof(struct crat_header);
status = acpi_get_table("DSDT", 0, &acpi_table);
if (status != AE_OK)
pr_warn("DSDT table not found for OEM information\n");
else {
crat_table->oem_revision = acpi_table->revision;
memcpy(crat_table->oem_id, acpi_table->oem_id,
CRAT_OEMID_LENGTH);
memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
}
crat_table->total_entries = 0;
crat_table->num_domains = 0;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
for_each_online_node(numa_node_id) {
if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
continue;
/* Fill in Subtype: Compute Unit */
ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_computeunit *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: Memory */
ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_memory *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: IO Link */
ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
&entries,
(struct crat_subtype_iolink *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += (sub_type_hdr->length * entries);
crat_table->total_entries += entries;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length * entries);
crat_table->num_domains++;
}
/* TODO: Add cache Subtype for CPU.
* Currently, CPU cache information is available in function
* detect_cache_attributes(cpu) defined in the file
* ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
* exported and to get the same information the code needs to be
* duplicated.
*/
*size = crat_table->length;
pr_info("Virtual CRAT table created for CPU\n");
return 0;
}
static int kfd_fill_gpu_memory_affinity(int *avail_size,
struct kfd_dev *kdev, uint8_t type, uint64_t size,
struct crat_subtype_memory *sub_type_hdr,
uint32_t proximity_domain,
const struct kfd_local_mem_info *local_mem_info)
{
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
sub_type_hdr->proximity_domain = proximity_domain;
pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
type, size);
sub_type_hdr->length_low = lower_32_bits(size);
sub_type_hdr->length_high = upper_32_bits(size);
sub_type_hdr->width = local_mem_info->vram_width;
sub_type_hdr->visibility_type = type;
return 0;
}
/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
* to its NUMA node
* @avail_size: Available size in the memory
* @kdev - [IN] GPU device
* @sub_type_hdr: Memory into which io link info will be filled in
* @proximity_domain - proximity domain of the GPU node
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_gpu_direct_io_link(int *avail_size,
struct kfd_dev *kdev,
struct crat_subtype_iolink *sub_type_hdr,
uint32_t proximity_domain)
{
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in IOLINK subtype.
* TODO: Fill-in other fields of iolink subtype
*/
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
sub_type_hdr->proximity_domain_from = proximity_domain;
#ifdef CONFIG_NUMA
if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
sub_type_hdr->proximity_domain_to = 0;
else
sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
#else
sub_type_hdr->proximity_domain_to = 0;
#endif
return 0;
}
/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for GPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
size_t *size, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct crat_subtype_generic *sub_type_hdr;
struct crat_subtype_computeunit *cu;
struct kfd_cu_info cu_info;
int avail_size = *size;
uint32_t total_num_of_cu;
int num_of_cache_entries = 0;
int cache_mem_filled = 0;
int ret = 0;
struct kfd_local_mem_info local_mem_info;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
return -EINVAL;
/* Fill the CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
/* Change length as we add more subtypes*/
crat_table->length = sizeof(struct crat_header);
crat_table->num_domains = 1;
crat_table->total_entries = 0;
/* Fill in Subtype: Compute Unit
* First fill in the sub type header and then sub type data
*/
avail_size -= sizeof(struct crat_subtype_computeunit);
if (avail_size < 0)
return -ENOMEM;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill CU subtype data */
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
cu->proximity_domain = proximity_domain;
kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
cu->num_simd_per_cu = cu_info.simd_per_cu;
cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
cu->max_waves_simd = cu_info.max_waves_per_simd;
cu->wave_front_size = cu_info.wave_front_size;
cu->array_count = cu_info.num_shader_arrays_per_engine *
cu_info.num_shader_engines;
total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
cu->num_cu_per_array = cu_info.num_cu_per_sh;
cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
cu->num_banks = cu_info.num_shader_engines;
cu->lds_size_in_kb = cu_info.lds_size;
cu->hsa_capability = 0;
/* Check if this node supports IOMMU. During parsing this flag will
* translate to HSA_CAP_ATS_PRESENT
*/
if (!kfd_iommu_check_device(kdev))
cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
/* Fill in Subtype: Memory. Only on systems with large BAR (no
* private FB), report memory as public. On other systems
* report the total FB size (public+private) as a single
* private heap.
*/
kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
if (debug_largebar)
local_mem_info.local_mem_size_private = 0;
if (local_mem_info.local_mem_size_private == 0)
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
local_mem_info.local_mem_size_public,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
else
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
local_mem_info.local_mem_size_public +
local_mem_info.local_mem_size_private,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
if (ret < 0)
return ret;
crat_table->length += sizeof(struct crat_subtype_memory);
crat_table->total_entries++;
/* TODO: Fill in cache information. This information is NOT readily
* available in KGD
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
avail_size,
&cu_info,
(struct crat_subtype_cache *)sub_type_hdr,
&cache_mem_filled,
&num_of_cache_entries);
if (ret < 0)
return ret;
crat_table->length += cache_mem_filled;
crat_table->total_entries += num_of_cache_entries;
avail_size -= cache_mem_filled;
/* Fill in Subtype: IO_LINKS
* Only direct links are added here which is Link from GPU to
* to its NUMA node. Indirect links are added by userspace.
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
cache_mem_filled);
ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
*size = crat_table->length;
pr_info("Virtual CRAT table created for GPU\n");
return ret;
}
/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
* creates a Virtual CRAT (VCRAT) image
*
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: VCRAT image created because ACPI does not have a
* CRAT for this device
* @size: [OUT] size of virtual crat_image
* @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
* COMPUTE_UNIT_GPU - Create VCRAT for GPU
* (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
* -- this option is not currently implemented.
* The assumption is that all AMD APUs will have CRAT
* @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
*
* Return 0 if successful else return -ve value
*/
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
int flags, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
void *pcrat_image = NULL;
int ret = 0;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
* VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
* all the current conditions. A check is put not to overwrite beyond
* allocated size
*/
switch (flags) {
case COMPUTE_UNIT_CPU:
pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_CPU;
ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
break;
case COMPUTE_UNIT_GPU:
if (!kdev)
return -EINVAL;
pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_GPU;
ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
proximity_domain);
break;
case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
/* TODO: */
ret = -EINVAL;
pr_err("VCRAT not implemented for APU\n");
break;
default:
ret = -EINVAL;
}
if (!ret)
*crat_image = pcrat_image;
else
kfree(pcrat_image);
return ret;
}
/* kfd_destroy_crat_image
*
* @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
*
*/
void kfd_destroy_crat_image(void *crat_image)
{
kfree(crat_image);
}