linux/arch/powerpc/kernel/time.c
Linus Torvalds fbf07eac7b Merge branch 'timers-for-linus-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  hrtimer: Fix /proc/timer_list regression
  itimers: Fix racy writes to cpu_itimer fields
  timekeeping: Fix clock_gettime vsyscall time warp
2009-12-08 19:28:09 -08:00

1240 lines
33 KiB
C

/*
* Common time routines among all ppc machines.
*
* Written by Cort Dougan (cort@cs.nmt.edu) to merge
* Paul Mackerras' version and mine for PReP and Pmac.
* MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
* Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
*
* First round of bugfixes by Gabriel Paubert (paubert@iram.es)
* to make clock more stable (2.4.0-test5). The only thing
* that this code assumes is that the timebases have been synchronized
* by firmware on SMP and are never stopped (never do sleep
* on SMP then, nap and doze are OK).
*
* Speeded up do_gettimeofday by getting rid of references to
* xtime (which required locks for consistency). (mikejc@us.ibm.com)
*
* TODO (not necessarily in this file):
* - improve precision and reproducibility of timebase frequency
* measurement at boot time. (for iSeries, we calibrate the timebase
* against the Titan chip's clock.)
* - for astronomical applications: add a new function to get
* non ambiguous timestamps even around leap seconds. This needs
* a new timestamp format and a good name.
*
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
#include <linux/percpu.h>
#include <linux/rtc.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/perf_event.h>
#include <asm/trace.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <asm/smp.h>
#include <asm/vdso_datapage.h>
#include <asm/firmware.h>
#include <asm/cputime.h>
#ifdef CONFIG_PPC_ISERIES
#include <asm/iseries/it_lp_queue.h>
#include <asm/iseries/hv_call_xm.h>
#endif
/* powerpc clocksource/clockevent code */
#include <linux/clockchips.h>
#include <linux/clocksource.h>
static cycle_t rtc_read(struct clocksource *);
static struct clocksource clocksource_rtc = {
.name = "rtc",
.rating = 400,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.mask = CLOCKSOURCE_MASK(64),
.shift = 22,
.mult = 0, /* To be filled in */
.read = rtc_read,
};
static cycle_t timebase_read(struct clocksource *);
static struct clocksource clocksource_timebase = {
.name = "timebase",
.rating = 400,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.mask = CLOCKSOURCE_MASK(64),
.shift = 22,
.mult = 0, /* To be filled in */
.read = timebase_read,
};
#define DECREMENTER_MAX 0x7fffffff
static int decrementer_set_next_event(unsigned long evt,
struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
struct clock_event_device *dev);
static struct clock_event_device decrementer_clockevent = {
.name = "decrementer",
.rating = 200,
.shift = 0, /* To be filled in */
.mult = 0, /* To be filled in */
.irq = 0,
.set_next_event = decrementer_set_next_event,
.set_mode = decrementer_set_mode,
.features = CLOCK_EVT_FEAT_ONESHOT,
};
struct decrementer_clock {
struct clock_event_device event;
u64 next_tb;
};
static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
#ifdef CONFIG_PPC_ISERIES
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
/* Forward declaration is only needed for iSereis compiles */
static void __init clocksource_init(void);
#endif
#define XSEC_PER_SEC (1024*1024)
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
#endif
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
u64 tb_to_xs;
unsigned tb_to_us;
#define TICKLEN_SCALE NTP_SCALE_SHIFT
static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
static u64 ticklen_to_xs; /* 0.64 fraction */
/* If last_tick_len corresponds to about 1/HZ seconds, then
last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
extern struct timezone sys_tz;
static long timezone_offset;
unsigned long ppc_proc_freq;
EXPORT_SYMBOL(ppc_proc_freq);
unsigned long ppc_tb_freq;
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
* Factors for converting from cputime_t (timebase ticks) to
* jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
* These are all stored as 0.64 fixed-point binary fractions.
*/
u64 __cputime_jiffies_factor;
EXPORT_SYMBOL(__cputime_jiffies_factor);
u64 __cputime_msec_factor;
EXPORT_SYMBOL(__cputime_msec_factor);
u64 __cputime_sec_factor;
EXPORT_SYMBOL(__cputime_sec_factor);
u64 __cputime_clockt_factor;
EXPORT_SYMBOL(__cputime_clockt_factor);
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
cputime_t cputime_one_jiffy;
static void calc_cputime_factors(void)
{
struct div_result res;
div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
__cputime_jiffies_factor = res.result_low;
div128_by_32(1000, 0, tb_ticks_per_sec, &res);
__cputime_msec_factor = res.result_low;
div128_by_32(1, 0, tb_ticks_per_sec, &res);
__cputime_sec_factor = res.result_low;
div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
__cputime_clockt_factor = res.result_low;
}
/*
* Read the PURR on systems that have it, otherwise the timebase.
*/
static u64 read_purr(void)
{
if (cpu_has_feature(CPU_FTR_PURR))
return mfspr(SPRN_PURR);
return mftb();
}
/*
* Read the SPURR on systems that have it, otherwise the purr
*/
static u64 read_spurr(u64 purr)
{
/*
* cpus without PURR won't have a SPURR
* We already know the former when we use this, so tell gcc
*/
if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
return mfspr(SPRN_SPURR);
return purr;
}
/*
* Account time for a transition between system, hard irq
* or soft irq state.
*/
void account_system_vtime(struct task_struct *tsk)
{
u64 now, nowscaled, delta, deltascaled, sys_time;
unsigned long flags;
local_irq_save(flags);
now = read_purr();
nowscaled = read_spurr(now);
delta = now - get_paca()->startpurr;
deltascaled = nowscaled - get_paca()->startspurr;
get_paca()->startpurr = now;
get_paca()->startspurr = nowscaled;
if (!in_interrupt()) {
/* deltascaled includes both user and system time.
* Hence scale it based on the purr ratio to estimate
* the system time */
sys_time = get_paca()->system_time;
if (get_paca()->user_time)
deltascaled = deltascaled * sys_time /
(sys_time + get_paca()->user_time);
delta += sys_time;
get_paca()->system_time = 0;
}
if (in_irq() || idle_task(smp_processor_id()) != tsk)
account_system_time(tsk, 0, delta, deltascaled);
else
account_idle_time(delta);
per_cpu(cputime_last_delta, smp_processor_id()) = delta;
per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
local_irq_restore(flags);
}
/*
* Transfer the user and system times accumulated in the paca
* by the exception entry and exit code to the generic process
* user and system time records.
* Must be called with interrupts disabled.
*/
void account_process_tick(struct task_struct *tsk, int user_tick)
{
cputime_t utime, utimescaled;
utime = get_paca()->user_time;
get_paca()->user_time = 0;
utimescaled = cputime_to_scaled(utime);
account_user_time(tsk, utime, utimescaled);
}
/*
* Stuff for accounting stolen time.
*/
struct cpu_purr_data {
int initialized; /* thread is running */
u64 tb; /* last TB value read */
u64 purr; /* last PURR value read */
u64 spurr; /* last SPURR value read */
};
/*
* Each entry in the cpu_purr_data array is manipulated only by its
* "owner" cpu -- usually in the timer interrupt but also occasionally
* in process context for cpu online. As long as cpus do not touch
* each others' cpu_purr_data, disabling local interrupts is
* sufficient to serialize accesses.
*/
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
static void snapshot_tb_and_purr(void *data)
{
unsigned long flags;
struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
local_irq_save(flags);
p->tb = get_tb_or_rtc();
p->purr = mfspr(SPRN_PURR);
wmb();
p->initialized = 1;
local_irq_restore(flags);
}
/*
* Called during boot when all cpus have come up.
*/
void snapshot_timebases(void)
{
if (!cpu_has_feature(CPU_FTR_PURR))
return;
on_each_cpu(snapshot_tb_and_purr, NULL, 1);
}
/*
* Must be called with interrupts disabled.
*/
void calculate_steal_time(void)
{
u64 tb, purr;
s64 stolen;
struct cpu_purr_data *pme;
pme = &__get_cpu_var(cpu_purr_data);
if (!pme->initialized)
return; /* !CPU_FTR_PURR or early in early boot */
tb = mftb();
purr = mfspr(SPRN_PURR);
stolen = (tb - pme->tb) - (purr - pme->purr);
if (stolen > 0) {
if (idle_task(smp_processor_id()) != current)
account_steal_time(stolen);
else
account_idle_time(stolen);
}
pme->tb = tb;
pme->purr = purr;
}
#ifdef CONFIG_PPC_SPLPAR
/*
* Must be called before the cpu is added to the online map when
* a cpu is being brought up at runtime.
*/
static void snapshot_purr(void)
{
struct cpu_purr_data *pme;
unsigned long flags;
if (!cpu_has_feature(CPU_FTR_PURR))
return;
local_irq_save(flags);
pme = &__get_cpu_var(cpu_purr_data);
pme->tb = mftb();
pme->purr = mfspr(SPRN_PURR);
pme->initialized = 1;
local_irq_restore(flags);
}
#endif /* CONFIG_PPC_SPLPAR */
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time() do { } while (0)
#endif
#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr() do { } while (0)
#endif
/*
* Called when a cpu comes up after the system has finished booting,
* i.e. as a result of a hotplug cpu action.
*/
void snapshot_timebase(void)
{
__get_cpu_var(last_jiffy) = get_tb_or_rtc();
snapshot_purr();
}
void __delay(unsigned long loops)
{
unsigned long start;
int diff;
if (__USE_RTC()) {
start = get_rtcl();
do {
/* the RTCL register wraps at 1000000000 */
diff = get_rtcl() - start;
if (diff < 0)
diff += 1000000000;
} while (diff < loops);
} else {
start = get_tbl();
while (get_tbl() - start < loops)
HMT_low();
HMT_medium();
}
}
EXPORT_SYMBOL(__delay);
void udelay(unsigned long usecs)
{
__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
u64 new_tb_to_xs)
{
/*
* tb_update_count is used to allow the userspace gettimeofday code
* to assure itself that it sees a consistent view of the tb_to_xs and
* stamp_xsec variables. It reads the tb_update_count, then reads
* tb_to_xs and stamp_xsec and then reads tb_update_count again. If
* the two values of tb_update_count match and are even then the
* tb_to_xs and stamp_xsec values are consistent. If not, then it
* loops back and reads them again until this criteria is met.
* We expect the caller to have done the first increment of
* vdso_data->tb_update_count already.
*/
vdso_data->tb_orig_stamp = new_tb_stamp;
vdso_data->stamp_xsec = new_stamp_xsec;
vdso_data->tb_to_xs = new_tb_to_xs;
vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
vdso_data->stamp_xtime = xtime;
smp_wmb();
++(vdso_data->tb_update_count);
}
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (in_lock_functions(pc))
return regs->link;
return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif
#ifdef CONFIG_PPC_ISERIES
/*
* This function recalibrates the timebase based on the 49-bit time-of-day
* value in the Titan chip. The Titan is much more accurate than the value
* returned by the service processor for the timebase frequency.
*/
static int __init iSeries_tb_recal(void)
{
struct div_result divres;
unsigned long titan, tb;
/* Make sure we only run on iSeries */
if (!firmware_has_feature(FW_FEATURE_ISERIES))
return -ENODEV;
tb = get_tb();
titan = HvCallXm_loadTod();
if ( iSeries_recal_titan ) {
unsigned long tb_ticks = tb - iSeries_recal_tb;
unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
unsigned long new_tb_ticks_per_jiffy =
DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
char sign = '+';
/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
if ( tick_diff < 0 ) {
tick_diff = -tick_diff;
sign = '-';
}
if ( tick_diff ) {
if ( tick_diff < tb_ticks_per_jiffy/25 ) {
printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
new_tb_ticks_per_jiffy, sign, tick_diff );
tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
tb_ticks_per_sec = new_tb_ticks_per_sec;
calc_cputime_factors();
div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
tb_to_xs = divres.result_low;
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
vdso_data->tb_to_xs = tb_to_xs;
setup_cputime_one_jiffy();
}
else {
printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
" new tb_ticks_per_jiffy = %lu\n"
" old tb_ticks_per_jiffy = %lu\n",
new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
}
}
}
iSeries_recal_titan = titan;
iSeries_recal_tb = tb;
/* Called here as now we know accurate values for the timebase */
clocksource_init();
return 0;
}
late_initcall(iSeries_tb_recal);
/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
iSeries_recal_tb = get_tb();
iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
DEFINE_PER_CPU(u8, perf_event_pending);
void set_perf_event_pending(void)
{
get_cpu_var(perf_event_pending) = 1;
set_dec(1);
put_cpu_var(perf_event_pending);
}
#define test_perf_event_pending() __get_cpu_var(perf_event_pending)
#define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
#else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
#define test_perf_event_pending() 0
#define clear_perf_event_pending()
#endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
/*
* For iSeries shared processors, we have to let the hypervisor
* set the hardware decrementer. We set a virtual decrementer
* in the lppaca and call the hypervisor if the virtual
* decrementer is less than the current value in the hardware
* decrementer. (almost always the new decrementer value will
* be greater than the current hardware decementer so the hypervisor
* call will not be needed)
*/
/*
* timer_interrupt - gets called when the decrementer overflows,
* with interrupts disabled.
*/
void timer_interrupt(struct pt_regs * regs)
{
struct pt_regs *old_regs;
struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
struct clock_event_device *evt = &decrementer->event;
u64 now;
trace_timer_interrupt_entry(regs);
/* Ensure a positive value is written to the decrementer, or else
* some CPUs will continuue to take decrementer exceptions */
set_dec(DECREMENTER_MAX);
#ifdef CONFIG_PPC32
if (test_perf_event_pending()) {
clear_perf_event_pending();
perf_event_do_pending();
}
if (atomic_read(&ppc_n_lost_interrupts) != 0)
do_IRQ(regs);
#endif
now = get_tb_or_rtc();
if (now < decrementer->next_tb) {
/* not time for this event yet */
now = decrementer->next_tb - now;
if (now <= DECREMENTER_MAX)
set_dec((int)now);
trace_timer_interrupt_exit(regs);
return;
}
old_regs = set_irq_regs(regs);
irq_enter();
calculate_steal_time();
#ifdef CONFIG_PPC_ISERIES
if (firmware_has_feature(FW_FEATURE_ISERIES))
get_lppaca()->int_dword.fields.decr_int = 0;
#endif
if (evt->event_handler)
evt->event_handler(evt);
#ifdef CONFIG_PPC_ISERIES
if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
process_hvlpevents();
#endif
#ifdef CONFIG_PPC64
/* collect purr register values often, for accurate calculations */
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
cu->current_tb = mfspr(SPRN_PURR);
}
#endif
irq_exit();
set_irq_regs(old_regs);
trace_timer_interrupt_exit(regs);
}
void wakeup_decrementer(void)
{
unsigned long ticks;
/*
* The timebase gets saved on sleep and restored on wakeup,
* so all we need to do is to reset the decrementer.
*/
ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
if (ticks < tb_ticks_per_jiffy)
ticks = tb_ticks_per_jiffy - ticks;
else
ticks = 1;
set_dec(ticks);
}
#ifdef CONFIG_SUSPEND
void generic_suspend_disable_irqs(void)
{
preempt_disable();
/* Disable the decrementer, so that it doesn't interfere
* with suspending.
*/
set_dec(0x7fffffff);
local_irq_disable();
set_dec(0x7fffffff);
}
void generic_suspend_enable_irqs(void)
{
wakeup_decrementer();
local_irq_enable();
preempt_enable();
}
/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
if (ppc_md.suspend_disable_irqs)
ppc_md.suspend_disable_irqs();
generic_suspend_disable_irqs();
}
/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
generic_suspend_enable_irqs();
if (ppc_md.suspend_enable_irqs)
ppc_md.suspend_enable_irqs();
}
#endif
#ifdef CONFIG_SMP
void __init smp_space_timers(unsigned int max_cpus)
{
int i;
u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
previous_tb -= tb_ticks_per_jiffy;
for_each_possible_cpu(i) {
if (i == boot_cpuid)
continue;
per_cpu(last_jiffy, i) = previous_tb;
}
}
#endif
/*
* Scheduler clock - returns current time in nanosec units.
*
* Note: mulhdu(a, b) (multiply high double unsigned) returns
* the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
* are 64-bit unsigned numbers.
*/
unsigned long long sched_clock(void)
{
if (__USE_RTC())
return get_rtc();
return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
}
static int __init get_freq(char *name, int cells, unsigned long *val)
{
struct device_node *cpu;
const unsigned int *fp;
int found = 0;
/* The cpu node should have timebase and clock frequency properties */
cpu = of_find_node_by_type(NULL, "cpu");
if (cpu) {
fp = of_get_property(cpu, name, NULL);
if (fp) {
found = 1;
*val = of_read_ulong(fp, cells);
}
of_node_put(cpu);
}
return found;
}
/* should become __cpuinit when secondary_cpu_time_init also is */
void start_cpu_decrementer(void)
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
/* Clear any pending timer interrupts */
mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
/* Enable decrementer interrupt */
mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}
void __init generic_calibrate_decr(void)
{
ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
!get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
printk(KERN_ERR "WARNING: Estimating decrementer frequency "
"(not found)\n");
}
ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
!get_freq("clock-frequency", 1, &ppc_proc_freq)) {
printk(KERN_ERR "WARNING: Estimating processor frequency "
"(not found)\n");
}
}
int update_persistent_clock(struct timespec now)
{
struct rtc_time tm;
if (!ppc_md.set_rtc_time)
return 0;
to_tm(now.tv_sec + 1 + timezone_offset, &tm);
tm.tm_year -= 1900;
tm.tm_mon -= 1;
return ppc_md.set_rtc_time(&tm);
}
static void __read_persistent_clock(struct timespec *ts)
{
struct rtc_time tm;
static int first = 1;
ts->tv_nsec = 0;
/* XXX this is a litle fragile but will work okay in the short term */
if (first) {
first = 0;
if (ppc_md.time_init)
timezone_offset = ppc_md.time_init();
/* get_boot_time() isn't guaranteed to be safe to call late */
if (ppc_md.get_boot_time) {
ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
return;
}
}
if (!ppc_md.get_rtc_time) {
ts->tv_sec = 0;
return;
}
ppc_md.get_rtc_time(&tm);
ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
}
void read_persistent_clock(struct timespec *ts)
{
__read_persistent_clock(ts);
/* Sanitize it in case real time clock is set below EPOCH */
if (ts->tv_sec < 0) {
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
}
/* clocksource code */
static cycle_t rtc_read(struct clocksource *cs)
{
return (cycle_t)get_rtc();
}
static cycle_t timebase_read(struct clocksource *cs)
{
return (cycle_t)get_tb();
}
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
u32 mult)
{
u64 t2x, stamp_xsec;
if (clock != &clocksource_timebase)
return;
/* Make userspace gettimeofday spin until we're done. */
++vdso_data->tb_update_count;
smp_mb();
/* XXX this assumes clock->shift == 22 */
/* 4611686018 ~= 2^(20+64-22) / 1e9 */
t2x = (u64) mult * 4611686018ULL;
stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
do_div(stamp_xsec, 1000000000);
stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
update_gtod(clock->cycle_last, stamp_xsec, t2x);
}
void update_vsyscall_tz(void)
{
/* Make userspace gettimeofday spin until we're done. */
++vdso_data->tb_update_count;
smp_mb();
vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
vdso_data->tz_dsttime = sys_tz.tz_dsttime;
smp_mb();
++vdso_data->tb_update_count;
}
static void __init clocksource_init(void)
{
struct clocksource *clock;
if (__USE_RTC())
clock = &clocksource_rtc;
else
clock = &clocksource_timebase;
clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
if (clocksource_register(clock)) {
printk(KERN_ERR "clocksource: %s is already registered\n",
clock->name);
return;
}
printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
clock->name, clock->mult, clock->shift);
}
static int decrementer_set_next_event(unsigned long evt,
struct clock_event_device *dev)
{
__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
set_dec(evt);
return 0;
}
static void decrementer_set_mode(enum clock_event_mode mode,
struct clock_event_device *dev)
{
if (mode != CLOCK_EVT_MODE_ONESHOT)
decrementer_set_next_event(DECREMENTER_MAX, dev);
}
static void __init setup_clockevent_multiplier(unsigned long hz)
{
u64 mult, shift = 32;
while (1) {
mult = div_sc(hz, NSEC_PER_SEC, shift);
if (mult && (mult >> 32UL) == 0UL)
break;
shift--;
}
decrementer_clockevent.shift = shift;
decrementer_clockevent.mult = mult;
}
static void register_decrementer_clockevent(int cpu)
{
struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
*dec = decrementer_clockevent;
dec->cpumask = cpumask_of(cpu);
printk(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
dec->name, dec->mult, dec->shift, cpu);
clockevents_register_device(dec);
}
static void __init init_decrementer_clockevent(void)
{
int cpu = smp_processor_id();
setup_clockevent_multiplier(ppc_tb_freq);
decrementer_clockevent.max_delta_ns =
clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
decrementer_clockevent.min_delta_ns =
clockevent_delta2ns(2, &decrementer_clockevent);
register_decrementer_clockevent(cpu);
}
void secondary_cpu_time_init(void)
{
/* Start the decrementer on CPUs that have manual control
* such as BookE
*/
start_cpu_decrementer();
/* FIME: Should make unrelatred change to move snapshot_timebase
* call here ! */
register_decrementer_clockevent(smp_processor_id());
}
/* This function is only called on the boot processor */
void __init time_init(void)
{
unsigned long flags;
struct div_result res;
u64 scale, x;
unsigned shift;
if (__USE_RTC()) {
/* 601 processor: dec counts down by 128 every 128ns */
ppc_tb_freq = 1000000000;
tb_last_jiffy = get_rtcl();
} else {
/* Normal PowerPC with timebase register */
ppc_md.calibrate_decr();
printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
tb_last_jiffy = get_tb();
}
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
tb_ticks_per_sec = ppc_tb_freq;
tb_ticks_per_usec = ppc_tb_freq / 1000000;
tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
calc_cputime_factors();
setup_cputime_one_jiffy();
/*
* Calculate the length of each tick in ns. It will not be
* exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
* We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
* rounded up.
*/
x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
do_div(x, ppc_tb_freq);
tick_nsec = x;
last_tick_len = x << TICKLEN_SCALE;
/*
* Compute ticklen_to_xs, which is a factor which gets multiplied
* by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
* It is computed as:
* ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
* where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
* which turns out to be N = 51 - SHIFT_HZ.
* This gives the result as a 0.64 fixed-point fraction.
* That value is reduced by an offset amounting to 1 xsec per
* 2^31 timebase ticks to avoid problems with time going backwards
* by 1 xsec when we do timer_recalc_offset due to losing the
* fractional xsec. That offset is equal to ppc_tb_freq/2^51
* since there are 2^20 xsec in a second.
*/
div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
tb_ticks_per_jiffy << SHIFT_HZ, &res);
div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
ticklen_to_xs = res.result_low;
/* Compute tb_to_xs from tick_nsec */
tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
/*
* Compute scale factor for sched_clock.
* The calibrate_decr() function has set tb_ticks_per_sec,
* which is the timebase frequency.
* We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
* the 128-bit result as a 64.64 fixed-point number.
* We then shift that number right until it is less than 1.0,
* giving us the scale factor and shift count to use in
* sched_clock().
*/
div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
scale = res.result_low;
for (shift = 0; res.result_high != 0; ++shift) {
scale = (scale >> 1) | (res.result_high << 63);
res.result_high >>= 1;
}
tb_to_ns_scale = scale;
tb_to_ns_shift = shift;
/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
boot_tb = get_tb_or_rtc();
write_seqlock_irqsave(&xtime_lock, flags);
/* If platform provided a timezone (pmac), we correct the time */
if (timezone_offset) {
sys_tz.tz_minuteswest = -timezone_offset / 60;
sys_tz.tz_dsttime = 0;
}
vdso_data->tb_orig_stamp = tb_last_jiffy;
vdso_data->tb_update_count = 0;
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
vdso_data->tb_to_xs = tb_to_xs;
write_sequnlock_irqrestore(&xtime_lock, flags);
/* Start the decrementer on CPUs that have manual control
* such as BookE
*/
start_cpu_decrementer();
/* Register the clocksource, if we're not running on iSeries */
if (!firmware_has_feature(FW_FEATURE_ISERIES))
clocksource_init();
init_decrementer_clockevent();
}
#define FEBRUARY 2
#define STARTOFTIME 1970
#define SECDAY 86400L
#define SECYR (SECDAY * 365)
#define leapyear(year) ((year) % 4 == 0 && \
((year) % 100 != 0 || (year) % 400 == 0))
#define days_in_year(a) (leapyear(a) ? 366 : 365)
#define days_in_month(a) (month_days[(a) - 1])
static int month_days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
/*
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
*/
void GregorianDay(struct rtc_time * tm)
{
int leapsToDate;
int lastYear;
int day;
int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
lastYear = tm->tm_year - 1;
/*
* Number of leap corrections to apply up to end of last year
*/
leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
/*
* This year is a leap year if it is divisible by 4 except when it is
* divisible by 100 unless it is divisible by 400
*
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
*/
day = tm->tm_mon > 2 && leapyear(tm->tm_year);
day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
tm->tm_mday;
tm->tm_wday = day % 7;
}
void to_tm(int tim, struct rtc_time * tm)
{
register int i;
register long hms, day;
day = tim / SECDAY;
hms = tim % SECDAY;
/* Hours, minutes, seconds are easy */
tm->tm_hour = hms / 3600;
tm->tm_min = (hms % 3600) / 60;
tm->tm_sec = (hms % 3600) % 60;
/* Number of years in days */
for (i = STARTOFTIME; day >= days_in_year(i); i++)
day -= days_in_year(i);
tm->tm_year = i;
/* Number of months in days left */
if (leapyear(tm->tm_year))
days_in_month(FEBRUARY) = 29;
for (i = 1; day >= days_in_month(i); i++)
day -= days_in_month(i);
days_in_month(FEBRUARY) = 28;
tm->tm_mon = i;
/* Days are what is left over (+1) from all that. */
tm->tm_mday = day + 1;
/*
* Determine the day of week
*/
GregorianDay(tm);
}
/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
* frequency giving resolution of a few tens of nanoseconds is quite nice.
* It makes this computation very precise (27-28 bits typically) which
* is optimistic considering the stability of most processor clock
* oscillators and the precision with which the timebase frequency
* is measured but does not harm.
*/
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
unsigned mlt=0, tmp, err;
/* No concern for performance, it's done once: use a stupid
* but safe and compact method to find the multiplier.
*/
for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
if (mulhwu(inscale, mlt|tmp) < outscale)
mlt |= tmp;
}
/* We might still be off by 1 for the best approximation.
* A side effect of this is that if outscale is too large
* the returned value will be zero.
* Many corner cases have been checked and seem to work,
* some might have been forgotten in the test however.
*/
err = inscale * (mlt+1);
if (err <= inscale/2)
mlt++;
return mlt;
}
/*
* Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
* result.
*/
void div128_by_32(u64 dividend_high, u64 dividend_low,
unsigned divisor, struct div_result *dr)
{
unsigned long a, b, c, d;
unsigned long w, x, y, z;
u64 ra, rb, rc;
a = dividend_high >> 32;
b = dividend_high & 0xffffffff;
c = dividend_low >> 32;
d = dividend_low & 0xffffffff;
w = a / divisor;
ra = ((u64)(a - (w * divisor)) << 32) + b;
rb = ((u64) do_div(ra, divisor) << 32) + c;
x = ra;
rc = ((u64) do_div(rb, divisor) << 32) + d;
y = rb;
do_div(rc, divisor);
z = rc;
dr->result_high = ((u64)w << 32) + x;
dr->result_low = ((u64)y << 32) + z;
}
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
/* Some generic code (such as spinlock debug) use loops_per_jiffy
* as the number of __delay(1) in a jiffy, so make it so
*/
loops_per_jiffy = tb_ticks_per_jiffy;
}
static int __init rtc_init(void)
{
struct platform_device *pdev;
if (!ppc_md.get_rtc_time)
return -ENODEV;
pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
if (IS_ERR(pdev))
return PTR_ERR(pdev);
return 0;
}
module_init(rtc_init);