linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.h
Yuval Mintz 452427b015 bnx2x: previous driver unload revised
The flow in which the bnx2x driver starts after a previous driver
has been terminated in an 'unclean' manner has several bugs and
FW risks, which makes it possible for the driver to fail after
boot-from-SAN or kdump.
This patch contains a revised flow which performs a safer
initialization, solving the possible crash scenarios.
Notice this patch contains lines with over 80 characters, as it
keeps print-strings in a single line.

Signed-off-by: Yuval Mintz <yuvalmin@broadcom.com>
Signed-off-by: Eilon Greenstein <eilong@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-03-27 22:41:34 -04:00

1677 lines
41 KiB
C

/* bnx2x_cmn.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2012 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#ifndef BNX2X_CMN_H
#define BNX2X_CMN_H
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include "bnx2x.h"
/* This is used as a replacement for an MCP if it's not present */
extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */
extern int num_queues;
/************************ Macros ********************************/
#define BNX2X_PCI_FREE(x, y, size) \
do { \
if (x) { \
dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \
x = NULL; \
y = 0; \
} \
} while (0)
#define BNX2X_FREE(x) \
do { \
if (x) { \
kfree((void *)x); \
x = NULL; \
} \
} while (0)
#define BNX2X_PCI_ALLOC(x, y, size) \
do { \
x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
if (x == NULL) \
goto alloc_mem_err; \
memset((void *)x, 0, size); \
} while (0)
#define BNX2X_ALLOC(x, size) \
do { \
x = kzalloc(size, GFP_KERNEL); \
if (x == NULL) \
goto alloc_mem_err; \
} while (0)
/*********************** Interfaces ****************************
* Functions that need to be implemented by each driver version
*/
/* Init */
/**
* bnx2x_send_unload_req - request unload mode from the MCP.
*
* @bp: driver handle
* @unload_mode: requested function's unload mode
*
* Return unload mode returned by the MCP: COMMON, PORT or FUNC.
*/
u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode);
/**
* bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
*
* @bp: driver handle
*/
void bnx2x_send_unload_done(struct bnx2x *bp);
/**
* bnx2x_config_rss_pf - configure RSS parameters.
*
* @bp: driver handle
* @ind_table: indirection table to configure
* @config_hash: re-configure RSS hash keys configuration
*/
int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash);
/**
* bnx2x__init_func_obj - init function object
*
* @bp: driver handle
*
* Initializes the Function Object with the appropriate
* parameters which include a function slow path driver
* interface.
*/
void bnx2x__init_func_obj(struct bnx2x *bp);
/**
* bnx2x_setup_queue - setup eth queue.
*
* @bp: driver handle
* @fp: pointer to the fastpath structure
* @leading: boolean
*
*/
int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
bool leading);
/**
* bnx2x_setup_leading - bring up a leading eth queue.
*
* @bp: driver handle
*/
int bnx2x_setup_leading(struct bnx2x *bp);
/**
* bnx2x_fw_command - send the MCP a request
*
* @bp: driver handle
* @command: request
* @param: request's parameter
*
* block until there is a reply
*/
u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param);
/**
* bnx2x_initial_phy_init - initialize link parameters structure variables.
*
* @bp: driver handle
* @load_mode: current mode
*/
u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
/**
* bnx2x_link_set - configure hw according to link parameters structure.
*
* @bp: driver handle
*/
void bnx2x_link_set(struct bnx2x *bp);
/**
* bnx2x_link_test - query link status.
*
* @bp: driver handle
* @is_serdes: bool
*
* Returns 0 if link is UP.
*/
u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
/**
* bnx2x_drv_pulse - write driver pulse to shmem
*
* @bp: driver handle
*
* writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox
* in the shmem.
*/
void bnx2x_drv_pulse(struct bnx2x *bp);
/**
* bnx2x_igu_ack_sb - update IGU with current SB value
*
* @bp: driver handle
* @igu_sb_id: SB id
* @segment: SB segment
* @index: SB index
* @op: SB operation
* @update: is HW update required
*/
void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
u16 index, u8 op, u8 update);
/* Disable transactions from chip to host */
void bnx2x_pf_disable(struct bnx2x *bp);
/**
* bnx2x__link_status_update - handles link status change.
*
* @bp: driver handle
*/
void bnx2x__link_status_update(struct bnx2x *bp);
/**
* bnx2x_link_report - report link status to upper layer.
*
* @bp: driver handle
*/
void bnx2x_link_report(struct bnx2x *bp);
/* None-atomic version of bnx2x_link_report() */
void __bnx2x_link_report(struct bnx2x *bp);
/**
* bnx2x_get_mf_speed - calculate MF speed.
*
* @bp: driver handle
*
* Takes into account current linespeed and MF configuration.
*/
u16 bnx2x_get_mf_speed(struct bnx2x *bp);
/**
* bnx2x_msix_sp_int - MSI-X slowpath interrupt handler
*
* @irq: irq number
* @dev_instance: private instance
*/
irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
/**
* bnx2x_interrupt - non MSI-X interrupt handler
*
* @irq: irq number
* @dev_instance: private instance
*/
irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
#ifdef BCM_CNIC
/**
* bnx2x_cnic_notify - send command to cnic driver
*
* @bp: driver handle
* @cmd: command
*/
int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
/**
* bnx2x_setup_cnic_irq_info - provides cnic with IRQ information
*
* @bp: driver handle
*/
void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
#endif
/**
* bnx2x_int_enable - enable HW interrupts.
*
* @bp: driver handle
*/
void bnx2x_int_enable(struct bnx2x *bp);
/**
* bnx2x_int_disable_sync - disable interrupts.
*
* @bp: driver handle
* @disable_hw: true, disable HW interrupts.
*
* This function ensures that there are no
* ISRs or SP DPCs (sp_task) are running after it returns.
*/
void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
/**
* bnx2x_nic_init - init driver internals.
*
* @bp: driver handle
* @load_code: COMMON, PORT or FUNCTION
*
* Initializes:
* - rings
* - status blocks
* - etc.
*/
void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
/**
* bnx2x_alloc_mem - allocate driver's memory.
*
* @bp: driver handle
*/
int bnx2x_alloc_mem(struct bnx2x *bp);
/**
* bnx2x_free_mem - release driver's memory.
*
* @bp: driver handle
*/
void bnx2x_free_mem(struct bnx2x *bp);
/**
* bnx2x_set_num_queues - set number of queues according to mode.
*
* @bp: driver handle
*/
void bnx2x_set_num_queues(struct bnx2x *bp);
/**
* bnx2x_chip_cleanup - cleanup chip internals.
*
* @bp: driver handle
* @unload_mode: COMMON, PORT, FUNCTION
*
* - Cleanup MAC configuration.
* - Closes clients.
* - etc.
*/
void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
/**
* bnx2x_acquire_hw_lock - acquire HW lock.
*
* @bp: driver handle
* @resource: resource bit which was locked
*/
int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
/**
* bnx2x_release_hw_lock - release HW lock.
*
* @bp: driver handle
* @resource: resource bit which was locked
*/
int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
/**
* bnx2x_release_leader_lock - release recovery leader lock
*
* @bp: driver handle
*/
int bnx2x_release_leader_lock(struct bnx2x *bp);
/**
* bnx2x_set_eth_mac - configure eth MAC address in the HW
*
* @bp: driver handle
* @set: set or clear
*
* Configures according to the value in netdev->dev_addr.
*/
int bnx2x_set_eth_mac(struct bnx2x *bp, bool set);
/**
* bnx2x_set_rx_mode - set MAC filtering configurations.
*
* @dev: netdevice
*
* called with netif_tx_lock from dev_mcast.c
* If bp->state is OPEN, should be called with
* netif_addr_lock_bh()
*/
void bnx2x_set_rx_mode(struct net_device *dev);
/**
* bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW.
*
* @bp: driver handle
*
* If bp->state is OPEN, should be called with
* netif_addr_lock_bh().
*/
void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
/**
* bnx2x_set_q_rx_mode - configures rx_mode for a single queue.
*
* @bp: driver handle
* @cl_id: client id
* @rx_mode_flags: rx mode configuration
* @rx_accept_flags: rx accept configuration
* @tx_accept_flags: tx accept configuration (tx switch)
* @ramrod_flags: ramrod configuration
*/
void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
unsigned long rx_mode_flags,
unsigned long rx_accept_flags,
unsigned long tx_accept_flags,
unsigned long ramrod_flags);
/* Parity errors related */
void bnx2x_set_pf_load(struct bnx2x *bp);
bool bnx2x_clear_pf_load(struct bnx2x *bp);
bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print);
bool bnx2x_reset_is_done(struct bnx2x *bp, int engine);
void bnx2x_set_reset_in_progress(struct bnx2x *bp);
void bnx2x_set_reset_global(struct bnx2x *bp);
void bnx2x_disable_close_the_gate(struct bnx2x *bp);
/**
* bnx2x_sp_event - handle ramrods completion.
*
* @fp: fastpath handle for the event
* @rr_cqe: eth_rx_cqe
*/
void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
/**
* bnx2x_ilt_set_info - prepare ILT configurations.
*
* @bp: driver handle
*/
void bnx2x_ilt_set_info(struct bnx2x *bp);
/**
* bnx2x_dcbx_init - initialize dcbx protocol.
*
* @bp: driver handle
*/
void bnx2x_dcbx_init(struct bnx2x *bp);
/**
* bnx2x_set_power_state - set power state to the requested value.
*
* @bp: driver handle
* @state: required state D0 or D3hot
*
* Currently only D0 and D3hot are supported.
*/
int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
/**
* bnx2x_update_max_mf_config - update MAX part of MF configuration in HW.
*
* @bp: driver handle
* @value: new value
*/
void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
/* Error handling */
void bnx2x_panic_dump(struct bnx2x *bp);
void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl);
/* validate currect fw is loaded */
bool bnx2x_test_firmware_version(struct bnx2x *bp, bool is_err);
/* dev_close main block */
int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
/* dev_open main block */
int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
/* hard_xmit callback */
netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
/* setup_tc callback */
int bnx2x_setup_tc(struct net_device *dev, u8 num_tc);
/* select_queue callback */
u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
/* reload helper */
int bnx2x_reload_if_running(struct net_device *dev);
int bnx2x_change_mac_addr(struct net_device *dev, void *p);
/* NAPI poll Rx part */
int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod);
/* NAPI poll Tx part */
int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata);
/* suspend/resume callbacks */
int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
int bnx2x_resume(struct pci_dev *pdev);
/* Release IRQ vectors */
void bnx2x_free_irq(struct bnx2x *bp);
void bnx2x_free_fp_mem(struct bnx2x *bp);
int bnx2x_alloc_fp_mem(struct bnx2x *bp);
void bnx2x_init_rx_rings(struct bnx2x *bp);
void bnx2x_free_skbs(struct bnx2x *bp);
void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
void bnx2x_netif_start(struct bnx2x *bp);
/**
* bnx2x_enable_msix - set msix configuration.
*
* @bp: driver handle
*
* fills msix_table, requests vectors, updates num_queues
* according to number of available vectors.
*/
int bnx2x_enable_msix(struct bnx2x *bp);
/**
* bnx2x_enable_msi - request msi mode from OS, updated internals accordingly
*
* @bp: driver handle
*/
int bnx2x_enable_msi(struct bnx2x *bp);
/**
* bnx2x_poll - NAPI callback
*
* @napi: napi structure
* @budget:
*
*/
int bnx2x_poll(struct napi_struct *napi, int budget);
/**
* bnx2x_alloc_mem_bp - allocate memories outsize main driver structure
*
* @bp: driver handle
*/
int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
/**
* bnx2x_free_mem_bp - release memories outsize main driver structure
*
* @bp: driver handle
*/
void bnx2x_free_mem_bp(struct bnx2x *bp);
/**
* bnx2x_change_mtu - change mtu netdev callback
*
* @dev: net device
* @new_mtu: requested mtu
*
*/
int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
#if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
/**
* bnx2x_fcoe_get_wwn - return the requested WWN value for this port
*
* @dev: net_device
* @wwn: output buffer
* @type: WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port)
*
*/
int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type);
#endif
netdev_features_t bnx2x_fix_features(struct net_device *dev,
netdev_features_t features);
int bnx2x_set_features(struct net_device *dev, netdev_features_t features);
/**
* bnx2x_tx_timeout - tx timeout netdev callback
*
* @dev: net device
*/
void bnx2x_tx_timeout(struct net_device *dev);
/*********************** Inlines **********************************/
/*********************** Fast path ********************************/
static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
{
barrier(); /* status block is written to by the chip */
fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
}
static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 bd_prod,
u16 rx_comp_prod, u16 rx_sge_prod, u32 start)
{
struct ustorm_eth_rx_producers rx_prods = {0};
u32 i;
/* Update producers */
rx_prods.bd_prod = bd_prod;
rx_prods.cqe_prod = rx_comp_prod;
rx_prods.sge_prod = rx_sge_prod;
/*
* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
* This is only applicable for weak-ordered memory model archs such
* as IA-64. The following barrier is also mandatory since FW will
* assumes BDs must have buffers.
*/
wmb();
for (i = 0; i < sizeof(rx_prods)/4; i++)
REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]);
mmiowb(); /* keep prod updates ordered */
DP(NETIF_MSG_RX_STATUS,
"queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n",
fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
}
static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
u8 segment, u16 index, u8 op,
u8 update, u32 igu_addr)
{
struct igu_regular cmd_data = {0};
cmd_data.sb_id_and_flags =
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
(update << IGU_REGULAR_BUPDATE_SHIFT) |
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
DP(NETIF_MSG_INTR, "write 0x%08x to IGU addr 0x%x\n",
cmd_data.sb_id_and_flags, igu_addr);
REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
/* Make sure that ACK is written */
mmiowb();
barrier();
}
static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
u8 idu_sb_id, bool is_Pf)
{
u32 data, ctl, cnt = 100;
u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
u32 sb_bit = 1 << (idu_sb_id%32);
u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
/* Not supported in BC mode */
if (CHIP_INT_MODE_IS_BC(bp))
return;
data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
<< IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
IGU_REGULAR_CLEANUP_SET |
IGU_REGULAR_BCLEANUP;
ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
func_encode << IGU_CTRL_REG_FID_SHIFT |
IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
data, igu_addr_data);
REG_WR(bp, igu_addr_data, data);
mmiowb();
barrier();
DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
ctl, igu_addr_ctl);
REG_WR(bp, igu_addr_ctl, ctl);
mmiowb();
barrier();
/* wait for clean up to finish */
while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
msleep(20);
if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
DP(NETIF_MSG_HW,
"Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
}
}
static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
u8 storm, u16 index, u8 op, u8 update)
{
u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
COMMAND_REG_INT_ACK);
struct igu_ack_register igu_ack;
igu_ack.status_block_index = index;
igu_ack.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
/* Make sure that ACK is written */
mmiowb();
barrier();
}
static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
u16 index, u8 op, u8 update)
{
if (bp->common.int_block == INT_BLOCK_HC)
bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
else {
u8 segment;
if (CHIP_INT_MODE_IS_BC(bp))
segment = storm;
else if (igu_sb_id != bp->igu_dsb_id)
segment = IGU_SEG_ACCESS_DEF;
else if (storm == ATTENTION_ID)
segment = IGU_SEG_ACCESS_ATTN;
else
segment = IGU_SEG_ACCESS_DEF;
bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
}
}
static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
{
u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
COMMAND_REG_SIMD_MASK);
u32 result = REG_RD(bp, hc_addr);
barrier();
return result;
}
static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
{
u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
u32 result = REG_RD(bp, igu_addr);
DP(NETIF_MSG_INTR, "read 0x%08x from IGU addr 0x%x\n",
result, igu_addr);
barrier();
return result;
}
static inline u16 bnx2x_ack_int(struct bnx2x *bp)
{
barrier();
if (bp->common.int_block == INT_BLOCK_HC)
return bnx2x_hc_ack_int(bp);
else
return bnx2x_igu_ack_int(bp);
}
static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata)
{
/* Tell compiler that consumer and producer can change */
barrier();
return txdata->tx_pkt_prod != txdata->tx_pkt_cons;
}
static inline u16 bnx2x_tx_avail(struct bnx2x *bp,
struct bnx2x_fp_txdata *txdata)
{
s16 used;
u16 prod;
u16 cons;
prod = txdata->tx_bd_prod;
cons = txdata->tx_bd_cons;
/* NUM_TX_RINGS = number of "next-page" entries
It will be used as a threshold */
used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
#ifdef BNX2X_STOP_ON_ERROR
WARN_ON(used < 0);
WARN_ON(used > bp->tx_ring_size);
WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL);
#endif
return (s16)(bp->tx_ring_size) - used;
}
static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata)
{
u16 hw_cons;
/* Tell compiler that status block fields can change */
barrier();
hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
return hw_cons != txdata->tx_pkt_cons;
}
static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
{
u8 cos;
for_each_cos_in_tx_queue(fp, cos)
if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
return true;
return false;
}
static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
{
u16 rx_cons_sb;
/* Tell compiler that status block fields can change */
barrier();
rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
rx_cons_sb++;
return (fp->rx_comp_cons != rx_cons_sb);
}
/**
* bnx2x_tx_disable - disables tx from stack point of view
*
* @bp: driver handle
*/
static inline void bnx2x_tx_disable(struct bnx2x *bp)
{
netif_tx_disable(bp->dev);
netif_carrier_off(bp->dev);
}
static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
struct page *page = sw_buf->page;
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
/* Skip "next page" elements */
if (!page)
return;
dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
__free_pages(page, PAGES_PER_SGE_SHIFT);
sw_buf->page = NULL;
sge->addr_hi = 0;
sge->addr_lo = 0;
}
static inline void bnx2x_add_all_napi(struct bnx2x *bp)
{
int i;
/* Add NAPI objects */
for_each_rx_queue(bp, i)
netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
bnx2x_poll, BNX2X_NAPI_WEIGHT);
}
static inline void bnx2x_del_all_napi(struct bnx2x *bp)
{
int i;
for_each_rx_queue(bp, i)
netif_napi_del(&bnx2x_fp(bp, i, napi));
}
static inline void bnx2x_disable_msi(struct bnx2x *bp)
{
if (bp->flags & USING_MSIX_FLAG) {
pci_disable_msix(bp->pdev);
bp->flags &= ~USING_MSIX_FLAG;
} else if (bp->flags & USING_MSI_FLAG) {
pci_disable_msi(bp->pdev);
bp->flags &= ~USING_MSI_FLAG;
}
}
static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
{
return num_queues ?
min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
}
static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
{
int i, j;
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
int idx = RX_SGE_CNT * i - 1;
for (j = 0; j < 2; j++) {
BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
idx--;
}
}
}
static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
{
/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
/* Clear the two last indices in the page to 1:
these are the indices that correspond to the "next" element,
hence will never be indicated and should be removed from
the calculations. */
bnx2x_clear_sge_mask_next_elems(fp);
}
static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
dma_addr_t mapping;
if (unlikely(page == NULL)) {
BNX2X_ERR("Can't alloc sge\n");
return -ENOMEM;
}
mapping = dma_map_page(&bp->pdev->dev, page, 0,
SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
__free_pages(page, PAGES_PER_SGE_SHIFT);
BNX2X_ERR("Can't map sge\n");
return -ENOMEM;
}
sw_buf->page = page;
dma_unmap_addr_set(sw_buf, mapping, mapping);
sge->addr_hi = cpu_to_le32(U64_HI(mapping));
sge->addr_lo = cpu_to_le32(U64_LO(mapping));
return 0;
}
static inline int bnx2x_alloc_rx_data(struct bnx2x *bp,
struct bnx2x_fastpath *fp, u16 index)
{
u8 *data;
struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
dma_addr_t mapping;
data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
if (unlikely(data == NULL))
return -ENOMEM;
mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
fp->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
kfree(data);
BNX2X_ERR("Can't map rx data\n");
return -ENOMEM;
}
rx_buf->data = data;
dma_unmap_addr_set(rx_buf, mapping, mapping);
rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
return 0;
}
/* note that we are not allocating a new buffer,
* we are just moving one from cons to prod
* we are not creating a new mapping,
* so there is no need to check for dma_mapping_error().
*/
static inline void bnx2x_reuse_rx_data(struct bnx2x_fastpath *fp,
u16 cons, u16 prod)
{
struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
dma_unmap_addr_set(prod_rx_buf, mapping,
dma_unmap_addr(cons_rx_buf, mapping));
prod_rx_buf->data = cons_rx_buf->data;
*prod_bd = *cons_bd;
}
/************************* Init ******************************************/
/**
* bnx2x_func_start - init function
*
* @bp: driver handle
*
* Must be called before sending CLIENT_SETUP for the first client.
*/
static inline int bnx2x_func_start(struct bnx2x *bp)
{
struct bnx2x_func_state_params func_params = {NULL};
struct bnx2x_func_start_params *start_params =
&func_params.params.start;
/* Prepare parameters for function state transitions */
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
func_params.f_obj = &bp->func_obj;
func_params.cmd = BNX2X_F_CMD_START;
/* Function parameters */
start_params->mf_mode = bp->mf_mode;
start_params->sd_vlan_tag = bp->mf_ov;
if (CHIP_IS_E2(bp) || CHIP_IS_E3(bp))
start_params->network_cos_mode = STATIC_COS;
else /* CHIP_IS_E1X */
start_params->network_cos_mode = FW_WRR;
return bnx2x_func_state_change(bp, &func_params);
}
/**
* bnx2x_set_fw_mac_addr - fill in a MAC address in FW format
*
* @fw_hi: pointer to upper part
* @fw_mid: pointer to middle part
* @fw_lo: pointer to lower part
* @mac: pointer to MAC address
*/
static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo,
u8 *mac)
{
((u8 *)fw_hi)[0] = mac[1];
((u8 *)fw_hi)[1] = mac[0];
((u8 *)fw_mid)[0] = mac[3];
((u8 *)fw_mid)[1] = mac[2];
((u8 *)fw_lo)[0] = mac[5];
((u8 *)fw_lo)[1] = mac[4];
}
static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
struct bnx2x_fastpath *fp, int last)
{
int i;
if (fp->disable_tpa)
return;
for (i = 0; i < last; i++)
bnx2x_free_rx_sge(bp, fp, i);
}
static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
struct bnx2x_fastpath *fp, int last)
{
int i;
for (i = 0; i < last; i++) {
struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
struct sw_rx_bd *first_buf = &tpa_info->first_buf;
u8 *data = first_buf->data;
if (data == NULL) {
DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
continue;
}
if (tpa_info->tpa_state == BNX2X_TPA_START)
dma_unmap_single(&bp->pdev->dev,
dma_unmap_addr(first_buf, mapping),
fp->rx_buf_size, DMA_FROM_DEVICE);
kfree(data);
first_buf->data = NULL;
}
}
static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
{
int i;
for (i = 1; i <= NUM_TX_RINGS; i++) {
struct eth_tx_next_bd *tx_next_bd =
&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
tx_next_bd->addr_hi =
cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
tx_next_bd->addr_lo =
cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
}
SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
txdata->tx_db.data.zero_fill1 = 0;
txdata->tx_db.data.prod = 0;
txdata->tx_pkt_prod = 0;
txdata->tx_pkt_cons = 0;
txdata->tx_bd_prod = 0;
txdata->tx_bd_cons = 0;
txdata->tx_pkt = 0;
}
static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
{
int i;
u8 cos;
for_each_tx_queue(bp, i)
for_each_cos_in_tx_queue(&bp->fp[i], cos)
bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
}
static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
{
int i;
for (i = 1; i <= NUM_RX_RINGS; i++) {
struct eth_rx_bd *rx_bd;
rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
rx_bd->addr_hi =
cpu_to_le32(U64_HI(fp->rx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
rx_bd->addr_lo =
cpu_to_le32(U64_LO(fp->rx_desc_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
}
}
static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
{
int i;
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
struct eth_rx_sge *sge;
sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
sge->addr_hi =
cpu_to_le32(U64_HI(fp->rx_sge_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
sge->addr_lo =
cpu_to_le32(U64_LO(fp->rx_sge_mapping +
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
}
}
static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
{
int i;
for (i = 1; i <= NUM_RCQ_RINGS; i++) {
struct eth_rx_cqe_next_page *nextpg;
nextpg = (struct eth_rx_cqe_next_page *)
&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
nextpg->addr_hi =
cpu_to_le32(U64_HI(fp->rx_comp_mapping +
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
nextpg->addr_lo =
cpu_to_le32(U64_LO(fp->rx_comp_mapping +
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
}
}
/* Returns the number of actually allocated BDs */
static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
int rx_ring_size)
{
struct bnx2x *bp = fp->bp;
u16 ring_prod, cqe_ring_prod;
int i, failure_cnt = 0;
fp->rx_comp_cons = 0;
cqe_ring_prod = ring_prod = 0;
/* This routine is called only during fo init so
* fp->eth_q_stats.rx_skb_alloc_failed = 0
*/
for (i = 0; i < rx_ring_size; i++) {
if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
failure_cnt++;
continue;
}
ring_prod = NEXT_RX_IDX(ring_prod);
cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
WARN_ON(ring_prod <= (i - failure_cnt));
}
if (failure_cnt)
BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
i - failure_cnt, fp->index);
fp->rx_bd_prod = ring_prod;
/* Limit the CQE producer by the CQE ring size */
fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
cqe_ring_prod);
fp->rx_pkt = fp->rx_calls = 0;
fp->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
return i - failure_cnt;
}
/* Statistics ID are global per chip/path, while Client IDs for E1x are per
* port.
*/
static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp)
{
struct bnx2x *bp = fp->bp;
if (!CHIP_IS_E1x(bp)) {
#ifdef BCM_CNIC
/* there are special statistics counters for FCoE 136..140 */
if (IS_FCOE_FP(fp))
return bp->cnic_base_cl_id + (bp->pf_num >> 1);
#endif
return fp->cl_id;
}
return fp->cl_id + BP_PORT(bp) * FP_SB_MAX_E1x;
}
static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp,
bnx2x_obj_type obj_type)
{
struct bnx2x *bp = fp->bp;
/* Configure classification DBs */
bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid,
BP_FUNC(bp), bnx2x_sp(bp, mac_rdata),
bnx2x_sp_mapping(bp, mac_rdata),
BNX2X_FILTER_MAC_PENDING,
&bp->sp_state, obj_type,
&bp->macs_pool);
}
/**
* bnx2x_get_path_func_num - get number of active functions
*
* @bp: driver handle
*
* Calculates the number of active (not hidden) functions on the
* current path.
*/
static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp)
{
u8 func_num = 0, i;
/* 57710 has only one function per-port */
if (CHIP_IS_E1(bp))
return 1;
/* Calculate a number of functions enabled on the current
* PATH/PORT.
*/
if (CHIP_REV_IS_SLOW(bp)) {
if (IS_MF(bp))
func_num = 4;
else
func_num = 2;
} else {
for (i = 0; i < E1H_FUNC_MAX / 2; i++) {
u32 func_config =
MF_CFG_RD(bp,
func_mf_config[BP_PORT(bp) + 2 * i].
config);
func_num +=
((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1);
}
}
WARN_ON(!func_num);
return func_num;
}
static inline void bnx2x_init_bp_objs(struct bnx2x *bp)
{
/* RX_MODE controlling object */
bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj);
/* multicast configuration controlling object */
bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid,
BP_FUNC(bp), BP_FUNC(bp),
bnx2x_sp(bp, mcast_rdata),
bnx2x_sp_mapping(bp, mcast_rdata),
BNX2X_FILTER_MCAST_PENDING, &bp->sp_state,
BNX2X_OBJ_TYPE_RX);
/* Setup CAM credit pools */
bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp),
bnx2x_get_path_func_num(bp));
/* RSS configuration object */
bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id,
bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp),
bnx2x_sp(bp, rss_rdata),
bnx2x_sp_mapping(bp, rss_rdata),
BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state,
BNX2X_OBJ_TYPE_RX);
}
static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
{
if (CHIP_IS_E1x(fp->bp))
return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H;
else
return fp->cl_id;
}
static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
{
struct bnx2x *bp = fp->bp;
if (!CHIP_IS_E1x(bp))
return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
else
return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
}
static inline void bnx2x_init_txdata(struct bnx2x *bp,
struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index,
__le16 *tx_cons_sb)
{
txdata->cid = cid;
txdata->txq_index = txq_index;
txdata->tx_cons_sb = tx_cons_sb;
DP(NETIF_MSG_IFUP, "created tx data cid %d, txq %d\n",
txdata->cid, txdata->txq_index);
}
#ifdef BCM_CNIC
static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx)
{
return bp->cnic_base_cl_id + cl_idx +
(bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX;
}
static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp)
{
/* the 'first' id is allocated for the cnic */
return bp->base_fw_ndsb;
}
static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp)
{
return bp->igu_base_sb;
}
static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
{
struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
unsigned long q_type = 0;
bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
BNX2X_FCOE_ETH_CL_ID_IDX);
/** Current BNX2X_FCOE_ETH_CID deffinition implies not more than
* 16 ETH clients per function when CNIC is enabled!
*
* Fix it ASAP!!!
*/
bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]),
fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX);
DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
/* qZone id equals to FW (per path) client id */
bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
/* init shortcut */
bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
bnx2x_rx_ustorm_prods_offset(fp);
/* Configure Queue State object */
__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
/* No multi-CoS for FCoE L2 client */
BUG_ON(fp->max_cos != 1);
bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1,
BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
bnx2x_sp_mapping(bp, q_rdata), q_type);
DP(NETIF_MSG_IFUP,
"queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
fp->igu_sb_id);
}
#endif
static inline int bnx2x_clean_tx_queue(struct bnx2x *bp,
struct bnx2x_fp_txdata *txdata)
{
int cnt = 1000;
while (bnx2x_has_tx_work_unload(txdata)) {
if (!cnt) {
BNX2X_ERR("timeout waiting for queue[%d]: txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n",
txdata->txq_index, txdata->tx_pkt_prod,
txdata->tx_pkt_cons);
#ifdef BNX2X_STOP_ON_ERROR
bnx2x_panic();
return -EBUSY;
#else
break;
#endif
}
cnt--;
usleep_range(1000, 1000);
}
return 0;
}
int bnx2x_get_link_cfg_idx(struct bnx2x *bp);
static inline void __storm_memset_struct(struct bnx2x *bp,
u32 addr, size_t size, u32 *data)
{
int i;
for (i = 0; i < size/4; i++)
REG_WR(bp, addr + (i * 4), data[i]);
}
static inline void storm_memset_func_cfg(struct bnx2x *bp,
struct tstorm_eth_function_common_config *tcfg,
u16 abs_fid)
{
size_t size = sizeof(struct tstorm_eth_function_common_config);
u32 addr = BAR_TSTRORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
}
static inline void storm_memset_cmng(struct bnx2x *bp,
struct cmng_struct_per_port *cmng,
u8 port)
{
size_t size = sizeof(struct cmng_struct_per_port);
u32 addr = BAR_XSTRORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
__storm_memset_struct(bp, addr, size, (u32 *)cmng);
}
/**
* bnx2x_wait_sp_comp - wait for the outstanding SP commands.
*
* @bp: driver handle
* @mask: bits that need to be cleared
*/
static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask)
{
int tout = 5000; /* Wait for 5 secs tops */
while (tout--) {
smp_mb();
netif_addr_lock_bh(bp->dev);
if (!(bp->sp_state & mask)) {
netif_addr_unlock_bh(bp->dev);
return true;
}
netif_addr_unlock_bh(bp->dev);
usleep_range(1000, 1000);
}
smp_mb();
netif_addr_lock_bh(bp->dev);
if (bp->sp_state & mask) {
BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, mask 0x%lx\n",
bp->sp_state, mask);
netif_addr_unlock_bh(bp->dev);
return false;
}
netif_addr_unlock_bh(bp->dev);
return true;
}
/**
* bnx2x_set_ctx_validation - set CDU context validation values
*
* @bp: driver handle
* @cxt: context of the connection on the host memory
* @cid: SW CID of the connection to be configured
*/
void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
u32 cid);
void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
u8 sb_index, u8 disable, u16 usec);
void bnx2x_acquire_phy_lock(struct bnx2x *bp);
void bnx2x_release_phy_lock(struct bnx2x *bp);
/**
* bnx2x_extract_max_cfg - extract MAX BW part from MF configuration.
*
* @bp: driver handle
* @mf_cfg: MF configuration
*
*/
static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
{
u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT;
if (!max_cfg) {
DP(NETIF_MSG_IFUP | BNX2X_MSG_ETHTOOL,
"Max BW configured to 0 - using 100 instead\n");
max_cfg = 100;
}
return max_cfg;
}
/* checks if HW supports GRO for given MTU */
static inline bool bnx2x_mtu_allows_gro(int mtu)
{
/* gro frags per page */
int fpp = SGE_PAGE_SIZE / (mtu - ETH_MAX_TPA_HEADER_SIZE);
/*
* 1. number of frags should not grow above MAX_SKB_FRAGS
* 2. frag must fit the page
*/
return mtu <= SGE_PAGE_SIZE && (U_ETH_SGL_SIZE * fpp) <= MAX_SKB_FRAGS;
}
static inline bool bnx2x_need_gro_check(int mtu)
{
return (SGE_PAGES / (mtu - ETH_MAX_TPA_HEADER_SIZE - 1)) !=
(SGE_PAGES / (mtu - ETH_MIN_TPA_HEADER_SIZE + 1));
}
/**
* bnx2x_bz_fp - zero content of the fastpath structure.
*
* @bp: driver handle
* @index: fastpath index to be zeroed
*
* Makes sure the contents of the bp->fp[index].napi is kept
* intact.
*/
static inline void bnx2x_bz_fp(struct bnx2x *bp, int index)
{
struct bnx2x_fastpath *fp = &bp->fp[index];
struct napi_struct orig_napi = fp->napi;
/* bzero bnx2x_fastpath contents */
if (bp->stats_init)
memset(fp, 0, sizeof(*fp));
else {
/* Keep Queue statistics */
struct bnx2x_eth_q_stats *tmp_eth_q_stats;
struct bnx2x_eth_q_stats_old *tmp_eth_q_stats_old;
tmp_eth_q_stats = kzalloc(sizeof(struct bnx2x_eth_q_stats),
GFP_KERNEL);
if (tmp_eth_q_stats)
memcpy(tmp_eth_q_stats, &fp->eth_q_stats,
sizeof(struct bnx2x_eth_q_stats));
tmp_eth_q_stats_old =
kzalloc(sizeof(struct bnx2x_eth_q_stats_old),
GFP_KERNEL);
if (tmp_eth_q_stats_old)
memcpy(tmp_eth_q_stats_old, &fp->eth_q_stats_old,
sizeof(struct bnx2x_eth_q_stats_old));
memset(fp, 0, sizeof(*fp));
if (tmp_eth_q_stats) {
memcpy(&fp->eth_q_stats, tmp_eth_q_stats,
sizeof(struct bnx2x_eth_q_stats));
kfree(tmp_eth_q_stats);
}
if (tmp_eth_q_stats_old) {
memcpy(&fp->eth_q_stats_old, tmp_eth_q_stats_old,
sizeof(struct bnx2x_eth_q_stats_old));
kfree(tmp_eth_q_stats_old);
}
}
/* Restore the NAPI object as it has been already initialized */
fp->napi = orig_napi;
fp->bp = bp;
fp->index = index;
if (IS_ETH_FP(fp))
fp->max_cos = bp->max_cos;
else
/* Special queues support only one CoS */
fp->max_cos = 1;
/*
* set the tpa flag for each queue. The tpa flag determines the queue
* minimal size so it must be set prior to queue memory allocation
*/
fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
(bp->flags & GRO_ENABLE_FLAG &&
bnx2x_mtu_allows_gro(bp->dev->mtu)));
if (bp->flags & TPA_ENABLE_FLAG)
fp->mode = TPA_MODE_LRO;
else if (bp->flags & GRO_ENABLE_FLAG)
fp->mode = TPA_MODE_GRO;
#ifdef BCM_CNIC
/* We don't want TPA on an FCoE L2 ring */
if (IS_FCOE_FP(fp))
fp->disable_tpa = 1;
#endif
}
#ifdef BCM_CNIC
/**
* bnx2x_get_iscsi_info - update iSCSI params according to licensing info.
*
* @bp: driver handle
*
*/
void bnx2x_get_iscsi_info(struct bnx2x *bp);
#endif
/* returns func by VN for current port */
static inline int func_by_vn(struct bnx2x *bp, int vn)
{
return 2 * vn + BP_PORT(bp);
}
/**
* bnx2x_link_sync_notify - send notification to other functions.
*
* @bp: driver handle
*
*/
static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
{
int func;
int vn;
/* Set the attention towards other drivers on the same port */
for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
if (vn == BP_VN(bp))
continue;
func = func_by_vn(bp, vn);
REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
(LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
}
}
/**
* bnx2x_update_drv_flags - update flags in shmem
*
* @bp: driver handle
* @flags: flags to update
* @set: set or clear
*
*/
static inline void bnx2x_update_drv_flags(struct bnx2x *bp, u32 flags, u32 set)
{
if (SHMEM2_HAS(bp, drv_flags)) {
u32 drv_flags;
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_DRV_FLAGS);
drv_flags = SHMEM2_RD(bp, drv_flags);
if (set)
SET_FLAGS(drv_flags, flags);
else
RESET_FLAGS(drv_flags, flags);
SHMEM2_WR(bp, drv_flags, drv_flags);
DP(NETIF_MSG_IFUP, "drv_flags 0x%08x\n", drv_flags);
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_DRV_FLAGS);
}
}
static inline bool bnx2x_is_valid_ether_addr(struct bnx2x *bp, u8 *addr)
{
if (is_valid_ether_addr(addr))
return true;
#ifdef BCM_CNIC
if (is_zero_ether_addr(addr) && IS_MF_STORAGE_SD(bp))
return true;
#endif
return false;
}
#endif /* BNX2X_CMN_H */