forked from Minki/linux
cb5dd7c104
The "dmi.h" file did not state anywhere in the file what "DMI" was. For those who know, it's obvious. For the rest of us, I added a brief opening comment. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
564 lines
13 KiB
C
564 lines
13 KiB
C
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/dmi.h>
|
|
|
|
/*
|
|
* DMI stands for "Desktop Management Interface". It is part
|
|
* of and an antecedent to, SMBIOS, which stands for System
|
|
* Management BIOS. See further: http://www.dmtf.org/standards
|
|
*/
|
|
static char dmi_empty_string[] = " ";
|
|
|
|
static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
|
|
{
|
|
const u8 *bp = ((u8 *) dm) + dm->length;
|
|
|
|
if (s) {
|
|
s--;
|
|
while (s > 0 && *bp) {
|
|
bp += strlen(bp) + 1;
|
|
s--;
|
|
}
|
|
|
|
if (*bp != 0) {
|
|
size_t len = strlen(bp)+1;
|
|
size_t cmp_len = len > 8 ? 8 : len;
|
|
|
|
if (!memcmp(bp, dmi_empty_string, cmp_len))
|
|
return dmi_empty_string;
|
|
return bp;
|
|
}
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
static char * __init dmi_string(const struct dmi_header *dm, u8 s)
|
|
{
|
|
const char *bp = dmi_string_nosave(dm, s);
|
|
char *str;
|
|
size_t len;
|
|
|
|
if (bp == dmi_empty_string)
|
|
return dmi_empty_string;
|
|
|
|
len = strlen(bp) + 1;
|
|
str = dmi_alloc(len);
|
|
if (str != NULL)
|
|
strcpy(str, bp);
|
|
else
|
|
printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* We have to be cautious here. We have seen BIOSes with DMI pointers
|
|
* pointing to completely the wrong place for example
|
|
*/
|
|
static void dmi_table(u8 *buf, int len, int num,
|
|
void (*decode)(const struct dmi_header *))
|
|
{
|
|
u8 *data = buf;
|
|
int i = 0;
|
|
|
|
/*
|
|
* Stop when we see all the items the table claimed to have
|
|
* OR we run off the end of the table (also happens)
|
|
*/
|
|
while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
|
|
const struct dmi_header *dm = (const struct dmi_header *)data;
|
|
|
|
/*
|
|
* We want to know the total length (formated area and strings)
|
|
* before decoding to make sure we won't run off the table in
|
|
* dmi_decode or dmi_string
|
|
*/
|
|
data += dm->length;
|
|
while ((data - buf < len - 1) && (data[0] || data[1]))
|
|
data++;
|
|
if (data - buf < len - 1)
|
|
decode(dm);
|
|
data += 2;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
static u32 dmi_base;
|
|
static u16 dmi_len;
|
|
static u16 dmi_num;
|
|
|
|
static int __init dmi_walk_early(void (*decode)(const struct dmi_header *))
|
|
{
|
|
u8 *buf;
|
|
|
|
buf = dmi_ioremap(dmi_base, dmi_len);
|
|
if (buf == NULL)
|
|
return -1;
|
|
|
|
dmi_table(buf, dmi_len, dmi_num, decode);
|
|
|
|
dmi_iounmap(buf, dmi_len);
|
|
return 0;
|
|
}
|
|
|
|
static int __init dmi_checksum(const u8 *buf)
|
|
{
|
|
u8 sum = 0;
|
|
int a;
|
|
|
|
for (a = 0; a < 15; a++)
|
|
sum += buf[a];
|
|
|
|
return sum == 0;
|
|
}
|
|
|
|
static char *dmi_ident[DMI_STRING_MAX];
|
|
static LIST_HEAD(dmi_devices);
|
|
int dmi_available;
|
|
|
|
/*
|
|
* Save a DMI string
|
|
*/
|
|
static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
|
|
{
|
|
const char *d = (const char*) dm;
|
|
char *p;
|
|
|
|
if (dmi_ident[slot])
|
|
return;
|
|
|
|
p = dmi_string(dm, d[string]);
|
|
if (p == NULL)
|
|
return;
|
|
|
|
dmi_ident[slot] = p;
|
|
}
|
|
|
|
static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
|
|
{
|
|
const u8 *d = (u8*) dm + index;
|
|
char *s;
|
|
int is_ff = 1, is_00 = 1, i;
|
|
|
|
if (dmi_ident[slot])
|
|
return;
|
|
|
|
for (i = 0; i < 16 && (is_ff || is_00); i++) {
|
|
if(d[i] != 0x00) is_ff = 0;
|
|
if(d[i] != 0xFF) is_00 = 0;
|
|
}
|
|
|
|
if (is_ff || is_00)
|
|
return;
|
|
|
|
s = dmi_alloc(16*2+4+1);
|
|
if (!s)
|
|
return;
|
|
|
|
sprintf(s,
|
|
"%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
|
|
d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
|
|
d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
|
|
|
|
dmi_ident[slot] = s;
|
|
}
|
|
|
|
static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
|
|
{
|
|
const u8 *d = (u8*) dm + index;
|
|
char *s;
|
|
|
|
if (dmi_ident[slot])
|
|
return;
|
|
|
|
s = dmi_alloc(4);
|
|
if (!s)
|
|
return;
|
|
|
|
sprintf(s, "%u", *d & 0x7F);
|
|
dmi_ident[slot] = s;
|
|
}
|
|
|
|
static void __init dmi_save_one_device(int type, const char *name)
|
|
{
|
|
struct dmi_device *dev;
|
|
|
|
/* No duplicate device */
|
|
if (dmi_find_device(type, name, NULL))
|
|
return;
|
|
|
|
dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
|
|
if (!dev) {
|
|
printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
|
|
return;
|
|
}
|
|
|
|
dev->type = type;
|
|
strcpy((char *)(dev + 1), name);
|
|
dev->name = (char *)(dev + 1);
|
|
dev->device_data = NULL;
|
|
list_add(&dev->list, &dmi_devices);
|
|
}
|
|
|
|
static void __init dmi_save_devices(const struct dmi_header *dm)
|
|
{
|
|
int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
const char *d = (char *)(dm + 1) + (i * 2);
|
|
|
|
/* Skip disabled device */
|
|
if ((*d & 0x80) == 0)
|
|
continue;
|
|
|
|
dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
|
|
}
|
|
}
|
|
|
|
static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
|
|
{
|
|
int i, count = *(u8 *)(dm + 1);
|
|
struct dmi_device *dev;
|
|
|
|
for (i = 1; i <= count; i++) {
|
|
char *devname = dmi_string(dm, i);
|
|
|
|
if (devname == dmi_empty_string)
|
|
continue;
|
|
|
|
dev = dmi_alloc(sizeof(*dev));
|
|
if (!dev) {
|
|
printk(KERN_ERR
|
|
"dmi_save_oem_strings_devices: out of memory.\n");
|
|
break;
|
|
}
|
|
|
|
dev->type = DMI_DEV_TYPE_OEM_STRING;
|
|
dev->name = devname;
|
|
dev->device_data = NULL;
|
|
|
|
list_add(&dev->list, &dmi_devices);
|
|
}
|
|
}
|
|
|
|
static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
|
|
{
|
|
struct dmi_device *dev;
|
|
void * data;
|
|
|
|
data = dmi_alloc(dm->length);
|
|
if (data == NULL) {
|
|
printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
|
|
return;
|
|
}
|
|
|
|
memcpy(data, dm, dm->length);
|
|
|
|
dev = dmi_alloc(sizeof(*dev));
|
|
if (!dev) {
|
|
printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
|
|
return;
|
|
}
|
|
|
|
dev->type = DMI_DEV_TYPE_IPMI;
|
|
dev->name = "IPMI controller";
|
|
dev->device_data = data;
|
|
|
|
list_add_tail(&dev->list, &dmi_devices);
|
|
}
|
|
|
|
static void __init dmi_save_extended_devices(const struct dmi_header *dm)
|
|
{
|
|
const u8 *d = (u8*) dm + 5;
|
|
|
|
/* Skip disabled device */
|
|
if ((*d & 0x80) == 0)
|
|
return;
|
|
|
|
dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
|
|
}
|
|
|
|
/*
|
|
* Process a DMI table entry. Right now all we care about are the BIOS
|
|
* and machine entries. For 2.5 we should pull the smbus controller info
|
|
* out of here.
|
|
*/
|
|
static void __init dmi_decode(const struct dmi_header *dm)
|
|
{
|
|
switch(dm->type) {
|
|
case 0: /* BIOS Information */
|
|
dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
|
|
dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
|
|
dmi_save_ident(dm, DMI_BIOS_DATE, 8);
|
|
break;
|
|
case 1: /* System Information */
|
|
dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
|
|
dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
|
|
dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
|
|
dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
|
|
dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
|
|
break;
|
|
case 2: /* Base Board Information */
|
|
dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
|
|
dmi_save_ident(dm, DMI_BOARD_NAME, 5);
|
|
dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
|
|
dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
|
|
dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
|
|
break;
|
|
case 3: /* Chassis Information */
|
|
dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
|
|
dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
|
|
dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
|
|
dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
|
|
dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
|
|
break;
|
|
case 10: /* Onboard Devices Information */
|
|
dmi_save_devices(dm);
|
|
break;
|
|
case 11: /* OEM Strings */
|
|
dmi_save_oem_strings_devices(dm);
|
|
break;
|
|
case 38: /* IPMI Device Information */
|
|
dmi_save_ipmi_device(dm);
|
|
break;
|
|
case 41: /* Onboard Devices Extended Information */
|
|
dmi_save_extended_devices(dm);
|
|
}
|
|
}
|
|
|
|
static int __init dmi_present(const char __iomem *p)
|
|
{
|
|
u8 buf[15];
|
|
|
|
memcpy_fromio(buf, p, 15);
|
|
if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
|
|
dmi_num = (buf[13] << 8) | buf[12];
|
|
dmi_len = (buf[7] << 8) | buf[6];
|
|
dmi_base = (buf[11] << 24) | (buf[10] << 16) |
|
|
(buf[9] << 8) | buf[8];
|
|
|
|
/*
|
|
* DMI version 0.0 means that the real version is taken from
|
|
* the SMBIOS version, which we don't know at this point.
|
|
*/
|
|
if (buf[14] != 0)
|
|
printk(KERN_INFO "DMI %d.%d present.\n",
|
|
buf[14] >> 4, buf[14] & 0xF);
|
|
else
|
|
printk(KERN_INFO "DMI present.\n");
|
|
if (dmi_walk_early(dmi_decode) == 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void __init dmi_scan_machine(void)
|
|
{
|
|
char __iomem *p, *q;
|
|
int rc;
|
|
|
|
if (efi_enabled) {
|
|
if (efi.smbios == EFI_INVALID_TABLE_ADDR)
|
|
goto out;
|
|
|
|
/* This is called as a core_initcall() because it isn't
|
|
* needed during early boot. This also means we can
|
|
* iounmap the space when we're done with it.
|
|
*/
|
|
p = dmi_ioremap(efi.smbios, 32);
|
|
if (p == NULL)
|
|
goto out;
|
|
|
|
rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
|
|
dmi_iounmap(p, 32);
|
|
if (!rc) {
|
|
dmi_available = 1;
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* no iounmap() for that ioremap(); it would be a no-op, but
|
|
* it's so early in setup that sucker gets confused into doing
|
|
* what it shouldn't if we actually call it.
|
|
*/
|
|
p = dmi_ioremap(0xF0000, 0x10000);
|
|
if (p == NULL)
|
|
goto out;
|
|
|
|
for (q = p; q < p + 0x10000; q += 16) {
|
|
rc = dmi_present(q);
|
|
if (!rc) {
|
|
dmi_available = 1;
|
|
dmi_iounmap(p, 0x10000);
|
|
return;
|
|
}
|
|
}
|
|
dmi_iounmap(p, 0x10000);
|
|
}
|
|
out: printk(KERN_INFO "DMI not present or invalid.\n");
|
|
}
|
|
|
|
/**
|
|
* dmi_check_system - check system DMI data
|
|
* @list: array of dmi_system_id structures to match against
|
|
* All non-null elements of the list must match
|
|
* their slot's (field index's) data (i.e., each
|
|
* list string must be a substring of the specified
|
|
* DMI slot's string data) to be considered a
|
|
* successful match.
|
|
*
|
|
* Walk the blacklist table running matching functions until someone
|
|
* returns non zero or we hit the end. Callback function is called for
|
|
* each successful match. Returns the number of matches.
|
|
*/
|
|
int dmi_check_system(const struct dmi_system_id *list)
|
|
{
|
|
int i, count = 0;
|
|
const struct dmi_system_id *d = list;
|
|
|
|
while (d->ident) {
|
|
for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
|
|
int s = d->matches[i].slot;
|
|
if (s == DMI_NONE)
|
|
continue;
|
|
if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
|
|
continue;
|
|
/* No match */
|
|
goto fail;
|
|
}
|
|
count++;
|
|
if (d->callback && d->callback(d))
|
|
break;
|
|
fail: d++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL(dmi_check_system);
|
|
|
|
/**
|
|
* dmi_get_system_info - return DMI data value
|
|
* @field: data index (see enum dmi_field)
|
|
*
|
|
* Returns one DMI data value, can be used to perform
|
|
* complex DMI data checks.
|
|
*/
|
|
const char *dmi_get_system_info(int field)
|
|
{
|
|
return dmi_ident[field];
|
|
}
|
|
EXPORT_SYMBOL(dmi_get_system_info);
|
|
|
|
|
|
/**
|
|
* dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
|
|
* @str: Case sensitive Name
|
|
*/
|
|
int dmi_name_in_vendors(const char *str)
|
|
{
|
|
static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
|
|
DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
|
|
DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
|
|
int i;
|
|
for (i = 0; fields[i] != DMI_NONE; i++) {
|
|
int f = fields[i];
|
|
if (dmi_ident[f] && strstr(dmi_ident[f], str))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dmi_name_in_vendors);
|
|
|
|
/**
|
|
* dmi_find_device - find onboard device by type/name
|
|
* @type: device type or %DMI_DEV_TYPE_ANY to match all device types
|
|
* @name: device name string or %NULL to match all
|
|
* @from: previous device found in search, or %NULL for new search.
|
|
*
|
|
* Iterates through the list of known onboard devices. If a device is
|
|
* found with a matching @vendor and @device, a pointer to its device
|
|
* structure is returned. Otherwise, %NULL is returned.
|
|
* A new search is initiated by passing %NULL as the @from argument.
|
|
* If @from is not %NULL, searches continue from next device.
|
|
*/
|
|
const struct dmi_device * dmi_find_device(int type, const char *name,
|
|
const struct dmi_device *from)
|
|
{
|
|
const struct list_head *head = from ? &from->list : &dmi_devices;
|
|
struct list_head *d;
|
|
|
|
for(d = head->next; d != &dmi_devices; d = d->next) {
|
|
const struct dmi_device *dev =
|
|
list_entry(d, struct dmi_device, list);
|
|
|
|
if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
|
|
((name == NULL) || (strcmp(dev->name, name) == 0)))
|
|
return dev;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dmi_find_device);
|
|
|
|
/**
|
|
* dmi_get_year - Return year of a DMI date
|
|
* @field: data index (like dmi_get_system_info)
|
|
*
|
|
* Returns -1 when the field doesn't exist. 0 when it is broken.
|
|
*/
|
|
int dmi_get_year(int field)
|
|
{
|
|
int year;
|
|
const char *s = dmi_get_system_info(field);
|
|
|
|
if (!s)
|
|
return -1;
|
|
if (*s == '\0')
|
|
return 0;
|
|
s = strrchr(s, '/');
|
|
if (!s)
|
|
return 0;
|
|
|
|
s += 1;
|
|
year = simple_strtoul(s, NULL, 0);
|
|
if (year && year < 100) { /* 2-digit year */
|
|
year += 1900;
|
|
if (year < 1996) /* no dates < spec 1.0 */
|
|
year += 100;
|
|
}
|
|
|
|
return year;
|
|
}
|
|
|
|
/**
|
|
* dmi_walk - Walk the DMI table and get called back for every record
|
|
* @decode: Callback function
|
|
*
|
|
* Returns -1 when the DMI table can't be reached, 0 on success.
|
|
*/
|
|
int dmi_walk(void (*decode)(const struct dmi_header *))
|
|
{
|
|
u8 *buf;
|
|
|
|
if (!dmi_available)
|
|
return -1;
|
|
|
|
buf = ioremap(dmi_base, dmi_len);
|
|
if (buf == NULL)
|
|
return -1;
|
|
|
|
dmi_table(buf, dmi_len, dmi_num, decode);
|
|
|
|
iounmap(buf);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dmi_walk);
|