ef296dc947
NAND core sets ECC algorithm in algo field now and it should be preferred over the mode field. This also prepares driver for dropping NAND_ECC_SOFT_BCH. Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
1102 lines
28 KiB
C
1102 lines
28 KiB
C
/*
|
|
* drivers/mtd/nand/fsmc_nand.c
|
|
*
|
|
* ST Microelectronics
|
|
* Flexible Static Memory Controller (FSMC)
|
|
* Driver for NAND portions
|
|
*
|
|
* Copyright © 2010 ST Microelectronics
|
|
* Vipin Kumar <vipin.kumar@st.com>
|
|
* Ashish Priyadarshi
|
|
*
|
|
* Based on drivers/mtd/nand/nomadik_nand.c
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public
|
|
* License version 2. This program is licensed "as is" without any
|
|
* warranty of any kind, whether express or implied.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/fsmc.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <mtd/mtd-abi.h>
|
|
|
|
static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 2;
|
|
oobregion->length = 3;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 8;
|
|
|
|
if (section < chip->ecc.steps - 1)
|
|
oobregion->length = 8;
|
|
else
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
|
|
.ecc = fsmc_ecc1_ooblayout_ecc,
|
|
.free = fsmc_ecc1_ooblayout_free,
|
|
};
|
|
|
|
/*
|
|
* ECC placement definitions in oobfree type format.
|
|
* There are 13 bytes of ecc for every 512 byte block and it has to be read
|
|
* consecutively and immediately after the 512 byte data block for hardware to
|
|
* generate the error bit offsets in 512 byte data.
|
|
*/
|
|
static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = chip->ecc.bytes;
|
|
|
|
if (!section && mtd->writesize <= 512)
|
|
oobregion->offset = 0;
|
|
else
|
|
oobregion->offset = (section * 16) + 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 15;
|
|
|
|
if (section < chip->ecc.steps - 1)
|
|
oobregion->length = 3;
|
|
else
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
|
|
.ecc = fsmc_ecc4_ooblayout_ecc,
|
|
.free = fsmc_ecc4_ooblayout_free,
|
|
};
|
|
|
|
/**
|
|
* struct fsmc_nand_data - structure for FSMC NAND device state
|
|
*
|
|
* @pid: Part ID on the AMBA PrimeCell format
|
|
* @mtd: MTD info for a NAND flash.
|
|
* @nand: Chip related info for a NAND flash.
|
|
* @partitions: Partition info for a NAND Flash.
|
|
* @nr_partitions: Total number of partition of a NAND flash.
|
|
*
|
|
* @bank: Bank number for probed device.
|
|
* @clk: Clock structure for FSMC.
|
|
*
|
|
* @read_dma_chan: DMA channel for read access
|
|
* @write_dma_chan: DMA channel for write access to NAND
|
|
* @dma_access_complete: Completion structure
|
|
*
|
|
* @data_pa: NAND Physical port for Data.
|
|
* @data_va: NAND port for Data.
|
|
* @cmd_va: NAND port for Command.
|
|
* @addr_va: NAND port for Address.
|
|
* @regs_va: FSMC regs base address.
|
|
*/
|
|
struct fsmc_nand_data {
|
|
u32 pid;
|
|
struct nand_chip nand;
|
|
struct mtd_partition *partitions;
|
|
unsigned int nr_partitions;
|
|
|
|
unsigned int bank;
|
|
struct device *dev;
|
|
enum access_mode mode;
|
|
struct clk *clk;
|
|
|
|
/* DMA related objects */
|
|
struct dma_chan *read_dma_chan;
|
|
struct dma_chan *write_dma_chan;
|
|
struct completion dma_access_complete;
|
|
|
|
struct fsmc_nand_timings *dev_timings;
|
|
|
|
dma_addr_t data_pa;
|
|
void __iomem *data_va;
|
|
void __iomem *cmd_va;
|
|
void __iomem *addr_va;
|
|
void __iomem *regs_va;
|
|
|
|
void (*select_chip)(uint32_t bank, uint32_t busw);
|
|
};
|
|
|
|
static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
|
|
}
|
|
|
|
/* Assert CS signal based on chipnr */
|
|
static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsmc_nand_data *host;
|
|
|
|
host = mtd_to_fsmc(mtd);
|
|
|
|
switch (chipnr) {
|
|
case -1:
|
|
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
|
|
break;
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
if (host->select_chip)
|
|
host->select_chip(chipnr,
|
|
chip->options & NAND_BUSWIDTH_16);
|
|
break;
|
|
|
|
default:
|
|
dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fsmc_cmd_ctrl - For facilitaing Hardware access
|
|
* This routine allows hardware specific access to control-lines(ALE,CLE)
|
|
*/
|
|
static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
void __iomem *regs = host->regs_va;
|
|
unsigned int bank = host->bank;
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
u32 pc;
|
|
|
|
if (ctrl & NAND_CLE) {
|
|
this->IO_ADDR_R = host->cmd_va;
|
|
this->IO_ADDR_W = host->cmd_va;
|
|
} else if (ctrl & NAND_ALE) {
|
|
this->IO_ADDR_R = host->addr_va;
|
|
this->IO_ADDR_W = host->addr_va;
|
|
} else {
|
|
this->IO_ADDR_R = host->data_va;
|
|
this->IO_ADDR_W = host->data_va;
|
|
}
|
|
|
|
pc = readl(FSMC_NAND_REG(regs, bank, PC));
|
|
if (ctrl & NAND_NCE)
|
|
pc |= FSMC_ENABLE;
|
|
else
|
|
pc &= ~FSMC_ENABLE;
|
|
writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
|
|
}
|
|
|
|
mb();
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb_relaxed(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
/*
|
|
* fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
|
|
*
|
|
* This routine initializes timing parameters related to NAND memory access in
|
|
* FSMC registers
|
|
*/
|
|
static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
|
|
uint32_t busw, struct fsmc_nand_timings *timings)
|
|
{
|
|
uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
|
|
uint32_t tclr, tar, thiz, thold, twait, tset;
|
|
struct fsmc_nand_timings *tims;
|
|
struct fsmc_nand_timings default_timings = {
|
|
.tclr = FSMC_TCLR_1,
|
|
.tar = FSMC_TAR_1,
|
|
.thiz = FSMC_THIZ_1,
|
|
.thold = FSMC_THOLD_4,
|
|
.twait = FSMC_TWAIT_6,
|
|
.tset = FSMC_TSET_0,
|
|
};
|
|
|
|
if (timings)
|
|
tims = timings;
|
|
else
|
|
tims = &default_timings;
|
|
|
|
tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
|
|
tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
|
|
thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
|
|
thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
|
|
twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
|
|
tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
|
|
|
|
if (busw)
|
|
writel_relaxed(value | FSMC_DEVWID_16,
|
|
FSMC_NAND_REG(regs, bank, PC));
|
|
else
|
|
writel_relaxed(value | FSMC_DEVWID_8,
|
|
FSMC_NAND_REG(regs, bank, PC));
|
|
|
|
writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
|
|
FSMC_NAND_REG(regs, bank, PC));
|
|
writel_relaxed(thiz | thold | twait | tset,
|
|
FSMC_NAND_REG(regs, bank, COMM));
|
|
writel_relaxed(thiz | thold | twait | tset,
|
|
FSMC_NAND_REG(regs, bank, ATTRIB));
|
|
}
|
|
|
|
/*
|
|
* fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
|
|
*/
|
|
static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
void __iomem *regs = host->regs_va;
|
|
uint32_t bank = host->bank;
|
|
|
|
writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
|
|
FSMC_NAND_REG(regs, bank, PC));
|
|
writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
|
|
FSMC_NAND_REG(regs, bank, PC));
|
|
writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
|
|
FSMC_NAND_REG(regs, bank, PC));
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
|
|
* FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
|
|
* max of 8-bits)
|
|
*/
|
|
static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
|
|
uint8_t *ecc)
|
|
{
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
void __iomem *regs = host->regs_va;
|
|
uint32_t bank = host->bank;
|
|
uint32_t ecc_tmp;
|
|
unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
|
|
|
|
do {
|
|
if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
|
|
break;
|
|
else
|
|
cond_resched();
|
|
} while (!time_after_eq(jiffies, deadline));
|
|
|
|
if (time_after_eq(jiffies, deadline)) {
|
|
dev_err(host->dev, "calculate ecc timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
|
|
ecc[0] = (uint8_t) (ecc_tmp >> 0);
|
|
ecc[1] = (uint8_t) (ecc_tmp >> 8);
|
|
ecc[2] = (uint8_t) (ecc_tmp >> 16);
|
|
ecc[3] = (uint8_t) (ecc_tmp >> 24);
|
|
|
|
ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
|
|
ecc[4] = (uint8_t) (ecc_tmp >> 0);
|
|
ecc[5] = (uint8_t) (ecc_tmp >> 8);
|
|
ecc[6] = (uint8_t) (ecc_tmp >> 16);
|
|
ecc[7] = (uint8_t) (ecc_tmp >> 24);
|
|
|
|
ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
|
|
ecc[8] = (uint8_t) (ecc_tmp >> 0);
|
|
ecc[9] = (uint8_t) (ecc_tmp >> 8);
|
|
ecc[10] = (uint8_t) (ecc_tmp >> 16);
|
|
ecc[11] = (uint8_t) (ecc_tmp >> 24);
|
|
|
|
ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
|
|
ecc[12] = (uint8_t) (ecc_tmp >> 16);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
|
|
* FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
|
|
* max of 1-bit)
|
|
*/
|
|
static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
|
|
uint8_t *ecc)
|
|
{
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
void __iomem *regs = host->regs_va;
|
|
uint32_t bank = host->bank;
|
|
uint32_t ecc_tmp;
|
|
|
|
ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
|
|
ecc[0] = (uint8_t) (ecc_tmp >> 0);
|
|
ecc[1] = (uint8_t) (ecc_tmp >> 8);
|
|
ecc[2] = (uint8_t) (ecc_tmp >> 16);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of 0's in buff upto a max of max_bits */
|
|
static int count_written_bits(uint8_t *buff, int size, int max_bits)
|
|
{
|
|
int k, written_bits = 0;
|
|
|
|
for (k = 0; k < size; k++) {
|
|
written_bits += hweight8(~buff[k]);
|
|
if (written_bits > max_bits)
|
|
break;
|
|
}
|
|
|
|
return written_bits;
|
|
}
|
|
|
|
static void dma_complete(void *param)
|
|
{
|
|
struct fsmc_nand_data *host = param;
|
|
|
|
complete(&host->dma_access_complete);
|
|
}
|
|
|
|
static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct dma_device *dma_dev;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_addr_t dma_dst, dma_src, dma_addr;
|
|
dma_cookie_t cookie;
|
|
unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
|
int ret;
|
|
unsigned long time_left;
|
|
|
|
if (direction == DMA_TO_DEVICE)
|
|
chan = host->write_dma_chan;
|
|
else if (direction == DMA_FROM_DEVICE)
|
|
chan = host->read_dma_chan;
|
|
else
|
|
return -EINVAL;
|
|
|
|
dma_dev = chan->device;
|
|
dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
|
|
|
|
if (direction == DMA_TO_DEVICE) {
|
|
dma_src = dma_addr;
|
|
dma_dst = host->data_pa;
|
|
} else {
|
|
dma_src = host->data_pa;
|
|
dma_dst = dma_addr;
|
|
}
|
|
|
|
tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
|
|
len, flags);
|
|
if (!tx) {
|
|
dev_err(host->dev, "device_prep_dma_memcpy error\n");
|
|
ret = -EIO;
|
|
goto unmap_dma;
|
|
}
|
|
|
|
tx->callback = dma_complete;
|
|
tx->callback_param = host;
|
|
cookie = tx->tx_submit(tx);
|
|
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dev_err(host->dev, "dma_submit_error %d\n", cookie);
|
|
goto unmap_dma;
|
|
}
|
|
|
|
dma_async_issue_pending(chan);
|
|
|
|
time_left =
|
|
wait_for_completion_timeout(&host->dma_access_complete,
|
|
msecs_to_jiffies(3000));
|
|
if (time_left == 0) {
|
|
dmaengine_terminate_all(chan);
|
|
dev_err(host->dev, "wait_for_completion_timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
goto unmap_dma;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
unmap_dma:
|
|
dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fsmc_write_buf - write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
|
|
IS_ALIGNED(len, sizeof(uint32_t))) {
|
|
uint32_t *p = (uint32_t *)buf;
|
|
len = len >> 2;
|
|
for (i = 0; i < len; i++)
|
|
writel_relaxed(p[i], chip->IO_ADDR_W);
|
|
} else {
|
|
for (i = 0; i < len; i++)
|
|
writeb_relaxed(buf[i], chip->IO_ADDR_W);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_buf - read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
int i;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
|
|
IS_ALIGNED(len, sizeof(uint32_t))) {
|
|
uint32_t *p = (uint32_t *)buf;
|
|
len = len >> 2;
|
|
for (i = 0; i < len; i++)
|
|
p[i] = readl_relaxed(chip->IO_ADDR_R);
|
|
} else {
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = readb_relaxed(chip->IO_ADDR_R);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_buf_dma - read chip data into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
|
|
dma_xfer(host, buf, len, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* fsmc_write_buf_dma - write buffer to chip
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
|
|
dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* fsmc_read_page_hwecc
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller expects OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* This routine is needed for fsmc version 8 as reading from NAND chip has to be
|
|
* performed in a strict sequence as follows:
|
|
* data(512 byte) -> ecc(13 byte)
|
|
* After this read, fsmc hardware generates and reports error data bits(up to a
|
|
* max of 8 bits)
|
|
*/
|
|
static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int i, j, s, stat, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
int off, len, group = 0;
|
|
/*
|
|
* ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
|
|
* end up reading 14 bytes (7 words) from oob. The local array is
|
|
* to maintain word alignment
|
|
*/
|
|
uint16_t ecc_oob[7];
|
|
uint8_t *oob = (uint8_t *)&ecc_oob[0];
|
|
unsigned int max_bitflips = 0;
|
|
|
|
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
for (j = 0; j < eccbytes;) {
|
|
struct mtd_oob_region oobregion;
|
|
int ret;
|
|
|
|
ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
|
|
if (ret)
|
|
return ret;
|
|
|
|
off = oobregion.offset;
|
|
len = oobregion.length;
|
|
|
|
/*
|
|
* length is intentionally kept a higher multiple of 2
|
|
* to read at least 13 bytes even in case of 16 bit NAND
|
|
* devices
|
|
*/
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
len = roundup(len, 2);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
|
|
chip->read_buf(mtd, oob + j, len);
|
|
j += len;
|
|
}
|
|
|
|
memcpy(&ecc_code[i], oob, chip->ecc.bytes);
|
|
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/*
|
|
* fsmc_bch8_correct_data
|
|
* @mtd: mtd info structure
|
|
* @dat: buffer of read data
|
|
* @read_ecc: ecc read from device spare area
|
|
* @calc_ecc: ecc calculated from read data
|
|
*
|
|
* calc_ecc is a 104 bit information containing maximum of 8 error
|
|
* offset informations of 13 bits each in 512 bytes of read data.
|
|
*/
|
|
static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
|
|
void __iomem *regs = host->regs_va;
|
|
unsigned int bank = host->bank;
|
|
uint32_t err_idx[8];
|
|
uint32_t num_err, i;
|
|
uint32_t ecc1, ecc2, ecc3, ecc4;
|
|
|
|
num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
|
|
|
|
/* no bit flipping */
|
|
if (likely(num_err == 0))
|
|
return 0;
|
|
|
|
/* too many errors */
|
|
if (unlikely(num_err > 8)) {
|
|
/*
|
|
* This is a temporary erase check. A newly erased page read
|
|
* would result in an ecc error because the oob data is also
|
|
* erased to FF and the calculated ecc for an FF data is not
|
|
* FF..FF.
|
|
* This is a workaround to skip performing correction in case
|
|
* data is FF..FF
|
|
*
|
|
* Logic:
|
|
* For every page, each bit written as 0 is counted until these
|
|
* number of bits are greater than 8 (the maximum correction
|
|
* capability of FSMC for each 512 + 13 bytes)
|
|
*/
|
|
|
|
int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
|
|
int bits_data = count_written_bits(dat, chip->ecc.size, 8);
|
|
|
|
if ((bits_ecc + bits_data) <= 8) {
|
|
if (bits_data)
|
|
memset(dat, 0xff, chip->ecc.size);
|
|
return bits_data;
|
|
}
|
|
|
|
return -EBADMSG;
|
|
}
|
|
|
|
/*
|
|
* ------------------- calc_ecc[] bit wise -----------|--13 bits--|
|
|
* |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
|
|
*
|
|
* calc_ecc is a 104 bit information containing maximum of 8 error
|
|
* offset informations of 13 bits each. calc_ecc is copied into a
|
|
* uint64_t array and error offset indexes are populated in err_idx
|
|
* array
|
|
*/
|
|
ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
|
|
ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
|
|
ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
|
|
ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
|
|
|
|
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
|
|
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
|
|
err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
|
|
err_idx[3] = (ecc2 >> 7) & 0x1FFF;
|
|
err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
|
|
err_idx[5] = (ecc3 >> 1) & 0x1FFF;
|
|
err_idx[6] = (ecc3 >> 14) & 0x1FFF;
|
|
err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
|
|
|
|
i = 0;
|
|
while (num_err--) {
|
|
change_bit(0, (unsigned long *)&err_idx[i]);
|
|
change_bit(1, (unsigned long *)&err_idx[i]);
|
|
|
|
if (err_idx[i] < chip->ecc.size * 8) {
|
|
change_bit(err_idx[i], (unsigned long *)dat);
|
|
i++;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static bool filter(struct dma_chan *chan, void *slave)
|
|
{
|
|
chan->private = slave;
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
|
|
struct device_node *np)
|
|
{
|
|
struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
|
|
u32 val;
|
|
int ret;
|
|
|
|
/* Set default NAND width to 8 bits */
|
|
pdata->width = 8;
|
|
if (!of_property_read_u32(np, "bank-width", &val)) {
|
|
if (val == 2) {
|
|
pdata->width = 16;
|
|
} else if (val != 1) {
|
|
dev_err(&pdev->dev, "invalid bank-width %u\n", val);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
if (of_get_property(np, "nand-skip-bbtscan", NULL))
|
|
pdata->options = NAND_SKIP_BBTSCAN;
|
|
|
|
pdata->nand_timings = devm_kzalloc(&pdev->dev,
|
|
sizeof(*pdata->nand_timings), GFP_KERNEL);
|
|
if (!pdata->nand_timings)
|
|
return -ENOMEM;
|
|
ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
|
|
sizeof(*pdata->nand_timings));
|
|
if (ret) {
|
|
dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
|
|
pdata->nand_timings = NULL;
|
|
}
|
|
|
|
/* Set default NAND bank to 0 */
|
|
pdata->bank = 0;
|
|
if (!of_property_read_u32(np, "bank", &val)) {
|
|
if (val > 3) {
|
|
dev_err(&pdev->dev, "invalid bank %u\n", val);
|
|
return -EINVAL;
|
|
}
|
|
pdata->bank = val;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
|
|
struct device_node *np)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* fsmc_nand_probe - Probe function
|
|
* @pdev: platform device structure
|
|
*/
|
|
static int __init fsmc_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
|
|
struct device_node __maybe_unused *np = pdev->dev.of_node;
|
|
struct fsmc_nand_data *host;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand;
|
|
struct resource *res;
|
|
dma_cap_mask_t mask;
|
|
int ret = 0;
|
|
u32 pid;
|
|
int i;
|
|
|
|
if (np) {
|
|
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
|
|
pdev->dev.platform_data = pdata;
|
|
ret = fsmc_nand_probe_config_dt(pdev, np);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "no platform data\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
if (!pdata) {
|
|
dev_err(&pdev->dev, "platform data is NULL\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
|
|
host->data_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->data_va))
|
|
return PTR_ERR(host->data_va);
|
|
|
|
host->data_pa = (dma_addr_t)res->start;
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
|
|
host->addr_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->addr_va))
|
|
return PTR_ERR(host->addr_va);
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
|
|
host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->cmd_va))
|
|
return PTR_ERR(host->cmd_va);
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
|
|
host->regs_va = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->regs_va))
|
|
return PTR_ERR(host->regs_va);
|
|
|
|
host->clk = clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(host->clk)) {
|
|
dev_err(&pdev->dev, "failed to fetch block clock\n");
|
|
return PTR_ERR(host->clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(host->clk);
|
|
if (ret)
|
|
goto err_clk_prepare_enable;
|
|
|
|
/*
|
|
* This device ID is actually a common AMBA ID as used on the
|
|
* AMBA PrimeCell bus. However it is not a PrimeCell.
|
|
*/
|
|
for (pid = 0, i = 0; i < 4; i++)
|
|
pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
|
|
host->pid = pid;
|
|
dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
|
|
"revision %02x, config %02x\n",
|
|
AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
|
|
AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
|
|
|
|
host->bank = pdata->bank;
|
|
host->select_chip = pdata->select_bank;
|
|
host->partitions = pdata->partitions;
|
|
host->nr_partitions = pdata->nr_partitions;
|
|
host->dev = &pdev->dev;
|
|
host->dev_timings = pdata->nand_timings;
|
|
host->mode = pdata->mode;
|
|
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
init_completion(&host->dma_access_complete);
|
|
|
|
/* Link all private pointers */
|
|
mtd = nand_to_mtd(&host->nand);
|
|
nand = &host->nand;
|
|
nand_set_controller_data(nand, host);
|
|
nand_set_flash_node(nand, np);
|
|
|
|
mtd->dev.parent = &pdev->dev;
|
|
nand->IO_ADDR_R = host->data_va;
|
|
nand->IO_ADDR_W = host->data_va;
|
|
nand->cmd_ctrl = fsmc_cmd_ctrl;
|
|
nand->chip_delay = 30;
|
|
|
|
/*
|
|
* Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
|
|
* can overwrite this value if the DT provides a different value.
|
|
*/
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.hwctl = fsmc_enable_hwecc;
|
|
nand->ecc.size = 512;
|
|
nand->options = pdata->options;
|
|
nand->select_chip = fsmc_select_chip;
|
|
nand->badblockbits = 7;
|
|
nand_set_flash_node(nand, np);
|
|
|
|
if (pdata->width == FSMC_NAND_BW16)
|
|
nand->options |= NAND_BUSWIDTH_16;
|
|
|
|
switch (host->mode) {
|
|
case USE_DMA_ACCESS:
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
host->read_dma_chan = dma_request_channel(mask, filter,
|
|
pdata->read_dma_priv);
|
|
if (!host->read_dma_chan) {
|
|
dev_err(&pdev->dev, "Unable to get read dma channel\n");
|
|
goto err_req_read_chnl;
|
|
}
|
|
host->write_dma_chan = dma_request_channel(mask, filter,
|
|
pdata->write_dma_priv);
|
|
if (!host->write_dma_chan) {
|
|
dev_err(&pdev->dev, "Unable to get write dma channel\n");
|
|
goto err_req_write_chnl;
|
|
}
|
|
nand->read_buf = fsmc_read_buf_dma;
|
|
nand->write_buf = fsmc_write_buf_dma;
|
|
break;
|
|
|
|
default:
|
|
case USE_WORD_ACCESS:
|
|
nand->read_buf = fsmc_read_buf;
|
|
nand->write_buf = fsmc_write_buf;
|
|
break;
|
|
}
|
|
|
|
fsmc_nand_setup(host->regs_va, host->bank,
|
|
nand->options & NAND_BUSWIDTH_16,
|
|
host->dev_timings);
|
|
|
|
if (AMBA_REV_BITS(host->pid) >= 8) {
|
|
nand->ecc.read_page = fsmc_read_page_hwecc;
|
|
nand->ecc.calculate = fsmc_read_hwecc_ecc4;
|
|
nand->ecc.correct = fsmc_bch8_correct_data;
|
|
nand->ecc.bytes = 13;
|
|
nand->ecc.strength = 8;
|
|
}
|
|
|
|
/*
|
|
* Scan to find existence of the device
|
|
*/
|
|
if (nand_scan_ident(mtd, 1, NULL)) {
|
|
ret = -ENXIO;
|
|
dev_err(&pdev->dev, "No NAND Device found!\n");
|
|
goto err_scan_ident;
|
|
}
|
|
|
|
if (AMBA_REV_BITS(host->pid) >= 8) {
|
|
switch (mtd->oobsize) {
|
|
case 16:
|
|
case 64:
|
|
case 128:
|
|
case 224:
|
|
case 256:
|
|
break;
|
|
default:
|
|
dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
ret = -EINVAL;
|
|
goto err_probe;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
|
|
} else {
|
|
switch (nand->ecc.mode) {
|
|
case NAND_ECC_HW:
|
|
dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
|
|
nand->ecc.calculate = fsmc_read_hwecc_ecc1;
|
|
nand->ecc.correct = nand_correct_data;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.strength = 1;
|
|
break;
|
|
|
|
case NAND_ECC_SOFT:
|
|
case NAND_ECC_SOFT_BCH:
|
|
if (nand->ecc.algo == NAND_ECC_BCH) {
|
|
dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
dev_err(&pdev->dev, "Unsupported ECC mode!\n");
|
|
goto err_probe;
|
|
}
|
|
|
|
/*
|
|
* Don't set layout for BCH4 SW ECC. This will be
|
|
* generated later in nand_bch_init() later.
|
|
*/
|
|
if (nand->ecc.mode != NAND_ECC_SOFT_BCH) {
|
|
switch (mtd->oobsize) {
|
|
case 16:
|
|
case 64:
|
|
case 128:
|
|
mtd_set_ooblayout(mtd,
|
|
&fsmc_ecc1_ooblayout_ops);
|
|
break;
|
|
default:
|
|
dev_warn(&pdev->dev,
|
|
"No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
ret = -EINVAL;
|
|
goto err_probe;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Second stage of scan to fill MTD data-structures */
|
|
if (nand_scan_tail(mtd)) {
|
|
ret = -ENXIO;
|
|
goto err_probe;
|
|
}
|
|
|
|
/*
|
|
* The partition information can is accessed by (in the same precedence)
|
|
*
|
|
* command line through Bootloader,
|
|
* platform data,
|
|
* default partition information present in driver.
|
|
*/
|
|
/*
|
|
* Check for partition info passed
|
|
*/
|
|
mtd->name = "nand";
|
|
ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
|
|
if (ret)
|
|
goto err_probe;
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
|
|
return 0;
|
|
|
|
err_probe:
|
|
err_scan_ident:
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
dma_release_channel(host->write_dma_chan);
|
|
err_req_write_chnl:
|
|
if (host->mode == USE_DMA_ACCESS)
|
|
dma_release_channel(host->read_dma_chan);
|
|
err_req_read_chnl:
|
|
clk_disable_unprepare(host->clk);
|
|
err_clk_prepare_enable:
|
|
clk_put(host->clk);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clean up routine
|
|
*/
|
|
static int fsmc_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsmc_nand_data *host = platform_get_drvdata(pdev);
|
|
|
|
if (host) {
|
|
nand_release(nand_to_mtd(&host->nand));
|
|
|
|
if (host->mode == USE_DMA_ACCESS) {
|
|
dma_release_channel(host->write_dma_chan);
|
|
dma_release_channel(host->read_dma_chan);
|
|
}
|
|
clk_disable_unprepare(host->clk);
|
|
clk_put(host->clk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int fsmc_nand_suspend(struct device *dev)
|
|
{
|
|
struct fsmc_nand_data *host = dev_get_drvdata(dev);
|
|
if (host)
|
|
clk_disable_unprepare(host->clk);
|
|
return 0;
|
|
}
|
|
|
|
static int fsmc_nand_resume(struct device *dev)
|
|
{
|
|
struct fsmc_nand_data *host = dev_get_drvdata(dev);
|
|
if (host) {
|
|
clk_prepare_enable(host->clk);
|
|
fsmc_nand_setup(host->regs_va, host->bank,
|
|
host->nand.options & NAND_BUSWIDTH_16,
|
|
host->dev_timings);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id fsmc_nand_id_table[] = {
|
|
{ .compatible = "st,spear600-fsmc-nand" },
|
|
{ .compatible = "stericsson,fsmc-nand" },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
|
|
#endif
|
|
|
|
static struct platform_driver fsmc_nand_driver = {
|
|
.remove = fsmc_nand_remove,
|
|
.driver = {
|
|
.name = "fsmc-nand",
|
|
.of_match_table = of_match_ptr(fsmc_nand_id_table),
|
|
.pm = &fsmc_nand_pm_ops,
|
|
},
|
|
};
|
|
|
|
module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
|
|
MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
|