b83c4ab9ca
Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Rex Zhu <Rex.Zhu@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
569 lines
14 KiB
C
569 lines
14 KiB
C
/*
|
|
* Copyright 2015 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include "linux/delay.h"
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include "cgs_common.h"
|
|
#include "power_state.h"
|
|
#include "hwmgr.h"
|
|
#include "pppcielanes.h"
|
|
#include "pp_debug.h"
|
|
#include "ppatomctrl.h"
|
|
|
|
extern int cz_hwmgr_init(struct pp_hwmgr *hwmgr);
|
|
extern int tonga_hwmgr_init(struct pp_hwmgr *hwmgr);
|
|
extern int fiji_hwmgr_init(struct pp_hwmgr *hwmgr);
|
|
extern int ellesemere_hwmgr_init(struct pp_hwmgr *hwmgr);
|
|
|
|
int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
|
|
{
|
|
struct pp_hwmgr *hwmgr;
|
|
|
|
if ((handle == NULL) || (pp_init == NULL))
|
|
return -EINVAL;
|
|
|
|
hwmgr = kzalloc(sizeof(struct pp_hwmgr), GFP_KERNEL);
|
|
if (hwmgr == NULL)
|
|
return -ENOMEM;
|
|
|
|
handle->hwmgr = hwmgr;
|
|
hwmgr->smumgr = handle->smu_mgr;
|
|
hwmgr->device = pp_init->device;
|
|
hwmgr->chip_family = pp_init->chip_family;
|
|
hwmgr->chip_id = pp_init->chip_id;
|
|
hwmgr->hw_revision = pp_init->rev_id;
|
|
hwmgr->usec_timeout = AMD_MAX_USEC_TIMEOUT;
|
|
hwmgr->power_source = PP_PowerSource_AC;
|
|
|
|
switch (hwmgr->chip_family) {
|
|
case AMD_FAMILY_CZ:
|
|
cz_hwmgr_init(hwmgr);
|
|
break;
|
|
case AMD_FAMILY_VI:
|
|
switch (hwmgr->chip_id) {
|
|
case CHIP_TONGA:
|
|
tonga_hwmgr_init(hwmgr);
|
|
break;
|
|
case CHIP_FIJI:
|
|
fiji_hwmgr_init(hwmgr);
|
|
break;
|
|
case CHIP_BAFFIN:
|
|
case CHIP_ELLESMERE:
|
|
ellesemere_hwmgr_init(hwmgr);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
phm_init_dynamic_caps(hwmgr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hwmgr_fini(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if (hwmgr == NULL || hwmgr->ps == NULL)
|
|
return -EINVAL;
|
|
|
|
kfree(hwmgr->ps);
|
|
kfree(hwmgr);
|
|
return 0;
|
|
}
|
|
|
|
int hw_init_power_state_table(struct pp_hwmgr *hwmgr)
|
|
{
|
|
int result;
|
|
unsigned int i;
|
|
unsigned int table_entries;
|
|
struct pp_power_state *state;
|
|
int size;
|
|
|
|
if (hwmgr->hwmgr_func->get_num_of_pp_table_entries == NULL)
|
|
return -EINVAL;
|
|
|
|
if (hwmgr->hwmgr_func->get_power_state_size == NULL)
|
|
return -EINVAL;
|
|
|
|
hwmgr->num_ps = table_entries = hwmgr->hwmgr_func->get_num_of_pp_table_entries(hwmgr);
|
|
|
|
hwmgr->ps_size = size = hwmgr->hwmgr_func->get_power_state_size(hwmgr) +
|
|
sizeof(struct pp_power_state);
|
|
|
|
hwmgr->ps = kzalloc(size * table_entries, GFP_KERNEL);
|
|
|
|
if (hwmgr->ps == NULL)
|
|
return -ENOMEM;
|
|
|
|
state = hwmgr->ps;
|
|
|
|
for (i = 0; i < table_entries; i++) {
|
|
result = hwmgr->hwmgr_func->get_pp_table_entry(hwmgr, i, state);
|
|
|
|
if (state->classification.flags & PP_StateClassificationFlag_Boot) {
|
|
hwmgr->boot_ps = state;
|
|
hwmgr->current_ps = hwmgr->request_ps = state;
|
|
}
|
|
|
|
state->id = i + 1; /* assigned unique num for every power state id */
|
|
|
|
if (state->classification.flags & PP_StateClassificationFlag_Uvd)
|
|
hwmgr->uvd_ps = state;
|
|
state = (struct pp_power_state *)((unsigned long)state + size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns once the part of the register indicated by the mask has
|
|
* reached the given value.
|
|
*/
|
|
int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
|
|
uint32_t value, uint32_t mask)
|
|
{
|
|
uint32_t i;
|
|
uint32_t cur_value;
|
|
|
|
if (hwmgr == NULL || hwmgr->device == NULL) {
|
|
printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < hwmgr->usec_timeout; i++) {
|
|
cur_value = cgs_read_register(hwmgr->device, index);
|
|
if ((cur_value & mask) == (value & mask))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
/* timeout means wrong logic*/
|
|
if (i == hwmgr->usec_timeout)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
|
|
uint32_t index, uint32_t value, uint32_t mask)
|
|
{
|
|
uint32_t i;
|
|
uint32_t cur_value;
|
|
|
|
if (hwmgr == NULL || hwmgr->device == NULL) {
|
|
printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < hwmgr->usec_timeout; i++) {
|
|
cur_value = cgs_read_register(hwmgr->device, index);
|
|
if ((cur_value & mask) != (value & mask))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
/* timeout means wrong logic*/
|
|
if (i == hwmgr->usec_timeout)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns once the part of the register indicated by the mask has
|
|
* reached the given value.The indirect space is described by giving
|
|
* the memory-mapped index of the indirect index register.
|
|
*/
|
|
void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
|
|
uint32_t indirect_port,
|
|
uint32_t index,
|
|
uint32_t value,
|
|
uint32_t mask)
|
|
{
|
|
if (hwmgr == NULL || hwmgr->device == NULL) {
|
|
printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
|
|
return;
|
|
}
|
|
|
|
cgs_write_register(hwmgr->device, indirect_port, index);
|
|
phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
|
|
}
|
|
|
|
void phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
|
|
uint32_t indirect_port,
|
|
uint32_t index,
|
|
uint32_t value,
|
|
uint32_t mask)
|
|
{
|
|
if (hwmgr == NULL || hwmgr->device == NULL) {
|
|
printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
|
|
return;
|
|
}
|
|
|
|
cgs_write_register(hwmgr->device, indirect_port, index);
|
|
phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
|
|
value, mask);
|
|
}
|
|
|
|
bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
|
|
}
|
|
|
|
bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
|
|
{
|
|
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
|
|
}
|
|
|
|
|
|
int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
|
|
{
|
|
uint32_t i, j;
|
|
uint16_t vvalue;
|
|
bool found = false;
|
|
struct pp_atomctrl_voltage_table *table;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"Voltage Table empty.", return -EINVAL);
|
|
|
|
table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
|
|
GFP_KERNEL);
|
|
|
|
if (NULL == table)
|
|
return -EINVAL;
|
|
|
|
table->mask_low = vol_table->mask_low;
|
|
table->phase_delay = vol_table->phase_delay;
|
|
|
|
for (i = 0; i < vol_table->count; i++) {
|
|
vvalue = vol_table->entries[i].value;
|
|
found = false;
|
|
|
|
for (j = 0; j < table->count; j++) {
|
|
if (vvalue == table->entries[j].value) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
table->entries[table->count].value = vvalue;
|
|
table->entries[table->count].smio_low =
|
|
vol_table->entries[i].smio_low;
|
|
table->count++;
|
|
}
|
|
}
|
|
|
|
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
|
|
kfree(table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
|
|
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint32_t i;
|
|
int result;
|
|
|
|
PP_ASSERT_WITH_CODE((0 != dep_table->count),
|
|
"Voltage Dependency Table empty.", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"vol_table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
vol_table->count = dep_table->count;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
vol_table->entries[i].value = dep_table->entries[i].mvdd;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
result = phm_trim_voltage_table(vol_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to trim MVDD table.", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
|
|
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
|
{
|
|
uint32_t i;
|
|
int result;
|
|
|
|
PP_ASSERT_WITH_CODE((0 != dep_table->count),
|
|
"Voltage Dependency Table empty.", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"vol_table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
vol_table->count = dep_table->count;
|
|
|
|
for (i = 0; i < dep_table->count; i++) {
|
|
vol_table->entries[i].value = dep_table->entries[i].vddci;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
result = phm_trim_voltage_table(vol_table);
|
|
PP_ASSERT_WITH_CODE((0 == result),
|
|
"Failed to trim VDDCI table.", return result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table)
|
|
{
|
|
int i = 0;
|
|
|
|
PP_ASSERT_WITH_CODE((0 != lookup_table->count),
|
|
"Voltage Lookup Table empty.", return -EINVAL);
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != vol_table),
|
|
"vol_table empty.", return -EINVAL);
|
|
|
|
vol_table->mask_low = 0;
|
|
vol_table->phase_delay = 0;
|
|
|
|
vol_table->count = lookup_table->count;
|
|
|
|
for (i = 0; i < vol_table->count; i++) {
|
|
vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
|
|
vol_table->entries[i].smio_low = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
|
|
struct pp_atomctrl_voltage_table *vol_table)
|
|
{
|
|
unsigned int i, diff;
|
|
|
|
if (vol_table->count <= max_vol_steps)
|
|
return;
|
|
|
|
diff = vol_table->count - max_vol_steps;
|
|
|
|
for (i = 0; i < max_vol_steps; i++)
|
|
vol_table->entries[i] = vol_table->entries[i + diff];
|
|
|
|
vol_table->count = max_vol_steps;
|
|
|
|
return;
|
|
}
|
|
|
|
int phm_reset_single_dpm_table(void *table,
|
|
uint32_t count, int max)
|
|
{
|
|
int i;
|
|
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
|
|
PP_ASSERT_WITH_CODE(count <= max,
|
|
"Fatal error, can not set up single DPM table entries to exceed max number!",
|
|
);
|
|
|
|
dpm_table->count = count;
|
|
for (i = 0; i < max; i++)
|
|
dpm_table->dpm_level[i].enabled = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void phm_setup_pcie_table_entry(
|
|
void *table,
|
|
uint32_t index, uint32_t pcie_gen,
|
|
uint32_t pcie_lanes)
|
|
{
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
dpm_table->dpm_level[index].value = pcie_gen;
|
|
dpm_table->dpm_level[index].param1 = pcie_lanes;
|
|
dpm_table->dpm_level[index].enabled = 1;
|
|
}
|
|
|
|
int32_t phm_get_dpm_level_enable_mask_value(void *table)
|
|
{
|
|
int32_t i;
|
|
int32_t mask = 0;
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
|
|
for (i = dpm_table->count; i > 0; i--) {
|
|
mask = mask << 1;
|
|
if (dpm_table->dpm_level[i - 1].enabled)
|
|
mask |= 0x1;
|
|
else
|
|
mask &= 0xFFFFFFFE;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
uint8_t phm_get_voltage_index(
|
|
struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
|
|
{
|
|
uint8_t count = (uint8_t) (lookup_table->count);
|
|
uint8_t i;
|
|
|
|
PP_ASSERT_WITH_CODE((NULL != lookup_table),
|
|
"Lookup Table empty.", return 0);
|
|
PP_ASSERT_WITH_CODE((0 != count),
|
|
"Lookup Table empty.", return 0);
|
|
|
|
for (i = 0; i < lookup_table->count; i++) {
|
|
/* find first voltage equal or bigger than requested */
|
|
if (lookup_table->entries[i].us_vdd >= voltage)
|
|
return i;
|
|
}
|
|
/* voltage is bigger than max voltage in the table */
|
|
return i - 1;
|
|
}
|
|
|
|
uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < vddci_table->count; i++) {
|
|
if (vddci_table->entries[i].value >= vddci)
|
|
return vddci_table->entries[i].value;
|
|
}
|
|
|
|
PP_ASSERT_WITH_CODE(false,
|
|
"VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
|
|
return vddci_table->entries[i].value);
|
|
}
|
|
|
|
int phm_find_boot_level(void *table,
|
|
uint32_t value, uint32_t *boot_level)
|
|
{
|
|
int result = -EINVAL;
|
|
uint32_t i;
|
|
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
|
|
|
|
for (i = 0; i < dpm_table->count; i++) {
|
|
if (value == dpm_table->dpm_level[i].value) {
|
|
*boot_level = i;
|
|
result = 0;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
|
|
phm_ppt_v1_voltage_lookup_table *lookup_table,
|
|
uint16_t virtual_voltage_id, int32_t *sclk)
|
|
{
|
|
uint8_t entryId;
|
|
uint8_t voltageId;
|
|
struct phm_ppt_v1_information *table_info =
|
|
(struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
|
|
|
|
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
|
|
for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
|
|
voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
|
|
if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
|
|
break;
|
|
}
|
|
|
|
PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
|
|
"Can't find requested voltage id in vdd_dep_on_sclk table!",
|
|
return -EINVAL;
|
|
);
|
|
|
|
*sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize Dynamic State Adjustment Rule Settings
|
|
*
|
|
* @param hwmgr the address of the powerplay hardware manager.
|
|
*/
|
|
int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
|
|
{
|
|
uint32_t table_size;
|
|
struct phm_clock_voltage_dependency_table *table_clk_vlt;
|
|
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
|
|
|
|
/* initialize vddc_dep_on_dal_pwrl table */
|
|
table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
|
|
table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
|
|
|
|
if (NULL == table_clk_vlt) {
|
|
printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
|
|
return -ENOMEM;
|
|
} else {
|
|
table_clk_vlt->count = 4;
|
|
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
|
|
table_clk_vlt->entries[0].v = 0;
|
|
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
|
|
table_clk_vlt->entries[1].v = 720;
|
|
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
|
|
table_clk_vlt->entries[2].v = 810;
|
|
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
|
|
table_clk_vlt->entries[3].v = 900;
|
|
pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
|
|
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int phm_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
|
|
{
|
|
if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
|
|
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
|
|
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
|
|
}
|
|
|
|
if (NULL != hwmgr->backend) {
|
|
kfree(hwmgr->backend);
|
|
hwmgr->backend = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
|
|
{
|
|
uint32_t level = 0;
|
|
|
|
while (0 == (mask & (1 << level)))
|
|
level++;
|
|
|
|
return level;
|
|
}
|