linux/arch/s390/kernel/setup.c
Vasily Gorbik 7bcaad1f9f s390: avoid misusing CALL_ON_STACK for task stack setup
CALL_ON_STACK is intended to be used for temporary stack switching with
potential return to the caller.

When CALL_ON_STACK is misused to switch from nodat stack to task stack
back_chain information would later lead stack unwinder from task stack into
(per cpu) nodat stack which is reused for other purposes. This would
yield confusing unwinding result or errors.

To avoid that introduce CALL_ON_STACK_NORETURN to be used instead. It
makes sure that back_chain is zeroed and unwinder finishes gracefully
ending up at task pt_regs.

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2019-11-30 10:52:45 +01:00

1196 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* S390 version
* Copyright IBM Corp. 1999, 2012
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "arch/i386/kernel/setup.c"
* Copyright (C) 1995, Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#define KMSG_COMPONENT "setup"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/cpu.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/user.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/kernel_stat.h>
#include <linux/dma-contiguous.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pfn.h>
#include <linux/ctype.h>
#include <linux/reboot.h>
#include <linux/topology.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/memory.h>
#include <linux/compat.h>
#include <linux/start_kernel.h>
#include <asm/boot_data.h>
#include <asm/ipl.h>
#include <asm/facility.h>
#include <asm/smp.h>
#include <asm/mmu_context.h>
#include <asm/cpcmd.h>
#include <asm/lowcore.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/sections.h>
#include <asm/ebcdic.h>
#include <asm/diag.h>
#include <asm/os_info.h>
#include <asm/sclp.h>
#include <asm/stacktrace.h>
#include <asm/sysinfo.h>
#include <asm/numa.h>
#include <asm/alternative.h>
#include <asm/nospec-branch.h>
#include <asm/mem_detect.h>
#include <asm/uv.h>
#include "entry.h"
/*
* Machine setup..
*/
unsigned int console_mode = 0;
EXPORT_SYMBOL(console_mode);
unsigned int console_devno = -1;
EXPORT_SYMBOL(console_devno);
unsigned int console_irq = -1;
EXPORT_SYMBOL(console_irq);
unsigned long elf_hwcap __read_mostly = 0;
char elf_platform[ELF_PLATFORM_SIZE];
unsigned long int_hwcap = 0;
#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
int __bootdata_preserved(prot_virt_guest);
#endif
int __bootdata(noexec_disabled);
int __bootdata(memory_end_set);
unsigned long __bootdata(memory_end);
unsigned long __bootdata(vmalloc_size);
unsigned long __bootdata(max_physmem_end);
struct mem_detect_info __bootdata(mem_detect);
struct exception_table_entry *__bootdata_preserved(__start_dma_ex_table);
struct exception_table_entry *__bootdata_preserved(__stop_dma_ex_table);
unsigned long __bootdata_preserved(__swsusp_reset_dma);
unsigned long __bootdata_preserved(__stext_dma);
unsigned long __bootdata_preserved(__etext_dma);
unsigned long __bootdata_preserved(__sdma);
unsigned long __bootdata_preserved(__edma);
unsigned long __bootdata_preserved(__kaslr_offset);
unsigned long VMALLOC_START;
EXPORT_SYMBOL(VMALLOC_START);
unsigned long VMALLOC_END;
EXPORT_SYMBOL(VMALLOC_END);
struct page *vmemmap;
EXPORT_SYMBOL(vmemmap);
unsigned long MODULES_VADDR;
unsigned long MODULES_END;
/* An array with a pointer to the lowcore of every CPU. */
struct lowcore *lowcore_ptr[NR_CPUS];
EXPORT_SYMBOL(lowcore_ptr);
/*
* This is set up by the setup-routine at boot-time
* for S390 need to find out, what we have to setup
* using address 0x10400 ...
*/
#include <asm/setup.h>
/*
* condev= and conmode= setup parameter.
*/
static int __init condev_setup(char *str)
{
int vdev;
vdev = simple_strtoul(str, &str, 0);
if (vdev >= 0 && vdev < 65536) {
console_devno = vdev;
console_irq = -1;
}
return 1;
}
__setup("condev=", condev_setup);
static void __init set_preferred_console(void)
{
if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
add_preferred_console("ttyS", 0, NULL);
else if (CONSOLE_IS_3270)
add_preferred_console("tty3270", 0, NULL);
else if (CONSOLE_IS_VT220)
add_preferred_console("ttyS", 1, NULL);
else if (CONSOLE_IS_HVC)
add_preferred_console("hvc", 0, NULL);
}
static int __init conmode_setup(char *str)
{
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
if (!strcmp(str, "hwc") || !strcmp(str, "sclp"))
SET_CONSOLE_SCLP;
#endif
#if defined(CONFIG_TN3215_CONSOLE)
if (!strcmp(str, "3215"))
SET_CONSOLE_3215;
#endif
#if defined(CONFIG_TN3270_CONSOLE)
if (!strcmp(str, "3270"))
SET_CONSOLE_3270;
#endif
set_preferred_console();
return 1;
}
__setup("conmode=", conmode_setup);
static void __init conmode_default(void)
{
char query_buffer[1024];
char *ptr;
if (MACHINE_IS_VM) {
cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
ptr = strstr(query_buffer, "SUBCHANNEL =");
console_irq = simple_strtoul(ptr + 13, NULL, 16);
cpcmd("QUERY TERM", query_buffer, 1024, NULL);
ptr = strstr(query_buffer, "CONMODE");
/*
* Set the conmode to 3215 so that the device recognition
* will set the cu_type of the console to 3215. If the
* conmode is 3270 and we don't set it back then both
* 3215 and the 3270 driver will try to access the console
* device (3215 as console and 3270 as normal tty).
*/
cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
if (ptr == NULL) {
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
return;
}
if (str_has_prefix(ptr + 8, "3270")) {
#if defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
} else if (str_has_prefix(ptr + 8, "3215")) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
} else if (MACHINE_IS_KVM) {
if (sclp.has_vt220 && IS_ENABLED(CONFIG_SCLP_VT220_CONSOLE))
SET_CONSOLE_VT220;
else if (sclp.has_linemode && IS_ENABLED(CONFIG_SCLP_CONSOLE))
SET_CONSOLE_SCLP;
else
SET_CONSOLE_HVC;
} else {
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
if (IS_ENABLED(CONFIG_VT) && IS_ENABLED(CONFIG_DUMMY_CONSOLE))
conswitchp = &dummy_con;
}
#ifdef CONFIG_CRASH_DUMP
static void __init setup_zfcpdump(void)
{
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
return;
if (OLDMEM_BASE)
return;
strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev");
console_loglevel = 2;
}
#else
static inline void setup_zfcpdump(void) {}
#endif /* CONFIG_CRASH_DUMP */
/*
* Reboot, halt and power_off stubs. They just call _machine_restart,
* _machine_halt or _machine_power_off.
*/
void machine_restart(char *command)
{
if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_restart(command);
}
void machine_halt(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_halt();
}
void machine_power_off(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_power_off();
}
/*
* Dummy power off function.
*/
void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL_GPL(pm_power_off);
void *restart_stack __section(.data);
unsigned long stack_alloc(void)
{
#ifdef CONFIG_VMAP_STACK
return (unsigned long)
__vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
VMALLOC_START, VMALLOC_END,
THREADINFO_GFP,
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
#else
return __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
#endif
}
void stack_free(unsigned long stack)
{
#ifdef CONFIG_VMAP_STACK
vfree((void *) stack);
#else
free_pages(stack, THREAD_SIZE_ORDER);
#endif
}
int __init arch_early_irq_init(void)
{
unsigned long stack;
stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
if (!stack)
panic("Couldn't allocate async stack");
S390_lowcore.async_stack = stack + STACK_INIT_OFFSET;
return 0;
}
static int __init async_stack_realloc(void)
{
unsigned long old, new;
old = S390_lowcore.async_stack - STACK_INIT_OFFSET;
new = stack_alloc();
if (!new)
panic("Couldn't allocate async stack");
S390_lowcore.async_stack = new + STACK_INIT_OFFSET;
free_pages(old, THREAD_SIZE_ORDER);
return 0;
}
early_initcall(async_stack_realloc);
void __init arch_call_rest_init(void)
{
unsigned long stack;
stack = stack_alloc();
if (!stack)
panic("Couldn't allocate kernel stack");
current->stack = (void *) stack;
#ifdef CONFIG_VMAP_STACK
current->stack_vm_area = (void *) stack;
#endif
set_task_stack_end_magic(current);
stack += STACK_INIT_OFFSET;
S390_lowcore.kernel_stack = stack;
CALL_ON_STACK_NORETURN(rest_init, stack);
}
static void __init setup_lowcore_dat_off(void)
{
struct lowcore *lc;
/*
* Setup lowcore for boot cpu
*/
BUILD_BUG_ON(sizeof(struct lowcore) != LC_PAGES * PAGE_SIZE);
lc = memblock_alloc_low(sizeof(*lc), sizeof(*lc));
if (!lc)
panic("%s: Failed to allocate %zu bytes align=%zx\n",
__func__, sizeof(*lc), sizeof(*lc));
lc->restart_psw.mask = PSW_KERNEL_BITS;
lc->restart_psw.addr = (unsigned long) restart_int_handler;
lc->external_new_psw.mask = PSW_KERNEL_BITS | PSW_MASK_MCHECK;
lc->external_new_psw.addr = (unsigned long) ext_int_handler;
lc->svc_new_psw.mask = PSW_KERNEL_BITS |
PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
lc->svc_new_psw.addr = (unsigned long) system_call;
lc->program_new_psw.mask = PSW_KERNEL_BITS | PSW_MASK_MCHECK;
lc->program_new_psw.addr = (unsigned long) pgm_check_handler;
lc->mcck_new_psw.mask = PSW_KERNEL_BITS;
lc->mcck_new_psw.addr = (unsigned long) mcck_int_handler;
lc->io_new_psw.mask = PSW_KERNEL_BITS | PSW_MASK_MCHECK;
lc->io_new_psw.addr = (unsigned long) io_int_handler;
lc->clock_comparator = clock_comparator_max;
lc->nodat_stack = ((unsigned long) &init_thread_union)
+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
lc->current_task = (unsigned long)&init_task;
lc->lpp = LPP_MAGIC;
lc->machine_flags = S390_lowcore.machine_flags;
lc->preempt_count = S390_lowcore.preempt_count;
lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
sizeof(lc->stfle_fac_list));
memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
sizeof(lc->alt_stfle_fac_list));
nmi_alloc_boot_cpu(lc);
vdso_alloc_boot_cpu(lc);
lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
lc->async_enter_timer = S390_lowcore.async_enter_timer;
lc->exit_timer = S390_lowcore.exit_timer;
lc->user_timer = S390_lowcore.user_timer;
lc->system_timer = S390_lowcore.system_timer;
lc->steal_timer = S390_lowcore.steal_timer;
lc->last_update_timer = S390_lowcore.last_update_timer;
lc->last_update_clock = S390_lowcore.last_update_clock;
/*
* Allocate the global restart stack which is the same for
* all CPUs in cast *one* of them does a PSW restart.
*/
restart_stack = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
if (!restart_stack)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, THREAD_SIZE, THREAD_SIZE);
restart_stack += STACK_INIT_OFFSET;
/*
* Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
* restart data to the absolute zero lowcore. This is necessary if
* PSW restart is done on an offline CPU that has lowcore zero.
*/
lc->restart_stack = (unsigned long) restart_stack;
lc->restart_fn = (unsigned long) do_restart;
lc->restart_data = 0;
lc->restart_source = -1UL;
/* Setup absolute zero lowcore */
mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
lc->spinlock_lockval = arch_spin_lockval(0);
lc->spinlock_index = 0;
arch_spin_lock_setup(0);
lc->br_r1_trampoline = 0x07f1; /* br %r1 */
set_prefix((u32)(unsigned long) lc);
lowcore_ptr[0] = lc;
}
static void __init setup_lowcore_dat_on(void)
{
__ctl_clear_bit(0, 28);
S390_lowcore.external_new_psw.mask |= PSW_MASK_DAT;
S390_lowcore.svc_new_psw.mask |= PSW_MASK_DAT;
S390_lowcore.program_new_psw.mask |= PSW_MASK_DAT;
S390_lowcore.io_new_psw.mask |= PSW_MASK_DAT;
__ctl_set_bit(0, 28);
}
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource __initdata *standard_resources[] = {
&code_resource,
&data_resource,
&bss_resource,
};
static void __init setup_resources(void)
{
struct resource *res, *std_res, *sub_res;
struct memblock_region *reg;
int j;
code_resource.start = (unsigned long) _text;
code_resource.end = (unsigned long) _etext - 1;
data_resource.start = (unsigned long) _etext;
data_resource.end = (unsigned long) _edata - 1;
bss_resource.start = (unsigned long) __bss_start;
bss_resource.end = (unsigned long) __bss_stop - 1;
for_each_memblock(memory, reg) {
res = memblock_alloc(sizeof(*res), 8);
if (!res)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*res), 8);
res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
res->name = "System RAM";
res->start = reg->base;
res->end = reg->base + reg->size - 1;
request_resource(&iomem_resource, res);
for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
std_res = standard_resources[j];
if (std_res->start < res->start ||
std_res->start > res->end)
continue;
if (std_res->end > res->end) {
sub_res = memblock_alloc(sizeof(*sub_res), 8);
if (!sub_res)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*sub_res), 8);
*sub_res = *std_res;
sub_res->end = res->end;
std_res->start = res->end + 1;
request_resource(res, sub_res);
} else {
request_resource(res, std_res);
}
}
}
#ifdef CONFIG_CRASH_DUMP
/*
* Re-add removed crash kernel memory as reserved memory. This makes
* sure it will be mapped with the identity mapping and struct pages
* will be created, so it can be resized later on.
* However add it later since the crash kernel resource should not be
* part of the System RAM resource.
*/
if (crashk_res.end) {
memblock_add_node(crashk_res.start, resource_size(&crashk_res), 0);
memblock_reserve(crashk_res.start, resource_size(&crashk_res));
insert_resource(&iomem_resource, &crashk_res);
}
#endif
}
static void __init setup_memory_end(void)
{
unsigned long vmax, tmp;
/* Choose kernel address space layout: 3 or 4 levels. */
if (IS_ENABLED(CONFIG_KASAN)) {
vmax = IS_ENABLED(CONFIG_KASAN_S390_4_LEVEL_PAGING)
? _REGION1_SIZE
: _REGION2_SIZE;
} else {
tmp = (memory_end ?: max_physmem_end) / PAGE_SIZE;
tmp = tmp * (sizeof(struct page) + PAGE_SIZE);
if (tmp + vmalloc_size + MODULES_LEN <= _REGION2_SIZE)
vmax = _REGION2_SIZE; /* 3-level kernel page table */
else
vmax = _REGION1_SIZE; /* 4-level kernel page table */
}
/* module area is at the end of the kernel address space. */
MODULES_END = vmax;
MODULES_VADDR = MODULES_END - MODULES_LEN;
VMALLOC_END = MODULES_VADDR;
VMALLOC_START = VMALLOC_END - vmalloc_size;
/* Split remaining virtual space between 1:1 mapping & vmemmap array */
tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
/* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
tmp = SECTION_ALIGN_UP(tmp);
tmp = VMALLOC_START - tmp * sizeof(struct page);
tmp &= ~((vmax >> 11) - 1); /* align to page table level */
tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
vmemmap = (struct page *) tmp;
/* Take care that memory_end is set and <= vmemmap */
memory_end = min(memory_end ?: max_physmem_end, (unsigned long)vmemmap);
#ifdef CONFIG_KASAN
/* fit in kasan shadow memory region between 1:1 and vmemmap */
memory_end = min(memory_end, KASAN_SHADOW_START);
vmemmap = max(vmemmap, (struct page *)KASAN_SHADOW_END);
#endif
max_pfn = max_low_pfn = PFN_DOWN(memory_end);
memblock_remove(memory_end, ULONG_MAX);
pr_notice("The maximum memory size is %luMB\n", memory_end >> 20);
}
#ifdef CONFIG_CRASH_DUMP
/*
* When kdump is enabled, we have to ensure that no memory from
* the area [0 - crashkernel memory size] and
* [crashk_res.start - crashk_res.end] is set offline.
*/
static int kdump_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct memory_notify *arg = data;
if (action != MEM_GOING_OFFLINE)
return NOTIFY_OK;
if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
return NOTIFY_BAD;
if (arg->start_pfn > PFN_DOWN(crashk_res.end))
return NOTIFY_OK;
if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
return NOTIFY_OK;
return NOTIFY_BAD;
}
static struct notifier_block kdump_mem_nb = {
.notifier_call = kdump_mem_notifier,
};
#endif
/*
* Make sure that the area behind memory_end is protected
*/
static void reserve_memory_end(void)
{
if (memory_end_set)
memblock_reserve(memory_end, ULONG_MAX);
}
/*
* Make sure that oldmem, where the dump is stored, is protected
*/
static void reserve_oldmem(void)
{
#ifdef CONFIG_CRASH_DUMP
if (OLDMEM_BASE)
/* Forget all memory above the running kdump system */
memblock_reserve(OLDMEM_SIZE, (phys_addr_t)ULONG_MAX);
#endif
}
/*
* Make sure that oldmem, where the dump is stored, is protected
*/
static void remove_oldmem(void)
{
#ifdef CONFIG_CRASH_DUMP
if (OLDMEM_BASE)
/* Forget all memory above the running kdump system */
memblock_remove(OLDMEM_SIZE, (phys_addr_t)ULONG_MAX);
#endif
}
/*
* Reserve memory for kdump kernel to be loaded with kexec
*/
static void __init reserve_crashkernel(void)
{
#ifdef CONFIG_CRASH_DUMP
unsigned long long crash_base, crash_size;
phys_addr_t low, high;
int rc;
rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
&crash_base);
crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
if (rc || crash_size == 0)
return;
if (memblock.memory.regions[0].size < crash_size) {
pr_info("crashkernel reservation failed: %s\n",
"first memory chunk must be at least crashkernel size");
return;
}
low = crash_base ?: OLDMEM_BASE;
high = low + crash_size;
if (low >= OLDMEM_BASE && high <= OLDMEM_BASE + OLDMEM_SIZE) {
/* The crashkernel fits into OLDMEM, reuse OLDMEM */
crash_base = low;
} else {
/* Find suitable area in free memory */
low = max_t(unsigned long, crash_size, sclp.hsa_size);
high = crash_base ? crash_base + crash_size : ULONG_MAX;
if (crash_base && crash_base < low) {
pr_info("crashkernel reservation failed: %s\n",
"crash_base too low");
return;
}
low = crash_base ?: low;
crash_base = memblock_find_in_range(low, high, crash_size,
KEXEC_CRASH_MEM_ALIGN);
}
if (!crash_base) {
pr_info("crashkernel reservation failed: %s\n",
"no suitable area found");
return;
}
if (register_memory_notifier(&kdump_mem_nb))
return;
if (!OLDMEM_BASE && MACHINE_IS_VM)
diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
memblock_remove(crash_base, crash_size);
pr_info("Reserving %lluMB of memory at %lluMB "
"for crashkernel (System RAM: %luMB)\n",
crash_size >> 20, crash_base >> 20,
(unsigned long)memblock.memory.total_size >> 20);
os_info_crashkernel_add(crash_base, crash_size);
#endif
}
/*
* Reserve the initrd from being used by memblock
*/
static void __init reserve_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (!INITRD_START || !INITRD_SIZE)
return;
initrd_start = INITRD_START;
initrd_end = initrd_start + INITRD_SIZE;
memblock_reserve(INITRD_START, INITRD_SIZE);
#endif
}
/*
* Reserve the memory area used to pass the certificate lists
*/
static void __init reserve_certificate_list(void)
{
if (ipl_cert_list_addr)
memblock_reserve(ipl_cert_list_addr, ipl_cert_list_size);
}
static void __init reserve_mem_detect_info(void)
{
unsigned long start, size;
get_mem_detect_reserved(&start, &size);
if (size)
memblock_reserve(start, size);
}
static void __init free_mem_detect_info(void)
{
unsigned long start, size;
get_mem_detect_reserved(&start, &size);
if (size)
memblock_free(start, size);
}
static void __init memblock_physmem_add(phys_addr_t start, phys_addr_t size)
{
memblock_dbg("memblock_physmem_add: [%#016llx-%#016llx]\n",
start, start + size - 1);
memblock_add_range(&memblock.memory, start, size, 0, 0);
memblock_add_range(&memblock.physmem, start, size, 0, 0);
}
static const char * __init get_mem_info_source(void)
{
switch (mem_detect.info_source) {
case MEM_DETECT_SCLP_STOR_INFO:
return "sclp storage info";
case MEM_DETECT_DIAG260:
return "diag260";
case MEM_DETECT_SCLP_READ_INFO:
return "sclp read info";
case MEM_DETECT_BIN_SEARCH:
return "binary search";
}
return "none";
}
static void __init memblock_add_mem_detect_info(void)
{
unsigned long start, end;
int i;
memblock_dbg("physmem info source: %s (%hhd)\n",
get_mem_info_source(), mem_detect.info_source);
/* keep memblock lists close to the kernel */
memblock_set_bottom_up(true);
for_each_mem_detect_block(i, &start, &end)
memblock_physmem_add(start, end - start);
memblock_set_bottom_up(false);
memblock_dump_all();
}
/*
* Check for initrd being in usable memory
*/
static void __init check_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (INITRD_START && INITRD_SIZE &&
!memblock_is_region_memory(INITRD_START, INITRD_SIZE)) {
pr_err("The initial RAM disk does not fit into the memory\n");
memblock_free(INITRD_START, INITRD_SIZE);
initrd_start = initrd_end = 0;
}
#endif
}
/*
* Reserve memory used for lowcore/command line/kernel image.
*/
static void __init reserve_kernel(void)
{
unsigned long start_pfn = PFN_UP(__pa(_end));
memblock_reserve(0, HEAD_END);
memblock_reserve((unsigned long)_stext, PFN_PHYS(start_pfn)
- (unsigned long)_stext);
memblock_reserve(__sdma, __edma - __sdma);
}
static void __init setup_memory(void)
{
struct memblock_region *reg;
/*
* Init storage key for present memory
*/
for_each_memblock(memory, reg) {
storage_key_init_range(reg->base, reg->base + reg->size);
}
psw_set_key(PAGE_DEFAULT_KEY);
/* Only cosmetics */
memblock_enforce_memory_limit(memblock_end_of_DRAM());
}
/*
* Setup hardware capabilities.
*/
static int __init setup_hwcaps(void)
{
static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
struct cpuid cpu_id;
int i;
/*
* The store facility list bits numbers as found in the principles
* of operation are numbered with bit 1UL<<31 as number 0 to
* bit 1UL<<0 as number 31.
* Bit 0: instructions named N3, "backported" to esa-mode
* Bit 2: z/Architecture mode is active
* Bit 7: the store-facility-list-extended facility is installed
* Bit 17: the message-security assist is installed
* Bit 19: the long-displacement facility is installed
* Bit 21: the extended-immediate facility is installed
* Bit 22: extended-translation facility 3 is installed
* Bit 30: extended-translation facility 3 enhancement facility
* These get translated to:
* HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
* HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
* HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
* HWCAP_S390_ETF3EH bit 8 (22 && 30).
*/
for (i = 0; i < 6; i++)
if (test_facility(stfl_bits[i]))
elf_hwcap |= 1UL << i;
if (test_facility(22) && test_facility(30))
elf_hwcap |= HWCAP_S390_ETF3EH;
/*
* Check for additional facilities with store-facility-list-extended.
* stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
* and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
* as stored by stfl, bits 32-xxx contain additional facilities.
* How many facility words are stored depends on the number of
* doublewords passed to the instruction. The additional facilities
* are:
* Bit 42: decimal floating point facility is installed
* Bit 44: perform floating point operation facility is installed
* translated to:
* HWCAP_S390_DFP bit 6 (42 && 44).
*/
if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
elf_hwcap |= HWCAP_S390_DFP;
/*
* Huge page support HWCAP_S390_HPAGE is bit 7.
*/
if (MACHINE_HAS_EDAT1)
elf_hwcap |= HWCAP_S390_HPAGE;
/*
* 64-bit register support for 31-bit processes
* HWCAP_S390_HIGH_GPRS is bit 9.
*/
elf_hwcap |= HWCAP_S390_HIGH_GPRS;
/*
* Transactional execution support HWCAP_S390_TE is bit 10.
*/
if (MACHINE_HAS_TE)
elf_hwcap |= HWCAP_S390_TE;
/*
* Vector extension HWCAP_S390_VXRS is bit 11. The Vector extension
* can be disabled with the "novx" parameter. Use MACHINE_HAS_VX
* instead of facility bit 129.
*/
if (MACHINE_HAS_VX) {
elf_hwcap |= HWCAP_S390_VXRS;
if (test_facility(134))
elf_hwcap |= HWCAP_S390_VXRS_EXT;
if (test_facility(135))
elf_hwcap |= HWCAP_S390_VXRS_BCD;
if (test_facility(148))
elf_hwcap |= HWCAP_S390_VXRS_EXT2;
if (test_facility(152))
elf_hwcap |= HWCAP_S390_VXRS_PDE;
}
if (test_facility(150))
elf_hwcap |= HWCAP_S390_SORT;
if (test_facility(151))
elf_hwcap |= HWCAP_S390_DFLT;
/*
* Guarded storage support HWCAP_S390_GS is bit 12.
*/
if (MACHINE_HAS_GS)
elf_hwcap |= HWCAP_S390_GS;
get_cpu_id(&cpu_id);
add_device_randomness(&cpu_id, sizeof(cpu_id));
switch (cpu_id.machine) {
case 0x2064:
case 0x2066:
default: /* Use "z900" as default for 64 bit kernels. */
strcpy(elf_platform, "z900");
break;
case 0x2084:
case 0x2086:
strcpy(elf_platform, "z990");
break;
case 0x2094:
case 0x2096:
strcpy(elf_platform, "z9-109");
break;
case 0x2097:
case 0x2098:
strcpy(elf_platform, "z10");
break;
case 0x2817:
case 0x2818:
strcpy(elf_platform, "z196");
break;
case 0x2827:
case 0x2828:
strcpy(elf_platform, "zEC12");
break;
case 0x2964:
case 0x2965:
strcpy(elf_platform, "z13");
break;
case 0x3906:
case 0x3907:
strcpy(elf_platform, "z14");
break;
case 0x8561:
case 0x8562:
strcpy(elf_platform, "z15");
break;
}
/*
* Virtualization support HWCAP_INT_SIE is bit 0.
*/
if (sclp.has_sief2)
int_hwcap |= HWCAP_INT_SIE;
return 0;
}
arch_initcall(setup_hwcaps);
/*
* Add system information as device randomness
*/
static void __init setup_randomness(void)
{
struct sysinfo_3_2_2 *vmms;
vmms = (struct sysinfo_3_2_2 *) memblock_phys_alloc(PAGE_SIZE,
PAGE_SIZE);
if (!vmms)
panic("Failed to allocate memory for sysinfo structure\n");
if (stsi(vmms, 3, 2, 2) == 0 && vmms->count)
add_device_randomness(&vmms->vm, sizeof(vmms->vm[0]) * vmms->count);
memblock_free((unsigned long) vmms, PAGE_SIZE);
}
/*
* Find the correct size for the task_struct. This depends on
* the size of the struct fpu at the end of the thread_struct
* which is embedded in the task_struct.
*/
static void __init setup_task_size(void)
{
int task_size = sizeof(struct task_struct);
if (!MACHINE_HAS_VX) {
task_size -= sizeof(__vector128) * __NUM_VXRS;
task_size += sizeof(freg_t) * __NUM_FPRS;
}
arch_task_struct_size = task_size;
}
/*
* Issue diagnose 318 to set the control program name and
* version codes.
*/
static void __init setup_control_program_code(void)
{
union diag318_info diag318_info = {
.cpnc = CPNC_LINUX,
.cpvc_linux = 0,
.cpvc_distro = {0},
};
if (!sclp.has_diag318)
return;
diag_stat_inc(DIAG_STAT_X318);
asm volatile("diag %0,0,0x318\n" : : "d" (diag318_info.val));
}
/*
* Print the component list from the IPL report
*/
static void __init log_component_list(void)
{
struct ipl_rb_component_entry *ptr, *end;
char *str;
if (!early_ipl_comp_list_addr)
return;
if (ipl_block.hdr.flags & IPL_PL_FLAG_IPLSR)
pr_info("Linux is running with Secure-IPL enabled\n");
else
pr_info("Linux is running with Secure-IPL disabled\n");
ptr = (void *) early_ipl_comp_list_addr;
end = (void *) ptr + early_ipl_comp_list_size;
pr_info("The IPL report contains the following components:\n");
while (ptr < end) {
if (ptr->flags & IPL_RB_COMPONENT_FLAG_SIGNED) {
if (ptr->flags & IPL_RB_COMPONENT_FLAG_VERIFIED)
str = "signed, verified";
else
str = "signed, verification failed";
} else {
str = "not signed";
}
pr_info("%016llx - %016llx (%s)\n",
ptr->addr, ptr->addr + ptr->len, str);
ptr++;
}
}
/*
* Setup function called from init/main.c just after the banner
* was printed.
*/
void __init setup_arch(char **cmdline_p)
{
/*
* print what head.S has found out about the machine
*/
if (MACHINE_IS_VM)
pr_info("Linux is running as a z/VM "
"guest operating system in 64-bit mode\n");
else if (MACHINE_IS_KVM)
pr_info("Linux is running under KVM in 64-bit mode\n");
else if (MACHINE_IS_LPAR)
pr_info("Linux is running natively in 64-bit mode\n");
else
pr_info("Linux is running as a guest in 64-bit mode\n");
log_component_list();
/* Have one command line that is parsed and saved in /proc/cmdline */
/* boot_command_line has been already set up in early.c */
*cmdline_p = boot_command_line;
ROOT_DEV = Root_RAM0;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
if (IS_ENABLED(CONFIG_EXPOLINE_AUTO))
nospec_auto_detect();
parse_early_param();
#ifdef CONFIG_CRASH_DUMP
/* Deactivate elfcorehdr= kernel parameter */
elfcorehdr_addr = ELFCORE_ADDR_MAX;
#endif
os_info_init();
setup_ipl();
setup_task_size();
setup_control_program_code();
/* Do some memory reservations *before* memory is added to memblock */
reserve_memory_end();
reserve_oldmem();
reserve_kernel();
reserve_initrd();
reserve_certificate_list();
reserve_mem_detect_info();
memblock_allow_resize();
/* Get information about *all* installed memory */
memblock_add_mem_detect_info();
free_mem_detect_info();
remove_oldmem();
/*
* Make sure all chunks are MAX_ORDER aligned so we don't need the
* extra checks that HOLES_IN_ZONE would require.
*
* Is this still required?
*/
memblock_trim_memory(1UL << (MAX_ORDER - 1 + PAGE_SHIFT));
setup_memory_end();
setup_memory();
dma_contiguous_reserve(memory_end);
vmcp_cma_reserve();
check_initrd();
reserve_crashkernel();
#ifdef CONFIG_CRASH_DUMP
/*
* Be aware that smp_save_dump_cpus() triggers a system reset.
* Therefore CPU and device initialization should be done afterwards.
*/
smp_save_dump_cpus();
#endif
setup_resources();
setup_lowcore_dat_off();
smp_fill_possible_mask();
cpu_detect_mhz_feature();
cpu_init();
numa_setup();
smp_detect_cpus();
topology_init_early();
/*
* Create kernel page tables and switch to virtual addressing.
*/
paging_init();
/*
* After paging_init created the kernel page table, the new PSWs
* in lowcore can now run with DAT enabled.
*/
setup_lowcore_dat_on();
/* Setup default console */
conmode_default();
set_preferred_console();
apply_alternative_instructions();
if (IS_ENABLED(CONFIG_EXPOLINE))
nospec_init_branches();
/* Setup zfcpdump support */
setup_zfcpdump();
/* Add system specific data to the random pool */
setup_randomness();
}