linux/drivers/clk/zte/clk.c
Jun Nie edc6da239a clk: zte: add audio clocks for zx296718
The audio related clock support is missing from the existing zx296718
clock driver.  Let's add it, so that the upstream ZX SPDIF driver can
work for HDMI audio support.

Signed-off-by: Jun Nie <jun.nie@linaro.org>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
[sboyd@codeaurora.org: Staticize some more structures]
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2017-01-09 16:06:43 -08:00

440 lines
10 KiB
C

/*
* Copyright 2014 Linaro Ltd.
* Copyright (C) 2014 ZTE Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/gcd.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/div64.h>
#include "clk.h"
#define to_clk_zx_pll(_hw) container_of(_hw, struct clk_zx_pll, hw)
#define to_clk_zx_audio(_hw) container_of(_hw, struct clk_zx_audio, hw)
#define CFG0_CFG1_OFFSET 4
#define LOCK_FLAG 30
#define POWER_DOWN 31
static int rate_to_idx(struct clk_zx_pll *zx_pll, unsigned long rate)
{
const struct zx_pll_config *config = zx_pll->lookup_table;
int i;
for (i = 0; i < zx_pll->count; i++) {
if (config[i].rate > rate)
return i > 0 ? i - 1 : 0;
if (config[i].rate == rate)
return i;
}
return i - 1;
}
static int hw_to_idx(struct clk_zx_pll *zx_pll)
{
const struct zx_pll_config *config = zx_pll->lookup_table;
u32 hw_cfg0, hw_cfg1;
int i;
hw_cfg0 = readl_relaxed(zx_pll->reg_base);
hw_cfg1 = readl_relaxed(zx_pll->reg_base + CFG0_CFG1_OFFSET);
/* For matching the value in lookup table */
hw_cfg0 &= ~BIT(zx_pll->lock_bit);
hw_cfg0 |= BIT(zx_pll->pd_bit);
for (i = 0; i < zx_pll->count; i++) {
if (hw_cfg0 == config[i].cfg0 && hw_cfg1 == config[i].cfg1)
return i;
}
return -EINVAL;
}
static unsigned long zx_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
int idx;
idx = hw_to_idx(zx_pll);
if (unlikely(idx == -EINVAL))
return 0;
return zx_pll->lookup_table[idx].rate;
}
static long zx_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
int idx;
idx = rate_to_idx(zx_pll, rate);
return zx_pll->lookup_table[idx].rate;
}
static int zx_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
/* Assume current cpu is not running on current PLL */
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
const struct zx_pll_config *config;
int idx;
idx = rate_to_idx(zx_pll, rate);
config = &zx_pll->lookup_table[idx];
writel_relaxed(config->cfg0, zx_pll->reg_base);
writel_relaxed(config->cfg1, zx_pll->reg_base + CFG0_CFG1_OFFSET);
return 0;
}
static int zx_pll_enable(struct clk_hw *hw)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
u32 reg;
reg = readl_relaxed(zx_pll->reg_base);
writel_relaxed(reg & ~BIT(zx_pll->pd_bit), zx_pll->reg_base);
return readl_relaxed_poll_timeout(zx_pll->reg_base, reg,
reg & BIT(zx_pll->lock_bit), 0, 100);
}
static void zx_pll_disable(struct clk_hw *hw)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
u32 reg;
reg = readl_relaxed(zx_pll->reg_base);
writel_relaxed(reg | BIT(zx_pll->pd_bit), zx_pll->reg_base);
}
static int zx_pll_is_enabled(struct clk_hw *hw)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
u32 reg;
reg = readl_relaxed(zx_pll->reg_base);
return !(reg & BIT(zx_pll->pd_bit));
}
const struct clk_ops zx_pll_ops = {
.recalc_rate = zx_pll_recalc_rate,
.round_rate = zx_pll_round_rate,
.set_rate = zx_pll_set_rate,
.enable = zx_pll_enable,
.disable = zx_pll_disable,
.is_enabled = zx_pll_is_enabled,
};
EXPORT_SYMBOL(zx_pll_ops);
struct clk *clk_register_zx_pll(const char *name, const char *parent_name,
unsigned long flags, void __iomem *reg_base,
const struct zx_pll_config *lookup_table,
int count, spinlock_t *lock)
{
struct clk_zx_pll *zx_pll;
struct clk *clk;
struct clk_init_data init;
zx_pll = kzalloc(sizeof(*zx_pll), GFP_KERNEL);
if (!zx_pll)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &zx_pll_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
zx_pll->reg_base = reg_base;
zx_pll->lookup_table = lookup_table;
zx_pll->count = count;
zx_pll->lock_bit = LOCK_FLAG;
zx_pll->pd_bit = POWER_DOWN;
zx_pll->lock = lock;
zx_pll->hw.init = &init;
clk = clk_register(NULL, &zx_pll->hw);
if (IS_ERR(clk))
kfree(zx_pll);
return clk;
}
#define BPAR 1000000
static u32 calc_reg(u32 parent_rate, u32 rate)
{
u32 sel, integ, fra_div, tmp;
u64 tmp64 = (u64)parent_rate * BPAR;
do_div(tmp64, rate);
integ = (u32)tmp64 / BPAR;
integ = integ >> 1;
tmp = (u32)tmp64 % BPAR;
sel = tmp / BPAR;
tmp = tmp % BPAR;
fra_div = tmp * 0xff / BPAR;
tmp = (sel << 24) | (integ << 16) | (0xff << 8) | fra_div;
/* Set I2S integer divider as 1. This bit is reserved for SPDIF
* and do no harm.
*/
tmp |= BIT(28);
return tmp;
}
static u32 calc_rate(u32 reg, u32 parent_rate)
{
u32 sel, integ, fra_div, tmp;
u64 tmp64 = (u64)parent_rate * BPAR;
tmp = reg;
sel = (tmp >> 24) & BIT(0);
integ = (tmp >> 16) & 0xff;
fra_div = tmp & 0xff;
tmp = fra_div * BPAR;
tmp = tmp / 0xff;
tmp += sel * BPAR;
tmp += 2 * integ * BPAR;
do_div(tmp64, tmp);
return (u32)tmp64;
}
static unsigned long zx_audio_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = readl_relaxed(zx_audio->reg_base);
return calc_rate(reg, parent_rate);
}
static long zx_audio_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
u32 reg;
if (rate * 2 > *prate)
return -EINVAL;
reg = calc_reg(*prate, rate);
return calc_rate(reg, *prate);
}
static int zx_audio_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = calc_reg(parent_rate, rate);
writel_relaxed(reg, zx_audio->reg_base);
return 0;
}
#define ZX_AUDIO_EN BIT(25)
static int zx_audio_enable(struct clk_hw *hw)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = readl_relaxed(zx_audio->reg_base);
writel_relaxed(reg & ~ZX_AUDIO_EN, zx_audio->reg_base);
return 0;
}
static void zx_audio_disable(struct clk_hw *hw)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = readl_relaxed(zx_audio->reg_base);
writel_relaxed(reg | ZX_AUDIO_EN, zx_audio->reg_base);
}
static const struct clk_ops zx_audio_ops = {
.recalc_rate = zx_audio_recalc_rate,
.round_rate = zx_audio_round_rate,
.set_rate = zx_audio_set_rate,
.enable = zx_audio_enable,
.disable = zx_audio_disable,
};
struct clk *clk_register_zx_audio(const char *name,
const char * const parent_name,
unsigned long flags,
void __iomem *reg_base)
{
struct clk_zx_audio *zx_audio;
struct clk *clk;
struct clk_init_data init;
zx_audio = kzalloc(sizeof(*zx_audio), GFP_KERNEL);
if (!zx_audio)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &zx_audio_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
zx_audio->reg_base = reg_base;
zx_audio->hw.init = &init;
clk = clk_register(NULL, &zx_audio->hw);
if (IS_ERR(clk))
kfree(zx_audio);
return clk;
}
#define CLK_AUDIO_DIV_FRAC BIT(0)
#define CLK_AUDIO_DIV_INT BIT(1)
#define CLK_AUDIO_DIV_UNCOMMON BIT(1)
#define CLK_AUDIO_DIV_FRAC_NSHIFT 16
#define CLK_AUDIO_DIV_INT_FRAC_RE BIT(16)
#define CLK_AUDIO_DIV_INT_FRAC_MAX (0xffff)
#define CLK_AUDIO_DIV_INT_FRAC_MIN (0x2)
#define CLK_AUDIO_DIV_INT_INT_SHIFT 24
#define CLK_AUDIO_DIV_INT_INT_WIDTH 4
struct zx_clk_audio_div_table {
unsigned long rate;
unsigned int int_reg;
unsigned int frac_reg;
};
#define to_clk_zx_audio_div(_hw) container_of(_hw, struct clk_zx_audio_divider, hw)
static unsigned long audio_calc_rate(struct clk_zx_audio_divider *audio_div,
u32 reg_frac, u32 reg_int,
unsigned long parent_rate)
{
unsigned long rate, m, n;
m = reg_frac & 0xffff;
n = (reg_frac >> 16) & 0xffff;
m = (reg_int & 0xffff) * n + m;
rate = (parent_rate * n) / m;
return rate;
}
static void audio_calc_reg(struct clk_zx_audio_divider *audio_div,
struct zx_clk_audio_div_table *div_table,
unsigned long rate, unsigned long parent_rate)
{
unsigned int reg_int, reg_frac;
unsigned long m, n, div;
reg_int = parent_rate / rate;
if (reg_int > CLK_AUDIO_DIV_INT_FRAC_MAX)
reg_int = CLK_AUDIO_DIV_INT_FRAC_MAX;
else if (reg_int < CLK_AUDIO_DIV_INT_FRAC_MIN)
reg_int = 0;
m = parent_rate - rate * reg_int;
n = rate;
div = gcd(m, n);
m = m / div;
n = n / div;
if ((m >> 16) || (n >> 16)) {
if (m > n) {
n = n * 0xffff / m;
m = 0xffff;
} else {
m = m * 0xffff / n;
n = 0xffff;
}
}
reg_frac = m | (n << 16);
div_table->rate = parent_rate * n / (reg_int * n + m);
div_table->int_reg = reg_int;
div_table->frac_reg = reg_frac;
}
static unsigned long zx_audio_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
u32 reg_frac, reg_int;
reg_frac = readl_relaxed(zx_audio_div->reg_base);
reg_int = readl_relaxed(zx_audio_div->reg_base + 0x4);
return audio_calc_rate(zx_audio_div, reg_frac, reg_int, parent_rate);
}
static long zx_audio_div_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
struct zx_clk_audio_div_table divt;
audio_calc_reg(zx_audio_div, &divt, rate, *prate);
return audio_calc_rate(zx_audio_div, divt.frac_reg, divt.int_reg, *prate);
}
static int zx_audio_div_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
struct zx_clk_audio_div_table divt;
unsigned int val;
audio_calc_reg(zx_audio_div, &divt, rate, parent_rate);
if (divt.rate != rate)
pr_debug("the real rate is:%ld", divt.rate);
writel_relaxed(divt.frac_reg, zx_audio_div->reg_base);
val = readl_relaxed(zx_audio_div->reg_base + 0x4);
val &= ~0xffff;
val |= divt.int_reg | CLK_AUDIO_DIV_INT_FRAC_RE;
writel_relaxed(val, zx_audio_div->reg_base + 0x4);
mdelay(1);
val = readl_relaxed(zx_audio_div->reg_base + 0x4);
val &= ~CLK_AUDIO_DIV_INT_FRAC_RE;
writel_relaxed(val, zx_audio_div->reg_base + 0x4);
return 0;
}
const struct clk_ops zx_audio_div_ops = {
.recalc_rate = zx_audio_div_recalc_rate,
.round_rate = zx_audio_div_round_rate,
.set_rate = zx_audio_div_set_rate,
};