6602041b83
We should not use net_device::dev_id to indicate the port number, as this affects the way the local part of IPv6 addresses is normally generated. This field was intended for use where multiple devices may share a single assigned MAC address and need to have different IPv6 addresses. Siena's two ports each have their own MAC addresses. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
732 lines
21 KiB
C
732 lines
21 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2006-2010 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include "net_driver.h"
|
|
#include "bitfield.h"
|
|
#include "efx.h"
|
|
#include "nic.h"
|
|
#include "spi.h"
|
|
#include "regs.h"
|
|
#include "io.h"
|
|
#include "phy.h"
|
|
#include "workarounds.h"
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "selftest.h"
|
|
|
|
/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
|
|
|
|
static void siena_init_wol(struct efx_nic *efx);
|
|
static int siena_reset_hw(struct efx_nic *efx, enum reset_type method);
|
|
|
|
|
|
static void siena_push_irq_moderation(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t timer_cmd;
|
|
|
|
if (channel->irq_moderation)
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
FRF_CZ_TC_TIMER_MODE,
|
|
FFE_CZ_TIMER_MODE_INT_HLDOFF,
|
|
FRF_CZ_TC_TIMER_VAL,
|
|
channel->irq_moderation - 1);
|
|
else
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
FRF_CZ_TC_TIMER_MODE,
|
|
FFE_CZ_TIMER_MODE_DIS,
|
|
FRF_CZ_TC_TIMER_VAL, 0);
|
|
efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
|
|
channel->channel);
|
|
}
|
|
|
|
static int siena_mdio_write(struct net_device *net_dev,
|
|
int prtad, int devad, u16 addr, u16 value)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
uint32_t status;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
|
|
addr, value, &status);
|
|
if (rc)
|
|
return rc;
|
|
if (status != MC_CMD_MDIO_STATUS_GOOD)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int siena_mdio_read(struct net_device *net_dev,
|
|
int prtad, int devad, u16 addr)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
uint16_t value;
|
|
uint32_t status;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
|
|
addr, &value, &status);
|
|
if (rc)
|
|
return rc;
|
|
if (status != MC_CMD_MDIO_STATUS_GOOD)
|
|
return -EIO;
|
|
|
|
return (int)value;
|
|
}
|
|
|
|
/* This call is responsible for hooking in the MAC and PHY operations */
|
|
static int siena_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
/* Hook in PHY operations table */
|
|
efx->phy_op = &efx_mcdi_phy_ops;
|
|
|
|
/* Set up MDIO structure for PHY */
|
|
efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
|
|
efx->mdio.mdio_read = siena_mdio_read;
|
|
efx->mdio.mdio_write = siena_mdio_write;
|
|
|
|
/* Fill out MDIO structure, loopback modes, and initial link state */
|
|
rc = efx->phy_op->probe(efx);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* Allocate buffer for stats */
|
|
rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
|
|
MC_CMD_MAC_NSTATS * sizeof(u64));
|
|
if (rc)
|
|
return rc;
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"stats buffer at %llx (virt %p phys %llx)\n",
|
|
(u64)efx->stats_buffer.dma_addr,
|
|
efx->stats_buffer.addr,
|
|
(u64)virt_to_phys(efx->stats_buffer.addr));
|
|
|
|
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void siena_remove_port(struct efx_nic *efx)
|
|
{
|
|
efx->phy_op->remove(efx);
|
|
efx_nic_free_buffer(efx, &efx->stats_buffer);
|
|
}
|
|
|
|
void siena_prepare_flush(struct efx_nic *efx)
|
|
{
|
|
if (efx->fc_disable++ == 0)
|
|
efx_mcdi_set_mac(efx);
|
|
}
|
|
|
|
void siena_finish_flush(struct efx_nic *efx)
|
|
{
|
|
if (--efx->fc_disable == 0)
|
|
efx_mcdi_set_mac(efx);
|
|
}
|
|
|
|
static const struct efx_nic_register_test siena_register_tests[] = {
|
|
{ FR_AZ_ADR_REGION,
|
|
EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
|
|
{ FR_CZ_USR_EV_CFG,
|
|
EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_RX_CFG,
|
|
EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
|
|
{ FR_AZ_TX_CFG,
|
|
EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
|
|
{ FR_AZ_TX_RESERVED,
|
|
EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
|
|
{ FR_AZ_SRM_TX_DC_CFG,
|
|
EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_RX_DC_CFG,
|
|
EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_RX_DC_PF_WM,
|
|
EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_BZ_DP_CTRL,
|
|
EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_BZ_RX_RSS_TKEY,
|
|
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
|
|
{ FR_CZ_RX_RSS_IPV6_REG1,
|
|
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
|
|
{ FR_CZ_RX_RSS_IPV6_REG2,
|
|
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
|
|
{ FR_CZ_RX_RSS_IPV6_REG3,
|
|
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
|
|
};
|
|
|
|
static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
|
|
{
|
|
enum reset_type reset_method = RESET_TYPE_ALL;
|
|
int rc, rc2;
|
|
|
|
efx_reset_down(efx, reset_method);
|
|
|
|
/* Reset the chip immediately so that it is completely
|
|
* quiescent regardless of what any VF driver does.
|
|
*/
|
|
rc = siena_reset_hw(efx, reset_method);
|
|
if (rc)
|
|
goto out;
|
|
|
|
tests->registers =
|
|
efx_nic_test_registers(efx, siena_register_tests,
|
|
ARRAY_SIZE(siena_register_tests))
|
|
? -1 : 1;
|
|
|
|
rc = siena_reset_hw(efx, reset_method);
|
|
out:
|
|
rc2 = efx_reset_up(efx, reset_method, rc == 0);
|
|
return rc ? rc : rc2;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Device reset
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static enum reset_type siena_map_reset_reason(enum reset_type reason)
|
|
{
|
|
return RESET_TYPE_RECOVER_OR_ALL;
|
|
}
|
|
|
|
static int siena_map_reset_flags(u32 *flags)
|
|
{
|
|
enum {
|
|
SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
|
|
ETH_RESET_OFFLOAD | ETH_RESET_MAC |
|
|
ETH_RESET_PHY),
|
|
SIENA_RESET_MC = (SIENA_RESET_PORT |
|
|
ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
|
|
};
|
|
|
|
if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
|
|
*flags &= ~SIENA_RESET_MC;
|
|
return RESET_TYPE_WORLD;
|
|
}
|
|
|
|
if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
|
|
*flags &= ~SIENA_RESET_PORT;
|
|
return RESET_TYPE_ALL;
|
|
}
|
|
|
|
/* no invisible reset implemented */
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
int rc;
|
|
|
|
/* Recover from a failed assertion pre-reset */
|
|
rc = efx_mcdi_handle_assertion(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (method == RESET_TYPE_WORLD)
|
|
return efx_mcdi_reset_mc(efx);
|
|
else
|
|
return efx_mcdi_reset_port(efx);
|
|
}
|
|
|
|
#ifdef CONFIG_EEH
|
|
/* When a PCI device is isolated from the bus, a subsequent MMIO read is
|
|
* required for the kernel EEH mechanisms to notice. As the Solarflare driver
|
|
* was written to minimise MMIO read (for latency) then a periodic call to check
|
|
* the EEH status of the device is required so that device recovery can happen
|
|
* in a timely fashion.
|
|
*/
|
|
static void siena_monitor(struct efx_nic *efx)
|
|
{
|
|
struct eeh_dev *eehdev =
|
|
of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
|
|
|
|
eeh_dev_check_failure(eehdev);
|
|
}
|
|
#endif
|
|
|
|
static int siena_probe_nvconfig(struct efx_nic *efx)
|
|
{
|
|
u32 caps = 0;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
|
|
|
|
efx->timer_quantum_ns =
|
|
(caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
|
|
3072 : 6144; /* 768 cycles */
|
|
return rc;
|
|
}
|
|
|
|
static void siena_dimension_resources(struct efx_nic *efx)
|
|
{
|
|
/* Each port has a small block of internal SRAM dedicated to
|
|
* the buffer table and descriptor caches. In theory we can
|
|
* map both blocks to one port, but we don't.
|
|
*/
|
|
efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
|
|
}
|
|
|
|
static int siena_probe_nic(struct efx_nic *efx)
|
|
{
|
|
struct siena_nic_data *nic_data;
|
|
bool already_attached = false;
|
|
efx_oword_t reg;
|
|
int rc;
|
|
|
|
/* Allocate storage for hardware specific data */
|
|
nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
|
|
if (!nic_data)
|
|
return -ENOMEM;
|
|
efx->nic_data = nic_data;
|
|
|
|
if (efx_nic_fpga_ver(efx) != 0) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"Siena FPGA not supported\n");
|
|
rc = -ENODEV;
|
|
goto fail1;
|
|
}
|
|
|
|
efx_reado(efx, ®, FR_AZ_CS_DEBUG);
|
|
efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
|
|
|
|
efx_mcdi_init(efx);
|
|
|
|
/* Recover from a failed assertion before probing */
|
|
rc = efx_mcdi_handle_assertion(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
/* Let the BMC know that the driver is now in charge of link and
|
|
* filter settings. We must do this before we reset the NIC */
|
|
rc = efx_mcdi_drv_attach(efx, true, &already_attached);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"Unable to register driver with MCPU\n");
|
|
goto fail2;
|
|
}
|
|
if (already_attached)
|
|
/* Not a fatal error */
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"Host already registered with MCPU\n");
|
|
|
|
/* Now we can reset the NIC */
|
|
rc = siena_reset_hw(efx, RESET_TYPE_ALL);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
siena_init_wol(efx);
|
|
|
|
/* Allocate memory for INT_KER */
|
|
rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
|
|
if (rc)
|
|
goto fail4;
|
|
BUG_ON(efx->irq_status.dma_addr & 0x0f);
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"INT_KER at %llx (virt %p phys %llx)\n",
|
|
(unsigned long long)efx->irq_status.dma_addr,
|
|
efx->irq_status.addr,
|
|
(unsigned long long)virt_to_phys(efx->irq_status.addr));
|
|
|
|
/* Read in the non-volatile configuration */
|
|
rc = siena_probe_nvconfig(efx);
|
|
if (rc == -EINVAL) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"NVRAM is invalid therefore using defaults\n");
|
|
efx->phy_type = PHY_TYPE_NONE;
|
|
efx->mdio.prtad = MDIO_PRTAD_NONE;
|
|
} else if (rc) {
|
|
goto fail5;
|
|
}
|
|
|
|
rc = efx_mcdi_mon_probe(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
efx_sriov_probe(efx);
|
|
efx_ptp_probe(efx);
|
|
|
|
return 0;
|
|
|
|
fail5:
|
|
efx_nic_free_buffer(efx, &efx->irq_status);
|
|
fail4:
|
|
fail3:
|
|
efx_mcdi_drv_attach(efx, false, NULL);
|
|
fail2:
|
|
fail1:
|
|
kfree(efx->nic_data);
|
|
return rc;
|
|
}
|
|
|
|
/* This call performs hardware-specific global initialisation, such as
|
|
* defining the descriptor cache sizes and number of RSS channels.
|
|
* It does not set up any buffers, descriptor rings or event queues.
|
|
*/
|
|
static int siena_init_nic(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t temp;
|
|
int rc;
|
|
|
|
/* Recover from a failed assertion post-reset */
|
|
rc = efx_mcdi_handle_assertion(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Squash TX of packets of 16 bytes or less */
|
|
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
|
|
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
|
|
|
|
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
|
|
* descriptors (which is bad).
|
|
*/
|
|
efx_reado(efx, &temp, FR_AZ_TX_CFG);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
|
|
efx_writeo(efx, &temp, FR_AZ_TX_CFG);
|
|
|
|
efx_reado(efx, &temp, FR_AZ_RX_CFG);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
|
|
/* Enable hash insertion. This is broken for the 'Falcon' hash
|
|
* if IPv6 hashing is also enabled, so also select Toeplitz
|
|
* TCP/IPv4 and IPv4 hashes. */
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
|
|
EFX_RX_USR_BUF_SIZE >> 5);
|
|
efx_writeo(efx, &temp, FR_AZ_RX_CFG);
|
|
|
|
/* Set hash key for IPv4 */
|
|
memcpy(&temp, efx->rx_hash_key, sizeof(temp));
|
|
efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
|
|
|
|
/* Enable IPv6 RSS */
|
|
BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
|
|
2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
|
|
FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
|
|
memcpy(&temp, efx->rx_hash_key, sizeof(temp));
|
|
efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
|
|
memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
|
|
efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
|
|
EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
|
|
FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
|
|
memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
|
|
FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
|
|
efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
|
|
|
|
/* Enable event logging */
|
|
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Set destination of both TX and RX Flush events */
|
|
EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
|
|
efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
|
|
|
|
EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
|
|
efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
|
|
|
|
efx_nic_init_common(efx);
|
|
return 0;
|
|
}
|
|
|
|
static void siena_remove_nic(struct efx_nic *efx)
|
|
{
|
|
efx_mcdi_mon_remove(efx);
|
|
|
|
efx_nic_free_buffer(efx, &efx->irq_status);
|
|
|
|
siena_reset_hw(efx, RESET_TYPE_ALL);
|
|
|
|
/* Relinquish the device back to the BMC */
|
|
efx_mcdi_drv_attach(efx, false, NULL);
|
|
|
|
/* Tear down the private nic state */
|
|
kfree(efx->nic_data);
|
|
efx->nic_data = NULL;
|
|
}
|
|
|
|
#define STATS_GENERATION_INVALID ((__force __le64)(-1))
|
|
|
|
static int siena_try_update_nic_stats(struct efx_nic *efx)
|
|
{
|
|
__le64 *dma_stats;
|
|
struct efx_mac_stats *mac_stats;
|
|
__le64 generation_start, generation_end;
|
|
|
|
mac_stats = &efx->mac_stats;
|
|
dma_stats = efx->stats_buffer.addr;
|
|
|
|
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
|
|
if (generation_end == STATS_GENERATION_INVALID)
|
|
return 0;
|
|
rmb();
|
|
|
|
#define MAC_STAT(M, D) \
|
|
mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
|
|
|
|
MAC_STAT(tx_bytes, TX_BYTES);
|
|
MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
|
|
efx_update_diff_stat(&mac_stats->tx_good_bytes,
|
|
mac_stats->tx_bytes - mac_stats->tx_bad_bytes);
|
|
MAC_STAT(tx_packets, TX_PKTS);
|
|
MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
|
|
MAC_STAT(tx_pause, TX_PAUSE_PKTS);
|
|
MAC_STAT(tx_control, TX_CONTROL_PKTS);
|
|
MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
|
|
MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
|
|
MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
|
|
MAC_STAT(tx_lt64, TX_LT64_PKTS);
|
|
MAC_STAT(tx_64, TX_64_PKTS);
|
|
MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
|
|
MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
|
|
MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
|
|
MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
|
|
MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
|
|
MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
|
|
MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
|
|
mac_stats->tx_collision = 0;
|
|
MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
|
|
MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
|
|
MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
|
|
MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
|
|
MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
|
|
mac_stats->tx_collision = (mac_stats->tx_single_collision +
|
|
mac_stats->tx_multiple_collision +
|
|
mac_stats->tx_excessive_collision +
|
|
mac_stats->tx_late_collision);
|
|
MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
|
|
MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
|
|
MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
|
|
MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
|
|
MAC_STAT(rx_bytes, RX_BYTES);
|
|
MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
|
|
efx_update_diff_stat(&mac_stats->rx_good_bytes,
|
|
mac_stats->rx_bytes - mac_stats->rx_bad_bytes);
|
|
MAC_STAT(rx_packets, RX_PKTS);
|
|
MAC_STAT(rx_good, RX_GOOD_PKTS);
|
|
MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
|
|
MAC_STAT(rx_pause, RX_PAUSE_PKTS);
|
|
MAC_STAT(rx_control, RX_CONTROL_PKTS);
|
|
MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
|
|
MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
|
|
MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
|
|
MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
|
|
MAC_STAT(rx_64, RX_64_PKTS);
|
|
MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
|
|
MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
|
|
MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
|
|
MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
|
|
MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
|
|
MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
|
|
MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
|
|
mac_stats->rx_bad_lt64 = 0;
|
|
mac_stats->rx_bad_64_to_15xx = 0;
|
|
mac_stats->rx_bad_15xx_to_jumbo = 0;
|
|
MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
|
|
MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
|
|
mac_stats->rx_missed = 0;
|
|
MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
|
|
MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
|
|
MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
|
|
MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
|
|
MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
|
|
mac_stats->rx_good_lt64 = 0;
|
|
|
|
efx->n_rx_nodesc_drop_cnt =
|
|
le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
|
|
|
|
#undef MAC_STAT
|
|
|
|
rmb();
|
|
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
|
|
if (generation_end != generation_start)
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void siena_update_nic_stats(struct efx_nic *efx)
|
|
{
|
|
int retry;
|
|
|
|
/* If we're unlucky enough to read statistics wduring the DMA, wait
|
|
* up to 10ms for it to finish (typically takes <500us) */
|
|
for (retry = 0; retry < 100; ++retry) {
|
|
if (siena_try_update_nic_stats(efx) == 0)
|
|
return;
|
|
udelay(100);
|
|
}
|
|
|
|
/* Use the old values instead */
|
|
}
|
|
|
|
static void siena_start_nic_stats(struct efx_nic *efx)
|
|
{
|
|
__le64 *dma_stats = efx->stats_buffer.addr;
|
|
|
|
dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
|
|
|
|
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
|
|
MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
|
|
}
|
|
|
|
static void siena_stop_nic_stats(struct efx_nic *efx)
|
|
{
|
|
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Wake on LAN
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
|
|
wol->supported = WAKE_MAGIC;
|
|
if (nic_data->wol_filter_id != -1)
|
|
wol->wolopts = WAKE_MAGIC;
|
|
else
|
|
wol->wolopts = 0;
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
}
|
|
|
|
|
|
static int siena_set_wol(struct efx_nic *efx, u32 type)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
if (type & ~WAKE_MAGIC)
|
|
return -EINVAL;
|
|
|
|
if (type & WAKE_MAGIC) {
|
|
if (nic_data->wol_filter_id != -1)
|
|
efx_mcdi_wol_filter_remove(efx,
|
|
nic_data->wol_filter_id);
|
|
rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
|
|
&nic_data->wol_filter_id);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
pci_wake_from_d3(efx->pci_dev, true);
|
|
} else {
|
|
rc = efx_mcdi_wol_filter_reset(efx);
|
|
nic_data->wol_filter_id = -1;
|
|
pci_wake_from_d3(efx->pci_dev, false);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
|
|
__func__, type, rc);
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void siena_init_wol(struct efx_nic *efx)
|
|
{
|
|
struct siena_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
|
|
|
|
if (rc != 0) {
|
|
/* If it failed, attempt to get into a synchronised
|
|
* state with MC by resetting any set WoL filters */
|
|
efx_mcdi_wol_filter_reset(efx);
|
|
nic_data->wol_filter_id = -1;
|
|
} else if (nic_data->wol_filter_id != -1) {
|
|
pci_wake_from_d3(efx->pci_dev, true);
|
|
}
|
|
}
|
|
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Revision-dependent attributes used by efx.c and nic.c
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
const struct efx_nic_type siena_a0_nic_type = {
|
|
.probe = siena_probe_nic,
|
|
.remove = siena_remove_nic,
|
|
.init = siena_init_nic,
|
|
.dimension_resources = siena_dimension_resources,
|
|
.fini = efx_port_dummy_op_void,
|
|
#ifdef CONFIG_EEH
|
|
.monitor = siena_monitor,
|
|
#else
|
|
.monitor = NULL,
|
|
#endif
|
|
.map_reset_reason = siena_map_reset_reason,
|
|
.map_reset_flags = siena_map_reset_flags,
|
|
.reset = siena_reset_hw,
|
|
.probe_port = siena_probe_port,
|
|
.remove_port = siena_remove_port,
|
|
.prepare_flush = siena_prepare_flush,
|
|
.finish_flush = siena_finish_flush,
|
|
.update_stats = siena_update_nic_stats,
|
|
.start_stats = siena_start_nic_stats,
|
|
.stop_stats = siena_stop_nic_stats,
|
|
.set_id_led = efx_mcdi_set_id_led,
|
|
.push_irq_moderation = siena_push_irq_moderation,
|
|
.reconfigure_mac = efx_mcdi_mac_reconfigure,
|
|
.check_mac_fault = efx_mcdi_mac_check_fault,
|
|
.reconfigure_port = efx_mcdi_phy_reconfigure,
|
|
.get_wol = siena_get_wol,
|
|
.set_wol = siena_set_wol,
|
|
.resume_wol = siena_init_wol,
|
|
.test_chip = siena_test_chip,
|
|
.test_nvram = efx_mcdi_nvram_test_all,
|
|
|
|
.revision = EFX_REV_SIENA_A0,
|
|
.mem_map_size = (FR_CZ_MC_TREG_SMEM +
|
|
FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
|
|
.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
|
|
.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
|
|
.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
|
|
.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
|
|
.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
|
|
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
|
|
.rx_buffer_hash_size = 0x10,
|
|
.rx_buffer_padding = 0,
|
|
.can_rx_scatter = true,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
|
|
* interrupt handler only supports 32
|
|
* channels */
|
|
.timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
|
|
.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
|
|
NETIF_F_RXHASH | NETIF_F_NTUPLE),
|
|
};
|