forked from Minki/linux
ed00f64346
Some small code simplifications can be achieved by doing more agressive lock stealing: - When rwsem_down_write_failed() notices that there are no active locks (and thus no thread to wake us if we decided to sleep), it used to wake the first queued process. However, stealing the lock is also sufficient to deal with this case, so we don't need this check anymore. - In try_get_writer_sem(), we can steal the lock even when the first waiter is a reader. This is correct because the code path that wakes readers is protected by the wait_lock. As to the performance effects of this change, they are expected to be minimal: readers are still granted the lock (rather than having to acquire it themselves) when they reach the front of the wait queue, so we have essentially the same behavior as in rwsem-spinlock. Signed-off-by: Michel Lespinasse <walken@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Acked-by: Davidlohr Bueso <davidlohr.bueso@hp.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
297 lines
8.2 KiB
C
297 lines
8.2 KiB
C
/* rwsem.c: R/W semaphores: contention handling functions
|
|
*
|
|
* Written by David Howells (dhowells@redhat.com).
|
|
* Derived from arch/i386/kernel/semaphore.c
|
|
*
|
|
* Writer lock-stealing by Alex Shi <alex.shi@intel.com>
|
|
*/
|
|
#include <linux/rwsem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* Initialize an rwsem:
|
|
*/
|
|
void __init_rwsem(struct rw_semaphore *sem, const char *name,
|
|
struct lock_class_key *key)
|
|
{
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
/*
|
|
* Make sure we are not reinitializing a held semaphore:
|
|
*/
|
|
debug_check_no_locks_freed((void *)sem, sizeof(*sem));
|
|
lockdep_init_map(&sem->dep_map, name, key, 0);
|
|
#endif
|
|
sem->count = RWSEM_UNLOCKED_VALUE;
|
|
raw_spin_lock_init(&sem->wait_lock);
|
|
INIT_LIST_HEAD(&sem->wait_list);
|
|
}
|
|
|
|
EXPORT_SYMBOL(__init_rwsem);
|
|
|
|
enum rwsem_waiter_type {
|
|
RWSEM_WAITING_FOR_WRITE,
|
|
RWSEM_WAITING_FOR_READ
|
|
};
|
|
|
|
struct rwsem_waiter {
|
|
struct list_head list;
|
|
struct task_struct *task;
|
|
enum rwsem_waiter_type type;
|
|
};
|
|
|
|
/* Wake types for __rwsem_do_wake(). Note that RWSEM_WAKE_NO_ACTIVE and
|
|
* RWSEM_WAKE_READ_OWNED imply that the spinlock must have been kept held
|
|
* since the rwsem value was observed.
|
|
*/
|
|
#define RWSEM_WAKE_ANY 0 /* Wake whatever's at head of wait list */
|
|
#define RWSEM_WAKE_NO_ACTIVE 1 /* rwsem was observed with no active thread */
|
|
#define RWSEM_WAKE_READ_OWNED 2 /* rwsem was observed to be read owned */
|
|
|
|
/*
|
|
* handle the lock release when processes blocked on it that can now run
|
|
* - if we come here from up_xxxx(), then:
|
|
* - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
|
|
* - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
|
|
* - there must be someone on the queue
|
|
* - the spinlock must be held by the caller
|
|
* - woken process blocks are discarded from the list after having task zeroed
|
|
* - writers are only woken if downgrading is false
|
|
*/
|
|
static struct rw_semaphore *
|
|
__rwsem_do_wake(struct rw_semaphore *sem, int wake_type)
|
|
{
|
|
struct rwsem_waiter *waiter;
|
|
struct task_struct *tsk;
|
|
struct list_head *next;
|
|
signed long woken, loop, adjustment;
|
|
|
|
waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);
|
|
if (waiter->type != RWSEM_WAITING_FOR_WRITE)
|
|
goto readers_only;
|
|
|
|
if (wake_type == RWSEM_WAKE_READ_OWNED)
|
|
/* Another active reader was observed, so wakeup is not
|
|
* likely to succeed. Save the atomic op.
|
|
*/
|
|
goto out;
|
|
|
|
/* Wake up the writing waiter and let the task grab the sem: */
|
|
wake_up_process(waiter->task);
|
|
goto out;
|
|
|
|
readers_only:
|
|
/* If we come here from up_xxxx(), another thread might have reached
|
|
* rwsem_down_failed_common() before we acquired the spinlock and
|
|
* woken up a waiter, making it now active. We prefer to check for
|
|
* this first in order to not spend too much time with the spinlock
|
|
* held if we're not going to be able to wake up readers in the end.
|
|
*
|
|
* Note that we do not need to update the rwsem count: any writer
|
|
* trying to acquire rwsem will run rwsem_down_write_failed() due
|
|
* to the waiting threads and block trying to acquire the spinlock.
|
|
*
|
|
* We use a dummy atomic update in order to acquire the cache line
|
|
* exclusively since we expect to succeed and run the final rwsem
|
|
* count adjustment pretty soon.
|
|
*/
|
|
if (wake_type == RWSEM_WAKE_ANY &&
|
|
rwsem_atomic_update(0, sem) < RWSEM_WAITING_BIAS)
|
|
/* Someone grabbed the sem for write already */
|
|
goto out;
|
|
|
|
/* Grant an infinite number of read locks to the readers at the front
|
|
* of the queue. Note we increment the 'active part' of the count by
|
|
* the number of readers before waking any processes up.
|
|
*/
|
|
woken = 0;
|
|
do {
|
|
woken++;
|
|
|
|
if (waiter->list.next == &sem->wait_list)
|
|
break;
|
|
|
|
waiter = list_entry(waiter->list.next,
|
|
struct rwsem_waiter, list);
|
|
|
|
} while (waiter->type != RWSEM_WAITING_FOR_WRITE);
|
|
|
|
adjustment = woken * RWSEM_ACTIVE_READ_BIAS;
|
|
if (waiter->type != RWSEM_WAITING_FOR_WRITE)
|
|
/* hit end of list above */
|
|
adjustment -= RWSEM_WAITING_BIAS;
|
|
|
|
rwsem_atomic_add(adjustment, sem);
|
|
|
|
next = sem->wait_list.next;
|
|
for (loop = woken; loop > 0; loop--) {
|
|
waiter = list_entry(next, struct rwsem_waiter, list);
|
|
next = waiter->list.next;
|
|
tsk = waiter->task;
|
|
smp_mb();
|
|
waiter->task = NULL;
|
|
wake_up_process(tsk);
|
|
put_task_struct(tsk);
|
|
}
|
|
|
|
sem->wait_list.next = next;
|
|
next->prev = &sem->wait_list;
|
|
|
|
out:
|
|
return sem;
|
|
}
|
|
|
|
/* Try to get write sem, caller holds sem->wait_lock: */
|
|
static int try_get_writer_sem(struct rw_semaphore *sem)
|
|
{
|
|
long oldcount, adjustment;
|
|
|
|
adjustment = RWSEM_ACTIVE_WRITE_BIAS;
|
|
if (list_is_singular(&sem->wait_list))
|
|
adjustment -= RWSEM_WAITING_BIAS;
|
|
|
|
try_again_write:
|
|
oldcount = rwsem_atomic_update(adjustment, sem) - adjustment;
|
|
if (!(oldcount & RWSEM_ACTIVE_MASK))
|
|
return 1;
|
|
/* some one grabbed the sem already */
|
|
if (rwsem_atomic_update(-adjustment, sem) & RWSEM_ACTIVE_MASK)
|
|
return 0;
|
|
goto try_again_write;
|
|
}
|
|
|
|
/*
|
|
* wait for the read lock to be granted
|
|
*/
|
|
struct rw_semaphore __sched *rwsem_down_read_failed(struct rw_semaphore *sem)
|
|
{
|
|
signed long adjustment = -RWSEM_ACTIVE_READ_BIAS;
|
|
struct rwsem_waiter waiter;
|
|
struct task_struct *tsk = current;
|
|
signed long count;
|
|
|
|
/* set up my own style of waitqueue */
|
|
waiter.task = tsk;
|
|
waiter.type = RWSEM_WAITING_FOR_READ;
|
|
get_task_struct(tsk);
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
if (list_empty(&sem->wait_list))
|
|
adjustment += RWSEM_WAITING_BIAS;
|
|
list_add_tail(&waiter.list, &sem->wait_list);
|
|
|
|
/* we're now waiting on the lock, but no longer actively locking */
|
|
count = rwsem_atomic_update(adjustment, sem);
|
|
|
|
/* If there are no active locks, wake the front queued process(es). */
|
|
if (count == RWSEM_WAITING_BIAS)
|
|
sem = __rwsem_do_wake(sem, RWSEM_WAKE_NO_ACTIVE);
|
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
|
|
/* wait to be given the lock */
|
|
while (true) {
|
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
|
|
if (!waiter.task)
|
|
break;
|
|
schedule();
|
|
}
|
|
|
|
tsk->state = TASK_RUNNING;
|
|
|
|
return sem;
|
|
}
|
|
|
|
/*
|
|
* wait until we successfully acquire the write lock
|
|
*/
|
|
struct rw_semaphore __sched *rwsem_down_write_failed(struct rw_semaphore *sem)
|
|
{
|
|
signed long adjustment = -RWSEM_ACTIVE_WRITE_BIAS;
|
|
struct rwsem_waiter waiter;
|
|
struct task_struct *tsk = current;
|
|
signed long count;
|
|
|
|
/* set up my own style of waitqueue */
|
|
waiter.task = tsk;
|
|
waiter.type = RWSEM_WAITING_FOR_WRITE;
|
|
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
if (list_empty(&sem->wait_list))
|
|
adjustment += RWSEM_WAITING_BIAS;
|
|
list_add_tail(&waiter.list, &sem->wait_list);
|
|
|
|
/* we're now waiting on the lock, but no longer actively locking */
|
|
count = rwsem_atomic_update(adjustment, sem);
|
|
|
|
/* If there were already threads queued before us and there are no
|
|
* active writers, the lock must be read owned; so we try to wake
|
|
* any read locks that were queued ahead of us. */
|
|
if (count > RWSEM_WAITING_BIAS &&
|
|
adjustment == -RWSEM_ACTIVE_WRITE_BIAS)
|
|
sem = __rwsem_do_wake(sem, RWSEM_WAKE_READ_OWNED);
|
|
|
|
/* wait until we successfully acquire the lock */
|
|
while (true) {
|
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (try_get_writer_sem(sem))
|
|
break;
|
|
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
schedule();
|
|
raw_spin_lock_irq(&sem->wait_lock);
|
|
}
|
|
|
|
list_del(&waiter.list);
|
|
raw_spin_unlock_irq(&sem->wait_lock);
|
|
tsk->state = TASK_RUNNING;
|
|
|
|
return sem;
|
|
}
|
|
|
|
/*
|
|
* handle waking up a waiter on the semaphore
|
|
* - up_read/up_write has decremented the active part of count if we come here
|
|
*/
|
|
struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&sem->wait_lock, flags);
|
|
|
|
/* do nothing if list empty */
|
|
if (!list_empty(&sem->wait_list))
|
|
sem = __rwsem_do_wake(sem, RWSEM_WAKE_ANY);
|
|
|
|
raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
|
|
|
|
return sem;
|
|
}
|
|
|
|
/*
|
|
* downgrade a write lock into a read lock
|
|
* - caller incremented waiting part of count and discovered it still negative
|
|
* - just wake up any readers at the front of the queue
|
|
*/
|
|
struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&sem->wait_lock, flags);
|
|
|
|
/* do nothing if list empty */
|
|
if (!list_empty(&sem->wait_list))
|
|
sem = __rwsem_do_wake(sem, RWSEM_WAKE_READ_OWNED);
|
|
|
|
raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
|
|
|
|
return sem;
|
|
}
|
|
|
|
EXPORT_SYMBOL(rwsem_down_read_failed);
|
|
EXPORT_SYMBOL(rwsem_down_write_failed);
|
|
EXPORT_SYMBOL(rwsem_wake);
|
|
EXPORT_SYMBOL(rwsem_downgrade_wake);
|