linux/drivers/gpu/drm/amd/powerplay/hwmgr/vega12_hwmgr.c
Rex Zhu 5b79d0482f drm/amd/pp: Remove struct pp_gpu_power
Currently smu only calculate average gpu power in real time.

for vddc/vddci/max power,
User need to set start time and end time, firmware can calculate
the average vddc/vddci/max power. but the type of return values
is not unified. For Vi, return type is uint.
For vega, return type is float.

so this struct can't be suitable for all asics.

Acked-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2018-05-15 13:43:18 -05:00

2143 lines
65 KiB
C

/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "hwmgr.h"
#include "amd_powerplay.h"
#include "vega12_smumgr.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega12_inc.h"
#include "pppcielanes.h"
#include "vega12_hwmgr.h"
#include "vega12_processpptables.h"
#include "vega12_pptable.h"
#include "vega12_thermal.h"
#include "vega12_ppsmc.h"
#include "pp_debug.h"
#include "amd_pcie_helpers.h"
#include "ppinterrupt.h"
#include "pp_overdriver.h"
#include "pp_thermal.h"
static int vega12_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask);
static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr,
uint32_t *clock,
PPCLK_e clock_select,
bool max);
static void vega12_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
data->gfxclk_average_alpha = PPVEGA12_VEGA12GFXCLKAVERAGEALPHA_DFLT;
data->socclk_average_alpha = PPVEGA12_VEGA12SOCCLKAVERAGEALPHA_DFLT;
data->uclk_average_alpha = PPVEGA12_VEGA12UCLKCLKAVERAGEALPHA_DFLT;
data->gfx_activity_average_alpha = PPVEGA12_VEGA12GFXACTIVITYAVERAGEALPHA_DFLT;
data->lowest_uclk_reserved_for_ulv = PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT;
data->display_voltage_mode = PPVEGA12_VEGA12DISPLAYVOLTAGEMODE_DFLT;
data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT;
data->registry_data.disallowed_features = 0x0;
data->registry_data.od_state_in_dc_support = 0;
data->registry_data.skip_baco_hardware = 0;
data->registry_data.log_avfs_param = 0;
data->registry_data.sclk_throttle_low_notification = 1;
data->registry_data.force_dpm_high = 0;
data->registry_data.stable_pstate_sclk_dpm_percentage = 75;
data->registry_data.didt_support = 0;
if (data->registry_data.didt_support) {
data->registry_data.didt_mode = 6;
data->registry_data.sq_ramping_support = 1;
data->registry_data.db_ramping_support = 0;
data->registry_data.td_ramping_support = 0;
data->registry_data.tcp_ramping_support = 0;
data->registry_data.dbr_ramping_support = 0;
data->registry_data.edc_didt_support = 1;
data->registry_data.gc_didt_support = 0;
data->registry_data.psm_didt_support = 0;
}
data->registry_data.pcie_lane_override = 0xff;
data->registry_data.pcie_speed_override = 0xff;
data->registry_data.pcie_clock_override = 0xffffffff;
data->registry_data.regulator_hot_gpio_support = 1;
data->registry_data.ac_dc_switch_gpio_support = 0;
data->registry_data.quick_transition_support = 0;
data->registry_data.zrpm_start_temp = 0xffff;
data->registry_data.zrpm_stop_temp = 0xffff;
data->registry_data.odn_feature_enable = 1;
data->registry_data.disable_water_mark = 0;
data->registry_data.disable_pp_tuning = 0;
data->registry_data.disable_xlpp_tuning = 0;
data->registry_data.disable_workload_policy = 0;
data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F;
data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919;
data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A;
data->registry_data.force_workload_policy_mask = 0;
data->registry_data.disable_3d_fs_detection = 0;
data->registry_data.fps_support = 1;
data->registry_data.disable_auto_wattman = 1;
data->registry_data.auto_wattman_debug = 0;
data->registry_data.auto_wattman_sample_period = 100;
data->registry_data.auto_wattman_threshold = 50;
}
static int vega12_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
if (data->vddci_control == VEGA12_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TablelessHardwareInterface);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableSMU7ThermalManagement);
if (adev->pg_flags & AMD_PG_SUPPORT_UVD) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDynamicPowerGating);
}
if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UnTabledHardwareInterface);
if (data->registry_data.odn_feature_enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODNinACSupport);
else {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6inACSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinACSupport);
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ActivityReporting);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_FanSpeedInTableIsRPM);
if (data->registry_data.od_state_in_dc_support) {
if (data->registry_data.odn_feature_enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODNinDCSupport);
else {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6inDCSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinDCSupport);
}
}
if (data->registry_data.thermal_support
&& data->registry_data.fuzzy_fan_control_support
&& hwmgr->thermal_controller.advanceFanControlParameters.usTMax)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODFuzzyFanControlSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPowerManagement);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMC);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalPolicyDelay);
if (data->registry_data.force_dpm_high)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ExclusiveModeAlwaysHigh);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
if (data->registry_data.sclk_throttle_low_notification)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
/* power tune caps */
/* assume disabled */
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtSupport);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SQRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TDRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TCPRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtEDCEnable);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GCEDC);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PSM);
if (data->registry_data.didt_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
if (data->registry_data.sq_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
if (data->registry_data.db_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
if (data->registry_data.td_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
if (data->registry_data.tcp_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
if (data->registry_data.dbr_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
if (data->registry_data.edc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
if (data->registry_data.gc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
if (data->registry_data.psm_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
if (data->registry_data.ac_dc_switch_gpio_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
}
if (data->registry_data.quick_transition_support) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
}
if (data->lowest_uclk_reserved_for_ulv != PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_LowestUclkReservedForUlv);
if (data->lowest_uclk_reserved_for_ulv == 1)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_LowestUclkReservedForUlv);
}
if (data->registry_data.custom_fan_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CustomFanControlSupport);
return 0;
}
static void vega12_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int i;
data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
FEATURE_DPM_PREFETCHER_BIT;
data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
FEATURE_DPM_GFXCLK_BIT;
data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
FEATURE_DPM_UCLK_BIT;
data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
FEATURE_DPM_SOCCLK_BIT;
data->smu_features[GNLD_DPM_UVD].smu_feature_id =
FEATURE_DPM_UVD_BIT;
data->smu_features[GNLD_DPM_VCE].smu_feature_id =
FEATURE_DPM_VCE_BIT;
data->smu_features[GNLD_ULV].smu_feature_id =
FEATURE_ULV_BIT;
data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
FEATURE_DPM_MP0CLK_BIT;
data->smu_features[GNLD_DPM_LINK].smu_feature_id =
FEATURE_DPM_LINK_BIT;
data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
FEATURE_DPM_DCEFCLK_BIT;
data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
FEATURE_DS_GFXCLK_BIT;
data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
FEATURE_DS_SOCCLK_BIT;
data->smu_features[GNLD_DS_LCLK].smu_feature_id =
FEATURE_DS_LCLK_BIT;
data->smu_features[GNLD_PPT].smu_feature_id =
FEATURE_PPT_BIT;
data->smu_features[GNLD_TDC].smu_feature_id =
FEATURE_TDC_BIT;
data->smu_features[GNLD_THERMAL].smu_feature_id =
FEATURE_THERMAL_BIT;
data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
FEATURE_GFX_PER_CU_CG_BIT;
data->smu_features[GNLD_RM].smu_feature_id =
FEATURE_RM_BIT;
data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
FEATURE_DS_DCEFCLK_BIT;
data->smu_features[GNLD_ACDC].smu_feature_id =
FEATURE_ACDC_BIT;
data->smu_features[GNLD_VR0HOT].smu_feature_id =
FEATURE_VR0HOT_BIT;
data->smu_features[GNLD_VR1HOT].smu_feature_id =
FEATURE_VR1HOT_BIT;
data->smu_features[GNLD_FW_CTF].smu_feature_id =
FEATURE_FW_CTF_BIT;
data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
FEATURE_LED_DISPLAY_BIT;
data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
FEATURE_FAN_CONTROL_BIT;
data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT;
data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT;
data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
data->smu_features[i].smu_feature_bitmap =
(uint64_t)(1ULL << data->smu_features[i].smu_feature_id);
data->smu_features[i].allowed =
((data->registry_data.disallowed_features >> i) & 1) ?
false : true;
}
}
static int vega12_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int vega12_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int vega12_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct vega12_hwmgr *data;
struct amdgpu_device *adev = hwmgr->adev;
data = kzalloc(sizeof(struct vega12_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
vega12_set_default_registry_data(hwmgr);
data->disable_dpm_mask = 0xff;
data->workload_mask = 0xff;
/* need to set voltage control types before EVV patching */
data->vddc_control = VEGA12_VOLTAGE_CONTROL_NONE;
data->mvdd_control = VEGA12_VOLTAGE_CONTROL_NONE;
data->vddci_control = VEGA12_VOLTAGE_CONTROL_NONE;
data->water_marks_bitmap = 0;
data->avfs_exist = false;
vega12_set_features_platform_caps(hwmgr);
vega12_init_dpm_defaults(hwmgr);
/* Parse pptable data read from VBIOS */
vega12_set_private_data_based_on_pptable(hwmgr);
data->is_tlu_enabled = false;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
VEGA12_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
data->total_active_cus = adev->gfx.cu_info.number;
/* Setup default Overdrive Fan control settings */
data->odn_fan_table.target_fan_speed =
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
data->odn_fan_table.target_temperature =
hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature;
data->odn_fan_table.min_performance_clock =
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit;
data->odn_fan_table.min_fan_limit =
hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit *
hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
return result;
}
static int vega12_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
data->low_sclk_interrupt_threshold = 0;
return 0;
}
static int vega12_setup_asic_task(struct pp_hwmgr *hwmgr)
{
PP_ASSERT_WITH_CODE(!vega12_init_sclk_threshold(hwmgr),
"Failed to init sclk threshold!",
return -EINVAL);
return 0;
}
/*
* @fn vega12_init_dpm_state
* @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
*
* @param dpm_state - the address of the DPM Table to initiailize.
* @return None.
*/
static void vega12_init_dpm_state(struct vega12_dpm_state *dpm_state)
{
dpm_state->soft_min_level = 0xff;
dpm_state->soft_max_level = 0xff;
dpm_state->hard_min_level = 0xff;
dpm_state->hard_max_level = 0xff;
}
static int vega12_get_number_dpm_level(struct pp_hwmgr *hwmgr,
PPCLK_e clkID, uint32_t *num_dpm_level)
{
int result;
/*
* SMU expects the Clock ID to be in the top 16 bits.
* Lower 16 bits specify the level however 0xFF is a
* special argument the returns the total number of levels
*/
PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmFreqByIndex, (clkID << 16 | 0xFF)) == 0,
"[GetNumberDpmLevel] Failed to get DPM levels from SMU for CLKID!",
return -EINVAL);
result = vega12_read_arg_from_smc(hwmgr, num_dpm_level);
PP_ASSERT_WITH_CODE(*num_dpm_level < MAX_REGULAR_DPM_NUMBER,
"[GetNumberDPMLevel] Number of DPM levels is greater than limit",
return -EINVAL);
PP_ASSERT_WITH_CODE(*num_dpm_level != 0,
"[GetNumberDPMLevel] Number of CLK Levels is zero!",
return -EINVAL);
return result;
}
static int vega12_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr,
PPCLK_e clkID, uint32_t index, uint32_t *clock)
{
int result;
/*
*SMU expects the Clock ID to be in the top 16 bits.
*Lower 16 bits specify the level
*/
PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmFreqByIndex, (clkID << 16 | index)) == 0,
"[GetDpmFrequencyByIndex] Failed to get dpm frequency from SMU!",
return -EINVAL);
result = vega12_read_arg_from_smc(hwmgr, clock);
PP_ASSERT_WITH_CODE(*clock != 0,
"[GetDPMFrequencyByIndex] Failed to get dpm frequency by index.!",
return -EINVAL);
return result;
}
/*
* This function is to initialize all DPM state tables
* for SMU based on the dependency table.
* Dynamic state patching function will then trim these
* state tables to the allowed range based
* on the power policy or external client requests,
* such as UVD request, etc.
*/
static int vega12_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
uint32_t num_levels, i, clock;
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *dpm_table;
memset(&data->dpm_table, 0, sizeof(data->dpm_table));
/* Initialize Sclk DPM and SOC DPM table based on allow Sclk values */
dpm_table = &(data->dpm_table.soc_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr, PPCLK_SOCCLK,
&num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for SOCCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_SOCCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for SOCCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.gfx_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr, PPCLK_GFXCLK,
&num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for GFXCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_GFXCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for GFXCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* Initialize Mclk DPM table based on allow Mclk values */
dpm_table = &(data->dpm_table.mem_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr, PPCLK_UCLK,
&num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for UCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_UCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for UCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.eclk_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr, PPCLK_ECLK,
&num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for ECLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_ECLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for ECLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.vclk_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr, PPCLK_VCLK,
&num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for VCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_VCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for VCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.dclk_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr, PPCLK_DCLK,
&num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for DCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_DCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for DCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* Assume there is no headless Vega12 for now */
dpm_table = &(data->dpm_table.dcef_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr,
PPCLK_DCEFCLK, &num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for DCEFCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_DCEFCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for DCEFCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.pixel_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr,
PPCLK_PIXCLK, &num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for PIXCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_PIXCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for PIXCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.display_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr,
PPCLK_DISPCLK, &num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for DISPCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_DISPCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for DISPCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.phy_table);
PP_ASSERT_WITH_CODE(vega12_get_number_dpm_level(hwmgr,
PPCLK_PHYCLK, &num_levels) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for PHYCLK!",
return -EINVAL);
dpm_table->count = num_levels;
for (i = 0; i < num_levels; i++) {
PP_ASSERT_WITH_CODE(vega12_get_dpm_frequency_by_index(hwmgr,
PPCLK_PHYCLK, i, &clock) == 0,
"[SetupDefaultDPMTables] Failed to get DPM levels from SMU for PHYCLK!",
return -EINVAL);
dpm_table->dpm_levels[i].value = clock;
dpm_table->dpm_levels[i].enabled = true;
}
vega12_init_dpm_state(&(dpm_table->dpm_state));
/* save a copy of the default DPM table */
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
sizeof(struct vega12_dpm_table));
return 0;
}
#if 0
static int vega12_save_default_power_profile(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
uint32_t min_level;
hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;
hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;
/* Optimize compute power profile: Use only highest
* 2 power levels (if more than 2 are available)
*/
if (dpm_table->count > 2)
min_level = dpm_table->count - 2;
else if (dpm_table->count == 2)
min_level = 1;
else
min_level = 0;
hwmgr->default_compute_power_profile.min_sclk =
dpm_table->dpm_levels[min_level].value;
hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;
return 0;
}
#endif
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
static int vega12_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
if (!result) {
data->vbios_boot_state.vddc = boot_up_values.usVddc;
data->vbios_boot_state.vddci = boot_up_values.usVddci;
data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinDeepSleepDcefclk,
(uint32_t)(data->vbios_boot_state.dcef_clock / 100));
}
memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t));
result = vega12_copy_table_to_smc(hwmgr,
(uint8_t *)pp_table, TABLE_PPTABLE);
PP_ASSERT_WITH_CODE(!result,
"Failed to upload PPtable!", return result);
return 0;
}
static int vega12_set_allowed_featuresmask(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
int i;
uint32_t allowed_features_low = 0, allowed_features_high = 0;
for (i = 0; i < GNLD_FEATURES_MAX; i++)
if (data->smu_features[i].allowed)
data->smu_features[i].smu_feature_id > 31 ?
(allowed_features_high |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) & 0xFFFFFFFF)) :
(allowed_features_low |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) & 0xFFFFFFFF));
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high) == 0,
"[SetAllowedFeaturesMask] Attempt to set allowed features mask (high) failed!",
return -1);
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low) == 0,
"[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!",
return -1);
return 0;
}
static int vega12_enable_all_smu_features(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint64_t features_enabled;
int i;
bool enabled;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAllSmuFeatures) == 0,
"[EnableAllSMUFeatures] Failed to enable all smu features!",
return -1);
if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) {
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false;
data->smu_features[i].enabled = enabled;
data->smu_features[i].supported = enabled;
PP_ASSERT(
!data->smu_features[i].allowed || enabled,
"[EnableAllSMUFeatures] Enabled feature is different from allowed, expected disabled!");
}
}
return 0;
}
static int vega12_disable_all_smu_features(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint64_t features_enabled;
int i;
bool enabled;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableAllSmuFeatures) == 0,
"[DisableAllSMUFeatures] Failed to disable all smu features!",
return -1);
if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) {
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false;
data->smu_features[i].enabled = enabled;
data->smu_features[i].supported = enabled;
}
}
return 0;
}
static int vega12_odn_initialize_default_settings(
struct pp_hwmgr *hwmgr)
{
return 0;
}
static int vega12_set_overdrive_target_percentage(struct pp_hwmgr *hwmgr,
uint32_t adjust_percent)
{
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_OverDriveSetPercentage, adjust_percent);
}
static int vega12_power_control_set_level(struct pp_hwmgr *hwmgr)
{
int adjust_percent, result = 0;
if (PP_CAP(PHM_PlatformCaps_PowerContainment)) {
adjust_percent =
hwmgr->platform_descriptor.TDPAdjustmentPolarity ?
hwmgr->platform_descriptor.TDPAdjustment :
(-1 * hwmgr->platform_descriptor.TDPAdjustment);
result = vega12_set_overdrive_target_percentage(hwmgr,
(uint32_t)adjust_percent);
}
return result;
}
static int vega12_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, 0);
result = vega12_set_allowed_featuresmask(hwmgr);
PP_ASSERT_WITH_CODE(result == 0,
"[EnableDPMTasks] Failed to set allowed featuresmask!\n",
return result);
tmp_result = vega12_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to initialize SMC table!",
result = tmp_result);
result = vega12_enable_all_smu_features(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to enable all smu features!",
return result);
tmp_result = vega12_power_control_set_level(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to power control set level!",
result = tmp_result);
result = vega12_odn_initialize_default_settings(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to power control set level!",
return result);
result = vega12_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to setup default DPM tables!",
return result);
return result;
}
static int vega12_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
return 0;
}
static uint32_t vega12_find_lowest_dpm_level(
struct vega12_single_dpm_table *table)
{
uint32_t i;
for (i = 0; i < table->count; i++) {
if (table->dpm_levels[i].enabled)
break;
}
return i;
}
static uint32_t vega12_find_highest_dpm_level(
struct vega12_single_dpm_table *table)
{
uint32_t i = 0;
if (table->count <= MAX_REGULAR_DPM_NUMBER) {
for (i = table->count; i > 0; i--) {
if (table->dpm_levels[i - 1].enabled)
return i - 1;
}
} else {
pr_info("DPM Table Has Too Many Entries!");
return MAX_REGULAR_DPM_NUMBER - 1;
}
return i;
}
static int vega12_upload_dpm_min_level(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = hwmgr->backend;
if (data->smc_state_table.gfx_boot_level !=
data->dpm_table.gfx_table.dpm_state.soft_min_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinByFreq,
PPCLK_GFXCLK<<16 | data->dpm_table.gfx_table.dpm_levels[data->smc_state_table.gfx_boot_level].value);
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->smc_state_table.gfx_boot_level;
}
if (data->smc_state_table.mem_boot_level !=
data->dpm_table.mem_table.dpm_state.soft_min_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinByFreq,
PPCLK_UCLK<<16 | data->dpm_table.mem_table.dpm_levels[data->smc_state_table.mem_boot_level].value);
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->smc_state_table.mem_boot_level;
}
return 0;
}
static int vega12_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = hwmgr->backend;
if (data->smc_state_table.gfx_max_level !=
data->dpm_table.gfx_table.dpm_state.soft_max_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxByFreq,
/* plus the vale by 1 to align the resolution */
PPCLK_GFXCLK<<16 | (data->dpm_table.gfx_table.dpm_levels[data->smc_state_table.gfx_max_level].value + 1));
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->smc_state_table.gfx_max_level;
}
if (data->smc_state_table.mem_max_level !=
data->dpm_table.mem_table.dpm_state.soft_max_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxByFreq,
/* plus the vale by 1 to align the resolution */
PPCLK_UCLK<<16 | (data->dpm_table.mem_table.dpm_levels[data->smc_state_table.mem_max_level].value + 1));
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->smc_state_table.mem_max_level;
}
return 0;
}
int vega12_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_VCE].supported) {
PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
"Attempt to Enable/Disable DPM VCE Failed!",
return -1);
data->smu_features[GNLD_DPM_VCE].enabled = enable;
}
return 0;
}
static uint32_t vega12_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t gfx_clk;
if (!data->smu_features[GNLD_DPM_GFXCLK].enabled)
return -1;
if (low)
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false) == 0,
"[GetSclks]: fail to get min PPCLK_GFXCLK\n",
return -1);
else
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true) == 0,
"[GetSclks]: fail to get max PPCLK_GFXCLK\n",
return -1);
return (gfx_clk * 100);
}
static uint32_t vega12_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
uint32_t mem_clk;
if (!data->smu_features[GNLD_DPM_UCLK].enabled)
return -1;
if (low)
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false) == 0,
"[GetMclks]: fail to get min PPCLK_UCLK\n",
return -1);
else
PP_ASSERT_WITH_CODE(
vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true) == 0,
"[GetMclks]: fail to get max PPCLK_UCLK\n",
return -1);
return (mem_clk * 100);
}
static int vega12_get_gpu_power(struct pp_hwmgr *hwmgr, uint32_t *query)
{
#if 0
uint32_t value;
PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_GetCurrPkgPwr),
"Failed to get current package power!",
return -EINVAL);
vega12_read_arg_from_smc(hwmgr, &value);
/* power value is an integer */
*query = value << 8;
#endif
return 0;
}
static int vega12_get_current_gfx_clk_freq(struct pp_hwmgr *hwmgr, uint32_t *gfx_freq)
{
uint32_t gfx_clk = 0;
*gfx_freq = 0;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_GFXCLK << 16)) == 0,
"[GetCurrentGfxClkFreq] Attempt to get Current GFXCLK Frequency Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_read_arg_from_smc(hwmgr, &gfx_clk) == 0,
"[GetCurrentGfxClkFreq] Attempt to read arg from SMC Failed",
return -1);
*gfx_freq = gfx_clk * 100;
return 0;
}
static int vega12_get_current_mclk_freq(struct pp_hwmgr *hwmgr, uint32_t *mclk_freq)
{
uint32_t mem_clk = 0;
*mclk_freq = 0;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_UCLK << 16)) == 0,
"[GetCurrentMClkFreq] Attempt to get Current MCLK Frequency Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_read_arg_from_smc(hwmgr, &mem_clk) == 0,
"[GetCurrentMClkFreq] Attempt to read arg from SMC Failed",
return -1);
*mclk_freq = mem_clk * 100;
return 0;
}
static int vega12_get_current_activity_percent(
struct pp_hwmgr *hwmgr,
uint32_t *activity_percent)
{
int ret = 0;
uint32_t current_activity = 50;
#if 0
ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0);
if (!ret) {
ret = vega12_read_arg_from_smc(hwmgr, &current_activity);
if (!ret) {
if (current_activity > 100) {
PP_ASSERT(false,
"[GetCurrentActivityPercent] Activity Percentage Exceeds 100!");
current_activity = 100;
}
} else
PP_ASSERT(false,
"[GetCurrentActivityPercent] Attempt To Read Average Graphics Activity from SMU Failed!");
} else
PP_ASSERT(false,
"[GetCurrentActivityPercent] Attempt To Send Get Average Graphics Activity to SMU Failed!");
#endif
*activity_percent = current_activity;
return ret;
}
static int vega12_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int ret = 0;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = vega12_get_current_gfx_clk_freq(hwmgr, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = vega12_get_current_mclk_freq(hwmgr, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = vega12_get_current_activity_percent(hwmgr, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = vega12_thermal_get_temperature(hwmgr);
*size = 4;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = vega12_get_gpu_power(hwmgr, (uint32_t *)value);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int vega12_notify_smc_display_change(struct pp_hwmgr *hwmgr,
bool has_disp)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_UCLK].enabled)
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetUclkFastSwitch,
has_disp ? 0 : 1);
return 0;
}
int vega12_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
int result = 0;
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
PPCLK_e clk_select = 0;
uint32_t clk_request = 0;
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
switch (clk_type) {
case amd_pp_dcef_clock:
clk_freq = clock_req->clock_freq_in_khz / 100;
clk_select = PPCLK_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_select = PPCLK_DISPCLK;
break;
case amd_pp_pixel_clock:
clk_select = PPCLK_PIXCLK;
break;
case amd_pp_phy_clock:
clk_select = PPCLK_PHYCLK;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
result = -1;
break;
}
if (!result) {
clk_request = (clk_select << 16) | clk_freq;
result = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinByFreq,
clk_request);
}
}
return result;
}
static int vega12_notify_smc_display_config_after_ps_adjustment(
struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
struct PP_Clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
uint32_t clk_request;
if (hwmgr->display_config->num_display > 1)
vega12_notify_smc_display_change(hwmgr, false);
else
vega12_notify_smc_display_change(hwmgr, true);
min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
if (data->smu_features[GNLD_DPM_DCEFCLK].supported) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcefClock;
if (!vega12_display_clock_voltage_request(hwmgr, &clock_req)) {
if (data->smu_features[GNLD_DS_DCEFCLK].supported)
PP_ASSERT_WITH_CODE(
!smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcefClockInSR /100),
"Attempt to set divider for DCEFCLK Failed!",
return -1);
} else {
pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
clk_request = (PPCLK_UCLK << 16) | (min_clocks.memoryClock) / 100;
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, clk_request) == 0,
"[PhwVega12_NotifySMCDisplayConfigAfterPowerStateAdjustment] Attempt to set UCLK HardMin Failed!",
return -1);
data->dpm_table.mem_table.dpm_state.hard_min_level = min_clocks.memoryClock;
}
return 0;
}
static int vega12_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
data->smc_state_table.gfx_boot_level =
data->smc_state_table.gfx_max_level =
vega12_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
data->smc_state_table.mem_max_level =
vega12_find_highest_dpm_level(&(data->dpm_table.mem_table));
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload boot level to highest!",
return -1);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -1);
return 0;
}
static int vega12_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
data->smc_state_table.gfx_boot_level =
data->smc_state_table.gfx_max_level =
vega12_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
data->smc_state_table.mem_max_level =
vega12_find_lowest_dpm_level(&(data->dpm_table.mem_table));
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload boot level to highest!",
return -1);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -1);
return 0;
}
static int vega12_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
data->smc_state_table.gfx_boot_level =
vega12_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.gfx_max_level =
vega12_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
vega12_find_lowest_dpm_level(&(data->dpm_table.mem_table));
data->smc_state_table.mem_max_level =
vega12_find_highest_dpm_level(&(data->dpm_table.mem_table));
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload DPM Bootup Levels!",
return -1);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload DPM Max Levels!",
return -1);
return 0;
}
#if 0
static int vega12_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
if (table_info->vdd_dep_on_sclk->count > VEGA12_UMD_PSTATE_GFXCLK_LEVEL &&
table_info->vdd_dep_on_socclk->count > VEGA12_UMD_PSTATE_SOCCLK_LEVEL &&
table_info->vdd_dep_on_mclk->count > VEGA12_UMD_PSTATE_MCLK_LEVEL) {
*sclk_mask = VEGA12_UMD_PSTATE_GFXCLK_LEVEL;
*soc_mask = VEGA12_UMD_PSTATE_SOCCLK_LEVEL;
*mclk_mask = VEGA12_UMD_PSTATE_MCLK_LEVEL;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
}
return 0;
}
#endif
static void vega12_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
switch (mode) {
case AMD_FAN_CTRL_NONE:
break;
case AMD_FAN_CTRL_MANUAL:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega12_fan_ctrl_stop_smc_fan_control(hwmgr);
break;
case AMD_FAN_CTRL_AUTO:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega12_fan_ctrl_start_smc_fan_control(hwmgr);
break;
default:
break;
}
}
static int vega12_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
#if 0
uint32_t sclk_mask = 0;
uint32_t mclk_mask = 0;
uint32_t soc_mask = 0;
#endif
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = vega12_force_dpm_highest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = vega12_force_dpm_lowest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = vega12_unforce_dpm_levels(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
#if 0
ret = vega12_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
if (ret)
return ret;
vega12_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
vega12_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
#endif
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
#if 0
if (!ret) {
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
vega12_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
vega12_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
}
#endif
return ret;
}
static uint32_t vega12_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
return AMD_FAN_CTRL_MANUAL;
else
return AMD_FAN_CTRL_AUTO;
}
static int vega12_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
#if 0
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_clock_and_voltage_limits *max_limits =
&table_info->max_clock_voltage_on_ac;
info->engine_max_clock = max_limits->sclk;
info->memory_max_clock = max_limits->mclk;
#endif
return 0;
}
static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr,
uint32_t *clock,
PPCLK_e clock_select,
bool max)
{
int result;
*clock = 0;
if (max) {
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16)) == 0,
"[GetClockRanges] Failed to get max clock from SMC!",
return -1);
result = vega12_read_arg_from_smc(hwmgr, clock);
} else {
PP_ASSERT_WITH_CODE(
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMinDpmFreq, (clock_select << 16)) == 0,
"[GetClockRanges] Failed to get min clock from SMC!",
return -1);
result = vega12_read_arg_from_smc(hwmgr, clock);
}
return result;
}
static int vega12_get_sclks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_GFXCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.gfx_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_GFXCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_GFXCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = ucount;
return 0;
}
static uint32_t vega12_get_mem_latency(struct pp_hwmgr *hwmgr,
uint32_t clock)
{
return 25;
}
static int vega12_get_memclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_UCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.mem_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_UCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_UCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us =
data->mclk_latency_table.entries[i].latency =
vega12_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value);
}
clocks->num_levels = data->mclk_latency_table.count = ucount;
return 0;
}
static int vega12_get_dcefclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.dcef_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_DCEFCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_DCEFCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = ucount;
return 0;
}
static int vega12_get_socclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
uint32_t ucount;
int i;
struct vega12_single_dpm_table *dpm_table;
if (!data->smu_features[GNLD_DPM_SOCCLK].enabled)
return -1;
dpm_table = &(data->dpm_table.soc_table);
ucount = (dpm_table->count > VG12_PSUEDO_NUM_SOCCLK_DPM_LEVELS) ?
VG12_PSUEDO_NUM_SOCCLK_DPM_LEVELS : dpm_table->count;
for (i = 0; i < ucount; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 100;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = ucount;
return 0;
}
static int vega12_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
int ret;
switch (type) {
case amd_pp_sys_clock:
ret = vega12_get_sclks(hwmgr, clocks);
break;
case amd_pp_mem_clock:
ret = vega12_get_memclocks(hwmgr, clocks);
break;
case amd_pp_dcef_clock:
ret = vega12_get_dcefclocks(hwmgr, clocks);
break;
case amd_pp_soc_clock:
ret = vega12_get_socclocks(hwmgr, clocks);
break;
default:
return -EINVAL;
}
return ret;
}
static int vega12_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
clocks->num_levels = 0;
return 0;
}
static int vega12_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
Watermarks_t *table = &(data->smc_state_table.water_marks_table);
int result = 0;
uint32_t i;
if (!data->registry_data.disable_water_mark &&
data->smu_features[GNLD_DPM_DCEFCLK].supported &&
data->smu_features[GNLD_DPM_SOCCLK].supported) {
for (i = 0; i < wm_with_clock_ranges->num_wm_sets_dmif; i++) {
table->WatermarkRow[WM_DCEFCLK][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_dcefclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_dcefclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_memclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_memclk_in_khz) /
100);
table->WatermarkRow[WM_DCEFCLK][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_sets_dmif[i].wm_set_id;
}
for (i = 0; i < wm_with_clock_ranges->num_wm_sets_mcif; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_socclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_socclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_memclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_memclk_in_khz) /
100);
table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_sets_mcif[i].wm_set_id;
}
data->water_marks_bitmap |= WaterMarksExist;
data->water_marks_bitmap &= ~WaterMarksLoaded;
}
return result;
}
static int vega12_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
if (hwmgr->request_dpm_level & (AMD_DPM_FORCED_LEVEL_AUTO |
AMD_DPM_FORCED_LEVEL_LOW |
AMD_DPM_FORCED_LEVEL_HIGH))
return -EINVAL;
switch (type) {
case PP_SCLK:
data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload boot level to lowest!",
return -EINVAL);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -EINVAL);
break;
case PP_MCLK:
data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr),
"Failed to upload boot level to lowest!",
return -EINVAL);
PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -EINVAL);
break;
case PP_PCIE:
break;
default:
break;
}
return 0;
}
static int vega12_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
int i, now, size = 0;
struct pp_clock_levels_with_latency clocks;
switch (type) {
case PP_SCLK:
PP_ASSERT_WITH_CODE(
vega12_get_current_gfx_clk_freq(hwmgr, &now) == 0,
"Attempt to get current gfx clk Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_get_sclks(hwmgr, &clocks) == 0,
"Attempt to get gfx clk levels Failed!",
return -1);
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 100,
(clocks.data[i].clocks_in_khz == now) ? "*" : "");
break;
case PP_MCLK:
PP_ASSERT_WITH_CODE(
vega12_get_current_mclk_freq(hwmgr, &now) == 0,
"Attempt to get current mclk freq Failed!",
return -1);
PP_ASSERT_WITH_CODE(
vega12_get_memclocks(hwmgr, &clocks) == 0,
"Attempt to get memory clk levels Failed!",
return -1);
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 100,
(clocks.data[i].clocks_in_khz == now) ? "*" : "");
break;
case PP_PCIE:
break;
default:
break;
}
return size;
}
static int vega12_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int result = 0;
Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
if ((data->water_marks_bitmap & WaterMarksExist) &&
!(data->water_marks_bitmap & WaterMarksLoaded)) {
result = vega12_copy_table_to_smc(hwmgr,
(uint8_t *)wm_table, TABLE_WATERMARKS);
PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
data->water_marks_bitmap |= WaterMarksLoaded;
}
if ((data->water_marks_bitmap & WaterMarksExist) &&
data->smu_features[GNLD_DPM_DCEFCLK].supported &&
data->smu_features[GNLD_DPM_SOCCLK].supported)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display);
return result;
}
int vega12_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega12_hwmgr *data =
(struct vega12_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_UVD].supported) {
PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
"Attempt to Enable/Disable DPM UVD Failed!",
return -1);
data->smu_features[GNLD_DPM_UVD].enabled = enable;
}
return 0;
}
static void vega12_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
data->vce_power_gated = bgate;
vega12_enable_disable_vce_dpm(hwmgr, !bgate);
}
static void vega12_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = bgate;
vega12_enable_disable_uvd_dpm(hwmgr, !bgate);
}
static bool
vega12_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
bool is_update_required = false;
if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
is_update_required = true;
if (data->registry_data.gfx_clk_deep_sleep_support) {
if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
is_update_required = true;
}
return is_update_required;
}
static int vega12_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = vega12_disable_all_smu_features(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable all smu features!", result = tmp_result);
return result;
}
static int vega12_power_off_asic(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
int result;
result = vega12_disable_dpm_tasks(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"[disable_dpm_tasks] Failed to disable DPM!",
);
data->water_marks_bitmap &= ~(WaterMarksLoaded);
return result;
}
#if 0
static void vega12_find_min_clock_index(struct pp_hwmgr *hwmgr,
uint32_t *sclk_idx, uint32_t *mclk_idx,
uint32_t min_sclk, uint32_t min_mclk)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_dpm_table *dpm_table = &(data->dpm_table);
uint32_t i;
for (i = 0; i < dpm_table->gfx_table.count; i++) {
if (dpm_table->gfx_table.dpm_levels[i].enabled &&
dpm_table->gfx_table.dpm_levels[i].value >= min_sclk) {
*sclk_idx = i;
break;
}
}
for (i = 0; i < dpm_table->mem_table.count; i++) {
if (dpm_table->mem_table.dpm_levels[i].enabled &&
dpm_table->mem_table.dpm_levels[i].value >= min_mclk) {
*mclk_idx = i;
break;
}
}
}
#endif
#if 0
static int vega12_set_power_profile_state(struct pp_hwmgr *hwmgr,
struct amd_pp_profile *request)
{
return 0;
}
static int vega12_get_sclk_od(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
struct vega12_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.gfx_table);
int value;
value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
100 /
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
return value;
}
static int vega12_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
return 0;
}
static int vega12_get_mclk_od(struct pp_hwmgr *hwmgr)
{
struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend);
struct vega12_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
struct vega12_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mem_table);
int value;
value = (mclk_table->dpm_levels
[mclk_table->count - 1].value -
golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value) *
100 /
golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value;
return value;
}
static int vega12_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
return 0;
}
#endif
static int vega12_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
uint32_t virtual_addr_low,
uint32_t virtual_addr_hi,
uint32_t mc_addr_low,
uint32_t mc_addr_hi,
uint32_t size)
{
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrHigh,
virtual_addr_hi);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrLow,
virtual_addr_low);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrHigh,
mc_addr_hi);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrLow,
mc_addr_low);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramSize,
size);
return 0;
}
static int vega12_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
struct PP_TemperatureRange *thermal_data)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
thermal_data->max = pptable_information->us_software_shutdown_temp *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static const struct pp_hwmgr_func vega12_hwmgr_funcs = {
.backend_init = vega12_hwmgr_backend_init,
.backend_fini = vega12_hwmgr_backend_fini,
.asic_setup = vega12_setup_asic_task,
.dynamic_state_management_enable = vega12_enable_dpm_tasks,
.dynamic_state_management_disable = vega12_disable_dpm_tasks,
.patch_boot_state = vega12_patch_boot_state,
.get_sclk = vega12_dpm_get_sclk,
.get_mclk = vega12_dpm_get_mclk,
.notify_smc_display_config_after_ps_adjustment =
vega12_notify_smc_display_config_after_ps_adjustment,
.force_dpm_level = vega12_dpm_force_dpm_level,
.stop_thermal_controller = vega12_thermal_stop_thermal_controller,
.get_fan_speed_info = vega12_fan_ctrl_get_fan_speed_info,
.reset_fan_speed_to_default =
vega12_fan_ctrl_reset_fan_speed_to_default,
.get_fan_speed_rpm = vega12_fan_ctrl_get_fan_speed_rpm,
.set_fan_control_mode = vega12_set_fan_control_mode,
.get_fan_control_mode = vega12_get_fan_control_mode,
.read_sensor = vega12_read_sensor,
.get_dal_power_level = vega12_get_dal_power_level,
.get_clock_by_type_with_latency = vega12_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = vega12_get_clock_by_type_with_voltage,
.set_watermarks_for_clocks_ranges = vega12_set_watermarks_for_clocks_ranges,
.display_clock_voltage_request = vega12_display_clock_voltage_request,
.force_clock_level = vega12_force_clock_level,
.print_clock_levels = vega12_print_clock_levels,
.display_config_changed = vega12_display_configuration_changed_task,
.powergate_uvd = vega12_power_gate_uvd,
.powergate_vce = vega12_power_gate_vce,
.check_smc_update_required_for_display_configuration =
vega12_check_smc_update_required_for_display_configuration,
.power_off_asic = vega12_power_off_asic,
.disable_smc_firmware_ctf = vega12_thermal_disable_alert,
#if 0
.set_power_profile_state = vega12_set_power_profile_state,
.get_sclk_od = vega12_get_sclk_od,
.set_sclk_od = vega12_set_sclk_od,
.get_mclk_od = vega12_get_mclk_od,
.set_mclk_od = vega12_set_mclk_od,
#endif
.notify_cac_buffer_info = vega12_notify_cac_buffer_info,
.get_thermal_temperature_range = vega12_get_thermal_temperature_range,
.register_irq_handlers = smu9_register_irq_handlers,
.start_thermal_controller = vega12_start_thermal_controller,
};
int vega12_hwmgr_init(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &vega12_hwmgr_funcs;
hwmgr->pptable_func = &vega12_pptable_funcs;
return 0;
}