1aec7c3d05
In commitf8f2835a9c
we changed the behavior of XFS to use EFIs to remove blocks from an overfilled AGFL because there were complaints about transaction overruns that stemmed from trying to free multiple blocks in a single transaction. Unfortunately, that commit missed a subtlety in the debug-mode transaction accounting when a realtime volume is attached. If a realtime file undergoes a data fork mapping change such that realtime extents are allocated (or freed) in the same transaction that a data device block is also allocated (or freed), we can trip a debugging assertion. This can happen (for example) if a realtime extent is allocated and it is necessary to reshape the bmbt to hold the new mapping. When we go to allocate a bmbt block from an AG, the first thing the data device block allocator does is ensure that the freelist is the proper length. If the freelist is too long, it will trim the freelist to the proper length. In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to record the decrement in the AG free list count. Prior to f8f28 we would put the free block back in the free space btrees in the same transaction, which calls xfs_trans_agblocks_delta() to record the increment in the AG free block count. Since AGFL blocks are included in the global free block count (fdblocks), there is no corresponding fdblocks update, so the AGFL free satisfies the following condition in xfs_trans_apply_sb_deltas: /* * Check that superblock mods match the mods made to AGF counters. */ ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + tp->t_ag_btree_delta)); The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is the number blocks that were allocated. After commit f8f28 we defer the block freeing to the next chained transaction, which means that the calls to xfs_trans_agflist_delta and xfs_trans_agblocks_delta occur in separate transactions. The (first) transaction that shortens the free list trips on the comparison, which has now become: (X + 0) == ((X) + -1 + 0) because we haven't freed the AGFL block yet; we've only logged an intention to free it. When the second transaction (the deferred free) commits, it will evaluate the expression as: (0 + 0) == (1 + 0 + 0) and trip over that in turn. At this point, the astute reader may note that the two commits tagged by this patch have been in the kernel for a long time but haven't generated any bug reports. How is it that the author became aware of this bug? This originally surfaced as an intermittent failure when I was testing realtime rmap, but a different bug report by Zorro Lang reveals the same assertion occuring on !lazysbcount filesystems. The common factor to both reports (and why this problem wasn't previously reported) becomes apparent if we consider when xfs_trans_apply_sb_deltas is called by __xfs_trans_commit(): if (tp->t_flags & XFS_TRANS_SB_DIRTY) xfs_trans_apply_sb_deltas(tp); With a modern lazysbcount filesystem, transactions update only the percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence xfs_trans_apply_sb_deltas is rarely called. However, updates to the count of free realtime extents are not part of lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or removing data fork mappings to realtime files; similarly, XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems. Dave mentioned in response to an earlier version of this patch: "IIUC, what you are saying is that this debug code is simply not exercised in normal testing and hasn't been for the past decade? And it still won't be exercised on anything other than realtime device testing? "...it was debugging code from 1994 that was largely turned into dead code when lazysbcounters were introduced in 2007. Hence I'm not sure it holds any value anymore." This debugging code isn't especially helpful - you can modify the flcount on one AG and the freeblks of another AG, and it won't trigger. Add the fact that nobody noticed for a decade, and let's just get rid of it (and start testing realtime :P). This bug was found by running generic/051 on either a V4 filesystem lacking lazysbcount; or a V5 filesystem with a realtime volume. Cc: bfoster@redhat.com, zlang@redhat.com Fixes:f8f2835a9c
("xfs: defer agfl block frees when dfops is available") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Brian Foster <bfoster@redhat.com>
622 lines
15 KiB
C
622 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_fsops.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_ag_resv.h"
|
|
|
|
/*
|
|
* Write new AG headers to disk. Non-transactional, but need to be
|
|
* written and completed prior to the growfs transaction being logged.
|
|
* To do this, we use a delayed write buffer list and wait for
|
|
* submission and IO completion of the list as a whole. This allows the
|
|
* IO subsystem to merge all the AG headers in a single AG into a single
|
|
* IO and hide most of the latency of the IO from us.
|
|
*
|
|
* This also means that if we get an error whilst building the buffer
|
|
* list to write, we can cancel the entire list without having written
|
|
* anything.
|
|
*/
|
|
static int
|
|
xfs_resizefs_init_new_ags(
|
|
struct xfs_trans *tp,
|
|
struct aghdr_init_data *id,
|
|
xfs_agnumber_t oagcount,
|
|
xfs_agnumber_t nagcount,
|
|
xfs_rfsblock_t delta,
|
|
bool *lastag_extended)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_rfsblock_t nb = mp->m_sb.sb_dblocks + delta;
|
|
int error;
|
|
|
|
*lastag_extended = false;
|
|
|
|
INIT_LIST_HEAD(&id->buffer_list);
|
|
for (id->agno = nagcount - 1;
|
|
id->agno >= oagcount;
|
|
id->agno--, delta -= id->agsize) {
|
|
|
|
if (id->agno == nagcount - 1)
|
|
id->agsize = nb - (id->agno *
|
|
(xfs_rfsblock_t)mp->m_sb.sb_agblocks);
|
|
else
|
|
id->agsize = mp->m_sb.sb_agblocks;
|
|
|
|
error = xfs_ag_init_headers(mp, id);
|
|
if (error) {
|
|
xfs_buf_delwri_cancel(&id->buffer_list);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
error = xfs_buf_delwri_submit(&id->buffer_list);
|
|
if (error)
|
|
return error;
|
|
|
|
if (delta) {
|
|
*lastag_extended = true;
|
|
error = xfs_ag_extend_space(mp, tp, id, delta);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* growfs operations
|
|
*/
|
|
static int
|
|
xfs_growfs_data_private(
|
|
struct xfs_mount *mp, /* mount point for filesystem */
|
|
struct xfs_growfs_data *in) /* growfs data input struct */
|
|
{
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
xfs_agnumber_t nagcount;
|
|
xfs_agnumber_t nagimax = 0;
|
|
xfs_rfsblock_t nb, nb_div, nb_mod;
|
|
int64_t delta;
|
|
bool lastag_extended;
|
|
xfs_agnumber_t oagcount;
|
|
struct xfs_trans *tp;
|
|
struct aghdr_init_data id = {};
|
|
|
|
nb = in->newblocks;
|
|
error = xfs_sb_validate_fsb_count(&mp->m_sb, nb);
|
|
if (error)
|
|
return error;
|
|
|
|
if (nb > mp->m_sb.sb_dblocks) {
|
|
error = xfs_buf_read_uncached(mp->m_ddev_targp,
|
|
XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
|
|
if (error)
|
|
return error;
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
nb_div = nb;
|
|
nb_mod = do_div(nb_div, mp->m_sb.sb_agblocks);
|
|
nagcount = nb_div + (nb_mod != 0);
|
|
if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) {
|
|
nagcount--;
|
|
nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks;
|
|
}
|
|
delta = nb - mp->m_sb.sb_dblocks;
|
|
/*
|
|
* Reject filesystems with a single AG because they are not
|
|
* supported, and reject a shrink operation that would cause a
|
|
* filesystem to become unsupported.
|
|
*/
|
|
if (delta < 0 && nagcount < 2)
|
|
return -EINVAL;
|
|
|
|
oagcount = mp->m_sb.sb_agcount;
|
|
|
|
/* allocate the new per-ag structures */
|
|
if (nagcount > oagcount) {
|
|
error = xfs_initialize_perag(mp, nagcount, &nagimax);
|
|
if (error)
|
|
return error;
|
|
} else if (nagcount < oagcount) {
|
|
/* TODO: shrinking the entire AGs hasn't yet completed */
|
|
return -EINVAL;
|
|
}
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
|
|
(delta > 0 ? XFS_GROWFS_SPACE_RES(mp) : -delta), 0,
|
|
XFS_TRANS_RESERVE, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
if (delta > 0) {
|
|
error = xfs_resizefs_init_new_ags(tp, &id, oagcount, nagcount,
|
|
delta, &lastag_extended);
|
|
} else {
|
|
static struct ratelimit_state shrink_warning = \
|
|
RATELIMIT_STATE_INIT("shrink_warning", 86400 * HZ, 1);
|
|
ratelimit_set_flags(&shrink_warning, RATELIMIT_MSG_ON_RELEASE);
|
|
|
|
if (__ratelimit(&shrink_warning))
|
|
xfs_alert(mp,
|
|
"EXPERIMENTAL online shrink feature in use. Use at your own risk!");
|
|
|
|
error = xfs_ag_shrink_space(mp, &tp, nagcount - 1, -delta);
|
|
}
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Update changed superblock fields transactionally. These are not
|
|
* seen by the rest of the world until the transaction commit applies
|
|
* them atomically to the superblock.
|
|
*/
|
|
if (nagcount > oagcount)
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount);
|
|
if (delta)
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, delta);
|
|
if (id.nfree)
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree);
|
|
|
|
/*
|
|
* Sync sb counters now to reflect the updated values. This is
|
|
* particularly important for shrink because the write verifier
|
|
* will fail if sb_fdblocks is ever larger than sb_dblocks.
|
|
*/
|
|
if (xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
xfs_log_sb(tp);
|
|
|
|
xfs_trans_set_sync(tp);
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* New allocation groups fully initialized, so update mount struct */
|
|
if (nagimax)
|
|
mp->m_maxagi = nagimax;
|
|
xfs_set_low_space_thresholds(mp);
|
|
mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
|
|
|
|
if (delta > 0) {
|
|
/*
|
|
* If we expanded the last AG, free the per-AG reservation
|
|
* so we can reinitialize it with the new size.
|
|
*/
|
|
if (lastag_extended) {
|
|
struct xfs_perag *pag;
|
|
|
|
pag = xfs_perag_get(mp, id.agno);
|
|
error = xfs_ag_resv_free(pag);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
return error;
|
|
}
|
|
/*
|
|
* Reserve AG metadata blocks. ENOSPC here does not mean there
|
|
* was a growfs failure, just that there still isn't space for
|
|
* new user data after the grow has been run.
|
|
*/
|
|
error = xfs_fs_reserve_ag_blocks(mp);
|
|
if (error == -ENOSPC)
|
|
error = 0;
|
|
}
|
|
return error;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_growfs_log_private(
|
|
struct xfs_mount *mp, /* mount point for filesystem */
|
|
struct xfs_growfs_log *in) /* growfs log input struct */
|
|
{
|
|
xfs_extlen_t nb;
|
|
|
|
nb = in->newblocks;
|
|
if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES))
|
|
return -EINVAL;
|
|
if (nb == mp->m_sb.sb_logblocks &&
|
|
in->isint == (mp->m_sb.sb_logstart != 0))
|
|
return -EINVAL;
|
|
/*
|
|
* Moving the log is hard, need new interfaces to sync
|
|
* the log first, hold off all activity while moving it.
|
|
* Can have shorter or longer log in the same space,
|
|
* or transform internal to external log or vice versa.
|
|
*/
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int
|
|
xfs_growfs_imaxpct(
|
|
struct xfs_mount *mp,
|
|
__u32 imaxpct)
|
|
{
|
|
struct xfs_trans *tp;
|
|
int dpct;
|
|
int error;
|
|
|
|
if (imaxpct > 100)
|
|
return -EINVAL;
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
|
|
XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
dpct = imaxpct - mp->m_sb.sb_imax_pct;
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct);
|
|
xfs_trans_set_sync(tp);
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
/*
|
|
* protected versions of growfs function acquire and release locks on the mount
|
|
* point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG,
|
|
* XFS_IOC_FSGROWFSRT
|
|
*/
|
|
int
|
|
xfs_growfs_data(
|
|
struct xfs_mount *mp,
|
|
struct xfs_growfs_data *in)
|
|
{
|
|
int error = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (!mutex_trylock(&mp->m_growlock))
|
|
return -EWOULDBLOCK;
|
|
|
|
/* update imaxpct separately to the physical grow of the filesystem */
|
|
if (in->imaxpct != mp->m_sb.sb_imax_pct) {
|
|
error = xfs_growfs_imaxpct(mp, in->imaxpct);
|
|
if (error)
|
|
goto out_error;
|
|
}
|
|
|
|
if (in->newblocks != mp->m_sb.sb_dblocks) {
|
|
error = xfs_growfs_data_private(mp, in);
|
|
if (error)
|
|
goto out_error;
|
|
}
|
|
|
|
/* Post growfs calculations needed to reflect new state in operations */
|
|
if (mp->m_sb.sb_imax_pct) {
|
|
uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct;
|
|
do_div(icount, 100);
|
|
M_IGEO(mp)->maxicount = XFS_FSB_TO_INO(mp, icount);
|
|
} else
|
|
M_IGEO(mp)->maxicount = 0;
|
|
|
|
/* Update secondary superblocks now the physical grow has completed */
|
|
error = xfs_update_secondary_sbs(mp);
|
|
|
|
out_error:
|
|
/*
|
|
* Increment the generation unconditionally, the error could be from
|
|
* updating the secondary superblocks, in which case the new size
|
|
* is live already.
|
|
*/
|
|
mp->m_generation++;
|
|
mutex_unlock(&mp->m_growlock);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_growfs_log(
|
|
xfs_mount_t *mp,
|
|
struct xfs_growfs_log *in)
|
|
{
|
|
int error;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (!mutex_trylock(&mp->m_growlock))
|
|
return -EWOULDBLOCK;
|
|
error = xfs_growfs_log_private(mp, in);
|
|
mutex_unlock(&mp->m_growlock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* exported through ioctl XFS_IOC_FSCOUNTS
|
|
*/
|
|
|
|
void
|
|
xfs_fs_counts(
|
|
xfs_mount_t *mp,
|
|
xfs_fsop_counts_t *cnt)
|
|
{
|
|
cnt->allocino = percpu_counter_read_positive(&mp->m_icount);
|
|
cnt->freeino = percpu_counter_read_positive(&mp->m_ifree);
|
|
cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) -
|
|
mp->m_alloc_set_aside;
|
|
|
|
spin_lock(&mp->m_sb_lock);
|
|
cnt->freertx = mp->m_sb.sb_frextents;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
}
|
|
|
|
/*
|
|
* exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS
|
|
*
|
|
* xfs_reserve_blocks is called to set m_resblks
|
|
* in the in-core mount table. The number of unused reserved blocks
|
|
* is kept in m_resblks_avail.
|
|
*
|
|
* Reserve the requested number of blocks if available. Otherwise return
|
|
* as many as possible to satisfy the request. The actual number
|
|
* reserved are returned in outval
|
|
*
|
|
* A null inval pointer indicates that only the current reserved blocks
|
|
* available should be returned no settings are changed.
|
|
*/
|
|
|
|
int
|
|
xfs_reserve_blocks(
|
|
xfs_mount_t *mp,
|
|
uint64_t *inval,
|
|
xfs_fsop_resblks_t *outval)
|
|
{
|
|
int64_t lcounter, delta;
|
|
int64_t fdblks_delta = 0;
|
|
uint64_t request;
|
|
int64_t free;
|
|
int error = 0;
|
|
|
|
/* If inval is null, report current values and return */
|
|
if (inval == (uint64_t *)NULL) {
|
|
if (!outval)
|
|
return -EINVAL;
|
|
outval->resblks = mp->m_resblks;
|
|
outval->resblks_avail = mp->m_resblks_avail;
|
|
return 0;
|
|
}
|
|
|
|
request = *inval;
|
|
|
|
/*
|
|
* With per-cpu counters, this becomes an interesting problem. we need
|
|
* to work out if we are freeing or allocation blocks first, then we can
|
|
* do the modification as necessary.
|
|
*
|
|
* We do this under the m_sb_lock so that if we are near ENOSPC, we will
|
|
* hold out any changes while we work out what to do. This means that
|
|
* the amount of free space can change while we do this, so we need to
|
|
* retry if we end up trying to reserve more space than is available.
|
|
*/
|
|
spin_lock(&mp->m_sb_lock);
|
|
|
|
/*
|
|
* If our previous reservation was larger than the current value,
|
|
* then move any unused blocks back to the free pool. Modify the resblks
|
|
* counters directly since we shouldn't have any problems unreserving
|
|
* space.
|
|
*/
|
|
if (mp->m_resblks > request) {
|
|
lcounter = mp->m_resblks_avail - request;
|
|
if (lcounter > 0) { /* release unused blocks */
|
|
fdblks_delta = lcounter;
|
|
mp->m_resblks_avail -= lcounter;
|
|
}
|
|
mp->m_resblks = request;
|
|
if (fdblks_delta) {
|
|
spin_unlock(&mp->m_sb_lock);
|
|
error = xfs_mod_fdblocks(mp, fdblks_delta, 0);
|
|
spin_lock(&mp->m_sb_lock);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the request is larger than the current reservation, reserve the
|
|
* blocks before we update the reserve counters. Sample m_fdblocks and
|
|
* perform a partial reservation if the request exceeds free space.
|
|
*/
|
|
error = -ENOSPC;
|
|
do {
|
|
free = percpu_counter_sum(&mp->m_fdblocks) -
|
|
mp->m_alloc_set_aside;
|
|
if (free <= 0)
|
|
break;
|
|
|
|
delta = request - mp->m_resblks;
|
|
lcounter = free - delta;
|
|
if (lcounter < 0)
|
|
/* We can't satisfy the request, just get what we can */
|
|
fdblks_delta = free;
|
|
else
|
|
fdblks_delta = delta;
|
|
|
|
/*
|
|
* We'll either succeed in getting space from the free block
|
|
* count or we'll get an ENOSPC. If we get a ENOSPC, it means
|
|
* things changed while we were calculating fdblks_delta and so
|
|
* we should try again to see if there is anything left to
|
|
* reserve.
|
|
*
|
|
* Don't set the reserved flag here - we don't want to reserve
|
|
* the extra reserve blocks from the reserve.....
|
|
*/
|
|
spin_unlock(&mp->m_sb_lock);
|
|
error = xfs_mod_fdblocks(mp, -fdblks_delta, 0);
|
|
spin_lock(&mp->m_sb_lock);
|
|
} while (error == -ENOSPC);
|
|
|
|
/*
|
|
* Update the reserve counters if blocks have been successfully
|
|
* allocated.
|
|
*/
|
|
if (!error && fdblks_delta) {
|
|
mp->m_resblks += fdblks_delta;
|
|
mp->m_resblks_avail += fdblks_delta;
|
|
}
|
|
|
|
out:
|
|
if (outval) {
|
|
outval->resblks = mp->m_resblks;
|
|
outval->resblks_avail = mp->m_resblks_avail;
|
|
}
|
|
|
|
spin_unlock(&mp->m_sb_lock);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_fs_goingdown(
|
|
xfs_mount_t *mp,
|
|
uint32_t inflags)
|
|
{
|
|
switch (inflags) {
|
|
case XFS_FSOP_GOING_FLAGS_DEFAULT: {
|
|
if (!freeze_bdev(mp->m_super->s_bdev)) {
|
|
xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
|
|
thaw_bdev(mp->m_super->s_bdev);
|
|
}
|
|
break;
|
|
}
|
|
case XFS_FSOP_GOING_FLAGS_LOGFLUSH:
|
|
xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
|
|
break;
|
|
case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH:
|
|
xfs_force_shutdown(mp,
|
|
SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Force a shutdown of the filesystem instantly while keeping the filesystem
|
|
* consistent. We don't do an unmount here; just shutdown the shop, make sure
|
|
* that absolutely nothing persistent happens to this filesystem after this
|
|
* point.
|
|
*/
|
|
void
|
|
xfs_do_force_shutdown(
|
|
struct xfs_mount *mp,
|
|
int flags,
|
|
char *fname,
|
|
int lnnum)
|
|
{
|
|
bool logerror = flags & SHUTDOWN_LOG_IO_ERROR;
|
|
|
|
/*
|
|
* No need to duplicate efforts.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp) && !logerror)
|
|
return;
|
|
|
|
/*
|
|
* This flags XFS_MOUNT_FS_SHUTDOWN, makes sure that we don't
|
|
* queue up anybody new on the log reservations, and wakes up
|
|
* everybody who's sleeping on log reservations to tell them
|
|
* the bad news.
|
|
*/
|
|
if (xfs_log_force_umount(mp, logerror))
|
|
return;
|
|
|
|
if (flags & SHUTDOWN_FORCE_UMOUNT) {
|
|
xfs_alert(mp,
|
|
"User initiated shutdown received. Shutting down filesystem");
|
|
return;
|
|
}
|
|
|
|
xfs_notice(mp,
|
|
"%s(0x%x) called from line %d of file %s. Return address = "PTR_FMT,
|
|
__func__, flags, lnnum, fname, __return_address);
|
|
|
|
if (flags & SHUTDOWN_CORRUPT_INCORE) {
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_CORRUPT,
|
|
"Corruption of in-memory data detected. Shutting down filesystem");
|
|
if (XFS_ERRLEVEL_HIGH <= xfs_error_level)
|
|
xfs_stack_trace();
|
|
} else if (logerror) {
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_LOGERROR,
|
|
"Log I/O Error Detected. Shutting down filesystem");
|
|
} else {
|
|
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR,
|
|
"I/O Error Detected. Shutting down filesystem");
|
|
}
|
|
|
|
xfs_alert(mp,
|
|
"Please unmount the filesystem and rectify the problem(s)");
|
|
}
|
|
|
|
/*
|
|
* Reserve free space for per-AG metadata.
|
|
*/
|
|
int
|
|
xfs_fs_reserve_ag_blocks(
|
|
struct xfs_mount *mp)
|
|
{
|
|
xfs_agnumber_t agno;
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int err2;
|
|
|
|
mp->m_finobt_nores = false;
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
pag = xfs_perag_get(mp, agno);
|
|
err2 = xfs_ag_resv_init(pag, NULL);
|
|
xfs_perag_put(pag);
|
|
if (err2 && !error)
|
|
error = err2;
|
|
}
|
|
|
|
if (error && error != -ENOSPC) {
|
|
xfs_warn(mp,
|
|
"Error %d reserving per-AG metadata reserve pool.", error);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Free space reserved for per-AG metadata.
|
|
*/
|
|
int
|
|
xfs_fs_unreserve_ag_blocks(
|
|
struct xfs_mount *mp)
|
|
{
|
|
xfs_agnumber_t agno;
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int err2;
|
|
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
pag = xfs_perag_get(mp, agno);
|
|
err2 = xfs_ag_resv_free(pag);
|
|
xfs_perag_put(pag);
|
|
if (err2 && !error)
|
|
error = err2;
|
|
}
|
|
|
|
if (error)
|
|
xfs_warn(mp,
|
|
"Error %d freeing per-AG metadata reserve pool.", error);
|
|
|
|
return error;
|
|
}
|