The guest_hang() function is used as the default exception handler
for various KVM selftests applications by setting it's address in
the vstvec CSR. The vstvec CSR requires exception handler base address
to be at least 4-byte aligned so this patch fixes alignment of the
guest_hang() function.
Fixes: 3e06cdf105 ("KVM: selftests: Add initial support for RISC-V
64-bit")
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Tested-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
363 lines
10 KiB
C
363 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* RISC-V code
|
|
*
|
|
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
|
|
*/
|
|
|
|
#include <linux/compiler.h>
|
|
#include <assert.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "../kvm_util_internal.h"
|
|
#include "processor.h"
|
|
|
|
#define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000
|
|
|
|
static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
|
|
{
|
|
return (v + vm->page_size) & ~(vm->page_size - 1);
|
|
}
|
|
|
|
static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
|
|
{
|
|
return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
|
|
PGTBL_PAGE_SIZE_SHIFT;
|
|
}
|
|
|
|
static uint64_t ptrs_per_pte(struct kvm_vm *vm)
|
|
{
|
|
return PGTBL_PAGE_SIZE / sizeof(uint64_t);
|
|
}
|
|
|
|
static uint64_t pte_index_mask[] = {
|
|
PGTBL_L0_INDEX_MASK,
|
|
PGTBL_L1_INDEX_MASK,
|
|
PGTBL_L2_INDEX_MASK,
|
|
PGTBL_L3_INDEX_MASK,
|
|
};
|
|
|
|
static uint32_t pte_index_shift[] = {
|
|
PGTBL_L0_INDEX_SHIFT,
|
|
PGTBL_L1_INDEX_SHIFT,
|
|
PGTBL_L2_INDEX_SHIFT,
|
|
PGTBL_L3_INDEX_SHIFT,
|
|
};
|
|
|
|
static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
|
|
{
|
|
TEST_ASSERT(level > -1,
|
|
"Negative page table level (%d) not possible", level);
|
|
TEST_ASSERT(level < vm->pgtable_levels,
|
|
"Invalid page table level (%d)", level);
|
|
|
|
return (gva & pte_index_mask[level]) >> pte_index_shift[level];
|
|
}
|
|
|
|
void virt_pgd_alloc(struct kvm_vm *vm)
|
|
{
|
|
if (!vm->pgd_created) {
|
|
vm_paddr_t paddr = vm_phy_pages_alloc(vm,
|
|
page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
|
|
KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
|
|
vm->pgd = paddr;
|
|
vm->pgd_created = true;
|
|
}
|
|
}
|
|
|
|
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
|
|
{
|
|
uint64_t *ptep, next_ppn;
|
|
int level = vm->pgtable_levels - 1;
|
|
|
|
TEST_ASSERT((vaddr % vm->page_size) == 0,
|
|
"Virtual address not on page boundary,\n"
|
|
" vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
|
|
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
|
|
(vaddr >> vm->page_shift)),
|
|
"Invalid virtual address, vaddr: 0x%lx", vaddr);
|
|
TEST_ASSERT((paddr % vm->page_size) == 0,
|
|
"Physical address not on page boundary,\n"
|
|
" paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
|
|
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
|
|
"Physical address beyond maximum supported,\n"
|
|
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
|
|
paddr, vm->max_gfn, vm->page_size);
|
|
|
|
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
|
|
if (!*ptep) {
|
|
next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
|
|
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
|
|
PGTBL_PTE_VALID_MASK;
|
|
}
|
|
level--;
|
|
|
|
while (level > -1) {
|
|
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
|
|
pte_index(vm, vaddr, level) * 8;
|
|
if (!*ptep && level > 0) {
|
|
next_ppn = vm_alloc_page_table(vm) >>
|
|
PGTBL_PAGE_SIZE_SHIFT;
|
|
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
|
|
PGTBL_PTE_VALID_MASK;
|
|
}
|
|
level--;
|
|
}
|
|
|
|
paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
|
|
*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
|
|
PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
|
|
}
|
|
|
|
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
|
|
{
|
|
uint64_t *ptep;
|
|
int level = vm->pgtable_levels - 1;
|
|
|
|
if (!vm->pgd_created)
|
|
goto unmapped_gva;
|
|
|
|
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
|
|
if (!ptep)
|
|
goto unmapped_gva;
|
|
level--;
|
|
|
|
while (level > -1) {
|
|
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
|
|
pte_index(vm, gva, level) * 8;
|
|
if (!ptep)
|
|
goto unmapped_gva;
|
|
level--;
|
|
}
|
|
|
|
return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
|
|
|
|
unmapped_gva:
|
|
TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
|
|
gva, level);
|
|
exit(1);
|
|
}
|
|
|
|
static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
|
|
uint64_t page, int level)
|
|
{
|
|
#ifdef DEBUG
|
|
static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
|
|
uint64_t pte, *ptep;
|
|
|
|
if (level < 0)
|
|
return;
|
|
|
|
for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
|
|
ptep = addr_gpa2hva(vm, pte);
|
|
if (!*ptep)
|
|
continue;
|
|
fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
|
|
type[level], pte, *ptep, ptep);
|
|
pte_dump(stream, vm, indent + 1,
|
|
pte_addr(vm, *ptep), level - 1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
|
|
{
|
|
int level = vm->pgtable_levels - 1;
|
|
uint64_t pgd, *ptep;
|
|
|
|
if (!vm->pgd_created)
|
|
return;
|
|
|
|
for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
|
|
ptep = addr_gpa2hva(vm, pgd);
|
|
if (!*ptep)
|
|
continue;
|
|
fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
|
|
pgd, *ptep, ptep);
|
|
pte_dump(stream, vm, indent + 1,
|
|
pte_addr(vm, *ptep), level - 1);
|
|
}
|
|
}
|
|
|
|
void riscv_vcpu_mmu_setup(struct kvm_vm *vm, int vcpuid)
|
|
{
|
|
unsigned long satp;
|
|
|
|
/*
|
|
* The RISC-V Sv48 MMU mode supports 56-bit physical address
|
|
* for 48-bit virtual address with 4KB last level page size.
|
|
*/
|
|
switch (vm->mode) {
|
|
case VM_MODE_P52V48_4K:
|
|
case VM_MODE_P48V48_4K:
|
|
case VM_MODE_P40V48_4K:
|
|
break;
|
|
default:
|
|
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
|
|
}
|
|
|
|
satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
|
|
satp |= SATP_MODE_48;
|
|
|
|
set_reg(vm, vcpuid, RISCV_CSR_REG(satp), satp);
|
|
}
|
|
|
|
void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
|
|
{
|
|
struct kvm_riscv_core core;
|
|
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(mode), &core.mode);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.pc), &core.regs.pc);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.ra), &core.regs.ra);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.sp), &core.regs.sp);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.gp), &core.regs.gp);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.tp), &core.regs.tp);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t0), &core.regs.t0);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t1), &core.regs.t1);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t2), &core.regs.t2);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s0), &core.regs.s0);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s1), &core.regs.s1);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a0), &core.regs.a0);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a1), &core.regs.a1);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a2), &core.regs.a2);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a3), &core.regs.a3);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a4), &core.regs.a4);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a5), &core.regs.a5);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a6), &core.regs.a6);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a7), &core.regs.a7);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s2), &core.regs.s2);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s3), &core.regs.s3);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s4), &core.regs.s4);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s5), &core.regs.s5);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s6), &core.regs.s6);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s7), &core.regs.s7);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s8), &core.regs.s8);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s9), &core.regs.s9);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s10), &core.regs.s10);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s11), &core.regs.s11);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t3), &core.regs.t3);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t4), &core.regs.t4);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t5), &core.regs.t5);
|
|
get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t6), &core.regs.t6);
|
|
|
|
fprintf(stream,
|
|
" MODE: 0x%lx\n", core.mode);
|
|
fprintf(stream,
|
|
" PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
|
|
core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
|
|
fprintf(stream,
|
|
" TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
|
|
core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
|
|
fprintf(stream,
|
|
" S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
|
|
core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
|
|
fprintf(stream,
|
|
" A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
|
|
core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
|
|
fprintf(stream,
|
|
" A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
|
|
core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
|
|
fprintf(stream,
|
|
" S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
|
|
core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
|
|
fprintf(stream,
|
|
" S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
|
|
core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
|
|
fprintf(stream,
|
|
" T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
|
|
core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
|
|
}
|
|
|
|
static void __aligned(16) guest_hang(void)
|
|
{
|
|
while (1)
|
|
;
|
|
}
|
|
|
|
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
|
|
{
|
|
int r;
|
|
size_t stack_size = vm->page_size == 4096 ?
|
|
DEFAULT_STACK_PGS * vm->page_size :
|
|
vm->page_size;
|
|
unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
|
|
DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
|
|
unsigned long current_gp = 0;
|
|
struct kvm_mp_state mps;
|
|
|
|
vm_vcpu_add(vm, vcpuid);
|
|
riscv_vcpu_mmu_setup(vm, vcpuid);
|
|
|
|
/*
|
|
* With SBI HSM support in KVM RISC-V, all secondary VCPUs are
|
|
* powered-off by default so we ensure that all secondary VCPUs
|
|
* are powered-on using KVM_SET_MP_STATE ioctl().
|
|
*/
|
|
mps.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
r = _vcpu_ioctl(vm, vcpuid, KVM_SET_MP_STATE, &mps);
|
|
TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
|
|
|
|
/* Setup global pointer of guest to be same as the host */
|
|
asm volatile (
|
|
"add %0, gp, zero" : "=r" (current_gp) : : "memory");
|
|
set_reg(vm, vcpuid, RISCV_CORE_REG(regs.gp), current_gp);
|
|
|
|
/* Setup stack pointer and program counter of guest */
|
|
set_reg(vm, vcpuid, RISCV_CORE_REG(regs.sp),
|
|
stack_vaddr + stack_size);
|
|
set_reg(vm, vcpuid, RISCV_CORE_REG(regs.pc),
|
|
(unsigned long)guest_code);
|
|
|
|
/* Setup default exception vector of guest */
|
|
set_reg(vm, vcpuid, RISCV_CSR_REG(stvec),
|
|
(unsigned long)guest_hang);
|
|
}
|
|
|
|
void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
|
|
{
|
|
va_list ap;
|
|
uint64_t id = RISCV_CORE_REG(regs.a0);
|
|
int i;
|
|
|
|
TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
|
|
" num: %u\n", num);
|
|
|
|
va_start(ap, num);
|
|
|
|
for (i = 0; i < num; i++) {
|
|
switch (i) {
|
|
case 0:
|
|
id = RISCV_CORE_REG(regs.a0);
|
|
break;
|
|
case 1:
|
|
id = RISCV_CORE_REG(regs.a1);
|
|
break;
|
|
case 2:
|
|
id = RISCV_CORE_REG(regs.a2);
|
|
break;
|
|
case 3:
|
|
id = RISCV_CORE_REG(regs.a3);
|
|
break;
|
|
case 4:
|
|
id = RISCV_CORE_REG(regs.a4);
|
|
break;
|
|
case 5:
|
|
id = RISCV_CORE_REG(regs.a5);
|
|
break;
|
|
case 6:
|
|
id = RISCV_CORE_REG(regs.a6);
|
|
break;
|
|
case 7:
|
|
id = RISCV_CORE_REG(regs.a7);
|
|
break;
|
|
};
|
|
set_reg(vm, vcpuid, id, va_arg(ap, uint64_t));
|
|
}
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
}
|