This patch sets the default return value to -IGC_ERR_NVM in
igc_write_nvm_srwr. Without this change it wouldn't lead to a shadow RAM
write EEWR timeout.
Fixes: ab40561268 ("igc: Add NVM support")
Signed-off-by: Kevin Lo <kevlo@kevlo.org>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
		
	
			
		
			
				
	
	
		
			646 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			646 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (c)  2018 Intel Corporation */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| #include "igc_hw.h"
 | |
| 
 | |
| /**
 | |
|  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Acquire the necessary semaphores for exclusive access to the EEPROM.
 | |
|  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 | |
|  * Return successful if access grant bit set, else clear the request for
 | |
|  * EEPROM access and return -IGC_ERR_NVM (-1).
 | |
|  */
 | |
| static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_release_nvm_i225 - Release exclusive access to EEPROM
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 | |
|  * then release the semaphores acquired.
 | |
|  */
 | |
| static void igc_release_nvm_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Acquire the HW semaphore to access the PHY or NVM
 | |
|  */
 | |
| static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	s32 timeout = hw->nvm.word_size + 1;
 | |
| 	s32 i = 0;
 | |
| 	u32 swsm;
 | |
| 
 | |
| 	/* Get the SW semaphore */
 | |
| 	while (i < timeout) {
 | |
| 		swsm = rd32(IGC_SWSM);
 | |
| 		if (!(swsm & IGC_SWSM_SMBI))
 | |
| 			break;
 | |
| 
 | |
| 		usleep_range(500, 600);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (i == timeout) {
 | |
| 		/* In rare circumstances, the SW semaphore may already be held
 | |
| 		 * unintentionally. Clear the semaphore once before giving up.
 | |
| 		 */
 | |
| 		if (hw->dev_spec._base.clear_semaphore_once) {
 | |
| 			hw->dev_spec._base.clear_semaphore_once = false;
 | |
| 			igc_put_hw_semaphore(hw);
 | |
| 			for (i = 0; i < timeout; i++) {
 | |
| 				swsm = rd32(IGC_SWSM);
 | |
| 				if (!(swsm & IGC_SWSM_SMBI))
 | |
| 					break;
 | |
| 
 | |
| 				usleep_range(500, 600);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* If we do not have the semaphore here, we have to give up. */
 | |
| 		if (i == timeout) {
 | |
| 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
 | |
| 			return -IGC_ERR_NVM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Get the FW semaphore. */
 | |
| 	for (i = 0; i < timeout; i++) {
 | |
| 		swsm = rd32(IGC_SWSM);
 | |
| 		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
 | |
| 
 | |
| 		/* Semaphore acquired if bit latched */
 | |
| 		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
 | |
| 			break;
 | |
| 
 | |
| 		usleep_range(500, 600);
 | |
| 	}
 | |
| 
 | |
| 	if (i == timeout) {
 | |
| 		/* Release semaphores */
 | |
| 		igc_put_hw_semaphore(hw);
 | |
| 		hw_dbg("Driver can't access the NVM\n");
 | |
| 		return -IGC_ERR_NVM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @mask: specifies which semaphore to acquire
 | |
|  *
 | |
|  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 | |
|  * will also specify which port we're acquiring the lock for.
 | |
|  */
 | |
| s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
 | |
| {
 | |
| 	s32 i = 0, timeout = 200;
 | |
| 	u32 fwmask = mask << 16;
 | |
| 	u32 swmask = mask;
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 swfw_sync;
 | |
| 
 | |
| 	while (i < timeout) {
 | |
| 		if (igc_get_hw_semaphore_i225(hw)) {
 | |
| 			ret_val = -IGC_ERR_SWFW_SYNC;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		swfw_sync = rd32(IGC_SW_FW_SYNC);
 | |
| 		if (!(swfw_sync & (fwmask | swmask)))
 | |
| 			break;
 | |
| 
 | |
| 		/* Firmware currently using resource (fwmask) */
 | |
| 		igc_put_hw_semaphore(hw);
 | |
| 		mdelay(5);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (i == timeout) {
 | |
| 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 | |
| 		ret_val = -IGC_ERR_SWFW_SYNC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	swfw_sync |= swmask;
 | |
| 	wr32(IGC_SW_FW_SYNC, swfw_sync);
 | |
| 
 | |
| 	igc_put_hw_semaphore(hw);
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_release_swfw_sync_i225 - Release SW/FW semaphore
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @mask: specifies which semaphore to acquire
 | |
|  *
 | |
|  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 | |
|  * will also specify which port we're releasing the lock for.
 | |
|  */
 | |
| void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 swfw_sync;
 | |
| 
 | |
| 	while (igc_get_hw_semaphore_i225(hw))
 | |
| 		; /* Empty */
 | |
| 
 | |
| 	swfw_sync = rd32(IGC_SW_FW_SYNC);
 | |
| 	swfw_sync &= ~mask;
 | |
| 	wr32(IGC_SW_FW_SYNC, swfw_sync);
 | |
| 
 | |
| 	igc_put_hw_semaphore(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @offset: offset of word in the Shadow Ram to read
 | |
|  * @words: number of words to read
 | |
|  * @data: word read from the Shadow Ram
 | |
|  *
 | |
|  * Reads a 16 bit word from the Shadow Ram using the EERD register.
 | |
|  * Uses necessary synchronization semaphores.
 | |
|  */
 | |
| static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
 | |
| 				  u16 *data)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 	u16 i, count;
 | |
| 
 | |
| 	/* We cannot hold synchronization semaphores for too long,
 | |
| 	 * because of forceful takeover procedure. However it is more efficient
 | |
| 	 * to read in bursts than synchronizing access for each word.
 | |
| 	 */
 | |
| 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
 | |
| 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
 | |
| 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
 | |
| 
 | |
| 		status = hw->nvm.ops.acquire(hw);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 
 | |
| 		status = igc_read_nvm_eerd(hw, offset, count, data + i);
 | |
| 		hw->nvm.ops.release(hw);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @offset: offset within the Shadow Ram to be written to
 | |
|  * @words: number of words to write
 | |
|  * @data: 16 bit word(s) to be written to the Shadow Ram
 | |
|  *
 | |
|  * Writes data to Shadow Ram at offset using EEWR register.
 | |
|  *
 | |
|  * If igc_update_nvm_checksum is not called after this function , the
 | |
|  * Shadow Ram will most likely contain an invalid checksum.
 | |
|  */
 | |
| static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
 | |
| 			      u16 *data)
 | |
| {
 | |
| 	struct igc_nvm_info *nvm = &hw->nvm;
 | |
| 	s32 ret_val = -IGC_ERR_NVM;
 | |
| 	u32 attempts = 100000;
 | |
| 	u32 i, k, eewr = 0;
 | |
| 
 | |
| 	/* A check for invalid values:  offset too large, too many words,
 | |
| 	 * too many words for the offset, and not enough words.
 | |
| 	 */
 | |
| 	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
 | |
| 	    words == 0) {
 | |
| 		hw_dbg("nvm parameter(s) out of bounds\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < words; i++) {
 | |
| 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
 | |
| 			(data[i] << IGC_NVM_RW_REG_DATA) |
 | |
| 			IGC_NVM_RW_REG_START;
 | |
| 
 | |
| 		wr32(IGC_SRWR, eewr);
 | |
| 
 | |
| 		for (k = 0; k < attempts; k++) {
 | |
| 			if (IGC_NVM_RW_REG_DONE &
 | |
| 			    rd32(IGC_SRWR)) {
 | |
| 				ret_val = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			udelay(5);
 | |
| 		}
 | |
| 
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg("Shadow RAM write EEWR timed out\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @offset: offset within the Shadow RAM to be written to
 | |
|  * @words: number of words to write
 | |
|  * @data: 16 bit word(s) to be written to the Shadow RAM
 | |
|  *
 | |
|  * Writes data to Shadow RAM at offset using EEWR register.
 | |
|  *
 | |
|  * If igc_update_nvm_checksum is not called after this function , the
 | |
|  * data will not be committed to FLASH and also Shadow RAM will most likely
 | |
|  * contain an invalid checksum.
 | |
|  *
 | |
|  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
 | |
|  * partially written.
 | |
|  */
 | |
| static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
 | |
| 				   u16 *data)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 	u16 i, count;
 | |
| 
 | |
| 	/* We cannot hold synchronization semaphores for too long,
 | |
| 	 * because of forceful takeover procedure. However it is more efficient
 | |
| 	 * to write in bursts than synchronizing access for each word.
 | |
| 	 */
 | |
| 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
 | |
| 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
 | |
| 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
 | |
| 
 | |
| 		status = hw->nvm.ops.acquire(hw);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 
 | |
| 		status = igc_write_nvm_srwr(hw, offset, count, data + i);
 | |
| 		hw->nvm.ops.release(hw);
 | |
| 		if (status)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 | |
|  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
 | |
|  */
 | |
| static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
 | |
| 			   u16 *data);
 | |
| 	s32 status = 0;
 | |
| 
 | |
| 	status = hw->nvm.ops.acquire(hw);
 | |
| 	if (status)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Replace the read function with semaphore grabbing with
 | |
| 	 * the one that skips this for a while.
 | |
| 	 * We have semaphore taken already here.
 | |
| 	 */
 | |
| 	read_op_ptr = hw->nvm.ops.read;
 | |
| 	hw->nvm.ops.read = igc_read_nvm_eerd;
 | |
| 
 | |
| 	status = igc_validate_nvm_checksum(hw);
 | |
| 
 | |
| 	/* Revert original read operation. */
 | |
| 	hw->nvm.ops.read = read_op_ptr;
 | |
| 
 | |
| 	hw->nvm.ops.release(hw);
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_pool_flash_update_done_i225 - Pool FLUDONE status
 | |
|  * @hw: pointer to the HW structure
 | |
|  */
 | |
| static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = -IGC_ERR_NVM;
 | |
| 	u32 i, reg;
 | |
| 
 | |
| 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
 | |
| 		reg = rd32(IGC_EECD);
 | |
| 		if (reg & IGC_EECD_FLUDONE_I225) {
 | |
| 			ret_val = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_update_flash_i225 - Commit EEPROM to the flash
 | |
|  * @hw: pointer to the HW structure
 | |
|  */
 | |
| static s32 igc_update_flash_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 flup;
 | |
| 
 | |
| 	ret_val = igc_pool_flash_update_done_i225(hw);
 | |
| 	if (ret_val == -IGC_ERR_NVM) {
 | |
| 		hw_dbg("Flash update time out\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
 | |
| 	wr32(IGC_EECD, flup);
 | |
| 
 | |
| 	ret_val = igc_pool_flash_update_done_i225(hw);
 | |
| 	if (ret_val)
 | |
| 		hw_dbg("Flash update time out\n");
 | |
| 	else
 | |
| 		hw_dbg("Flash update complete\n");
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_update_nvm_checksum_i225 - Update EEPROM checksum
 | |
|  * @hw: pointer to the HW structure
 | |
|  *
 | |
|  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
 | |
|  * up to the checksum.  Then calculates the EEPROM checksum and writes the
 | |
|  * value to the EEPROM. Next commit EEPROM data onto the Flash.
 | |
|  */
 | |
| static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	u16 checksum = 0;
 | |
| 	s32 ret_val = 0;
 | |
| 	u16 i, nvm_data;
 | |
| 
 | |
| 	/* Read the first word from the EEPROM. If this times out or fails, do
 | |
| 	 * not continue or we could be in for a very long wait while every
 | |
| 	 * EEPROM read fails
 | |
| 	 */
 | |
| 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg("EEPROM read failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = hw->nvm.ops.acquire(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
 | |
| 	 * because we do not want to take the synchronization
 | |
| 	 * semaphores twice here.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 | |
| 		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
 | |
| 		if (ret_val) {
 | |
| 			hw->nvm.ops.release(hw);
 | |
| 			hw_dbg("NVM Read Error while updating checksum.\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		checksum += nvm_data;
 | |
| 	}
 | |
| 	checksum = (u16)NVM_SUM - checksum;
 | |
| 	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
 | |
| 				     &checksum);
 | |
| 	if (ret_val) {
 | |
| 		hw->nvm.ops.release(hw);
 | |
| 		hw_dbg("NVM Write Error while updating checksum.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	hw->nvm.ops.release(hw);
 | |
| 
 | |
| 	ret_val = igc_update_flash_i225(hw);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_get_flash_presence_i225 - Check if flash device is detected
 | |
|  * @hw: pointer to the HW structure
 | |
|  */
 | |
| bool igc_get_flash_presence_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	bool ret_val = false;
 | |
| 	u32 eec = 0;
 | |
| 
 | |
| 	eec = rd32(IGC_EECD);
 | |
| 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
 | |
| 		ret_val = true;
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * igc_init_nvm_params_i225 - Init NVM func ptrs.
 | |
|  * @hw: pointer to the HW structure
 | |
|  */
 | |
| s32 igc_init_nvm_params_i225(struct igc_hw *hw)
 | |
| {
 | |
| 	struct igc_nvm_info *nvm = &hw->nvm;
 | |
| 
 | |
| 	nvm->ops.acquire = igc_acquire_nvm_i225;
 | |
| 	nvm->ops.release = igc_release_nvm_i225;
 | |
| 
 | |
| 	/* NVM Function Pointers */
 | |
| 	if (igc_get_flash_presence_i225(hw)) {
 | |
| 		hw->nvm.type = igc_nvm_flash_hw;
 | |
| 		nvm->ops.read = igc_read_nvm_srrd_i225;
 | |
| 		nvm->ops.write = igc_write_nvm_srwr_i225;
 | |
| 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
 | |
| 		nvm->ops.update = igc_update_nvm_checksum_i225;
 | |
| 	} else {
 | |
| 		hw->nvm.type = igc_nvm_invm;
 | |
| 		nvm->ops.read = igc_read_nvm_eerd;
 | |
| 		nvm->ops.write = NULL;
 | |
| 		nvm->ops.validate = NULL;
 | |
| 		nvm->ops.update = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  igc_set_eee_i225 - Enable/disable EEE support
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
 | |
|  *  @adv1G: boolean flag enabling 1G EEE advertisement
 | |
|  *  @adv100M: boolean flag enabling 100M EEE advertisement
 | |
|  *
 | |
|  *  Enable/disable EEE based on setting in dev_spec structure.
 | |
|  **/
 | |
| s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
 | |
| 		     bool adv100M)
 | |
| {
 | |
| 	u32 ipcnfg, eeer;
 | |
| 
 | |
| 	ipcnfg = rd32(IGC_IPCNFG);
 | |
| 	eeer = rd32(IGC_EEER);
 | |
| 
 | |
| 	/* enable or disable per user setting */
 | |
| 	if (hw->dev_spec._base.eee_enable) {
 | |
| 		u32 eee_su = rd32(IGC_EEE_SU);
 | |
| 
 | |
| 		if (adv100M)
 | |
| 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
 | |
| 		else
 | |
| 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
 | |
| 
 | |
| 		if (adv1G)
 | |
| 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
 | |
| 		else
 | |
| 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
 | |
| 
 | |
| 		if (adv2p5G)
 | |
| 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
 | |
| 		else
 | |
| 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
 | |
| 
 | |
| 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
 | |
| 			 IGC_EEER_LPI_FC);
 | |
| 
 | |
| 		/* This bit should not be set in normal operation. */
 | |
| 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
 | |
| 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
 | |
| 	} else {
 | |
| 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
 | |
| 			    IGC_IPCNFG_EEE_100M_AN);
 | |
| 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
 | |
| 			  IGC_EEER_LPI_FC);
 | |
| 	}
 | |
| 	wr32(IGC_IPCNFG, ipcnfg);
 | |
| 	wr32(IGC_EEER, eeer);
 | |
| 	rd32(IGC_IPCNFG);
 | |
| 	rd32(IGC_EEER);
 | |
| 
 | |
| 	return IGC_SUCCESS;
 | |
| }
 | |
| 
 | |
| /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
 | |
|  * @hw: pointer to the HW structure
 | |
|  * @link: bool indicating link status
 | |
|  *
 | |
|  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
 | |
|  * settings, otherwise specify that there is no LTR requirement.
 | |
|  */
 | |
| s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
 | |
| {
 | |
| 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
 | |
| 	u16 speed, duplex;
 | |
| 	s32 size;
 | |
| 
 | |
| 	/* If we do not have link, LTR thresholds are zero. */
 | |
| 	if (link) {
 | |
| 		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
 | |
| 
 | |
| 		/* Check if using copper interface with EEE enabled or if the
 | |
| 		 * link speed is 10 Mbps.
 | |
| 		 */
 | |
| 		if (hw->dev_spec._base.eee_enable &&
 | |
| 		    speed != SPEED_10) {
 | |
| 			/* EEE enabled, so send LTRMAX threshold. */
 | |
| 			ltrc = rd32(IGC_LTRC) |
 | |
| 			       IGC_LTRC_EEEMS_EN;
 | |
| 			wr32(IGC_LTRC, ltrc);
 | |
| 
 | |
| 			/* Calculate tw_system (nsec). */
 | |
| 			if (speed == SPEED_100) {
 | |
| 				tw_system = ((rd32(IGC_EEE_SU) &
 | |
| 					     IGC_TW_SYSTEM_100_MASK) >>
 | |
| 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
 | |
| 			} else {
 | |
| 				tw_system = (rd32(IGC_EEE_SU) &
 | |
| 					     IGC_TW_SYSTEM_1000_MASK) * 500;
 | |
| 			}
 | |
| 		} else {
 | |
| 			tw_system = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Get the Rx packet buffer size. */
 | |
| 		size = rd32(IGC_RXPBS) &
 | |
| 		       IGC_RXPBS_SIZE_I225_MASK;
 | |
| 
 | |
| 		/* Calculations vary based on DMAC settings. */
 | |
| 		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
 | |
| 			size -= (rd32(IGC_DMACR) &
 | |
| 				 IGC_DMACR_DMACTHR_MASK) >>
 | |
| 				 IGC_DMACR_DMACTHR_SHIFT;
 | |
| 			/* Convert size to bits. */
 | |
| 			size *= 1024 * 8;
 | |
| 		} else {
 | |
| 			/* Convert size to bytes, subtract the MTU, and then
 | |
| 			 * convert the size to bits.
 | |
| 			 */
 | |
| 			size *= 1024;
 | |
| 			size *= 8;
 | |
| 		}
 | |
| 
 | |
| 		if (size < 0) {
 | |
| 			hw_dbg("Invalid effective Rx buffer size %d\n",
 | |
| 			       size);
 | |
| 			return -IGC_ERR_CONFIG;
 | |
| 		}
 | |
| 
 | |
| 		/* Calculate the thresholds. Since speed is in Mbps, simplify
 | |
| 		 * the calculation by multiplying size/speed by 1000 for result
 | |
| 		 * to be in nsec before dividing by the scale in nsec. Set the
 | |
| 		 * scale such that the LTR threshold fits in the register.
 | |
| 		 */
 | |
| 		ltr_min = (1000 * size) / speed;
 | |
| 		ltr_max = ltr_min + tw_system;
 | |
| 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
 | |
| 			    IGC_LTRMINV_SCALE_32768;
 | |
| 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
 | |
| 			    IGC_LTRMAXV_SCALE_32768;
 | |
| 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
 | |
| 		ltr_min -= 1;
 | |
| 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
 | |
| 		ltr_max -= 1;
 | |
| 
 | |
| 		/* Only write the LTR thresholds if they differ from before. */
 | |
| 		ltrv = rd32(IGC_LTRMINV);
 | |
| 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
 | |
| 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
 | |
| 			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
 | |
| 			wr32(IGC_LTRMINV, ltrv);
 | |
| 		}
 | |
| 
 | |
| 		ltrv = rd32(IGC_LTRMAXV);
 | |
| 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
 | |
| 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
 | |
| 			       (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
 | |
| 			wr32(IGC_LTRMAXV, ltrv);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return IGC_SUCCESS;
 | |
| }
 |