c8113756ba
The patch fix the DRAM usage accounting by adding a missing update of the DRAM memory consumption, when a context is being torn down without an organized release of the allocated memory. Signed-off-by: Tomer Tayar <ttayar@habana.ai> Reviewed-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
1722 lines
44 KiB
C
1722 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2019 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include <uapi/misc/habanalabs.h>
|
|
#include "habanalabs.h"
|
|
#include "include/hw_ip/mmu/mmu_general.h"
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/genalloc.h>
|
|
|
|
#define PGS_IN_2MB_PAGE (PAGE_SIZE_2MB >> PAGE_SHIFT)
|
|
#define HL_MMU_DEBUG 0
|
|
|
|
/*
|
|
* The va ranges in context object contain a list with the available chunks of
|
|
* device virtual memory.
|
|
* There is one range for host allocations and one for DRAM allocations.
|
|
*
|
|
* On initialization each range contains one chunk of all of its available
|
|
* virtual range which is a half of the total device virtual range.
|
|
*
|
|
* On each mapping of physical pages, a suitable virtual range chunk (with a
|
|
* minimum size) is selected from the list. If the chunk size equals the
|
|
* requested size, the chunk is returned. Otherwise, the chunk is split into
|
|
* two chunks - one to return as result and a remainder to stay in the list.
|
|
*
|
|
* On each Unmapping of a virtual address, the relevant virtual chunk is
|
|
* returned to the list. The chunk is added to the list and if its edges match
|
|
* the edges of the adjacent chunks (means a contiguous chunk can be created),
|
|
* the chunks are merged.
|
|
*
|
|
* On finish, the list is checked to have only one chunk of all the relevant
|
|
* virtual range (which is a half of the device total virtual range).
|
|
* If not (means not all mappings were unmapped), a warning is printed.
|
|
*/
|
|
|
|
/*
|
|
* alloc_device_memory - allocate device memory
|
|
*
|
|
* @ctx : current context
|
|
* @args : host parameters containing the requested size
|
|
* @ret_handle : result handle
|
|
*
|
|
* This function does the following:
|
|
* - Allocate the requested size rounded up to 2MB pages
|
|
* - Return unique handle
|
|
*/
|
|
static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
|
|
u32 *ret_handle)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm *vm = &hdev->vm;
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack;
|
|
u64 paddr = 0, total_size, num_pgs, i;
|
|
u32 num_curr_pgs, page_size, page_shift;
|
|
int handle, rc;
|
|
bool contiguous;
|
|
|
|
num_curr_pgs = 0;
|
|
page_size = hdev->asic_prop.dram_page_size;
|
|
page_shift = __ffs(page_size);
|
|
num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
|
|
total_size = num_pgs << page_shift;
|
|
|
|
contiguous = args->flags & HL_MEM_CONTIGUOUS;
|
|
|
|
if (contiguous) {
|
|
paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
|
|
if (!paddr) {
|
|
dev_err(hdev->dev,
|
|
"failed to allocate %llu huge contiguous pages\n",
|
|
num_pgs);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
|
|
if (!phys_pg_pack) {
|
|
rc = -ENOMEM;
|
|
goto pages_pack_err;
|
|
}
|
|
|
|
phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
|
|
phys_pg_pack->asid = ctx->asid;
|
|
phys_pg_pack->npages = num_pgs;
|
|
phys_pg_pack->page_size = page_size;
|
|
phys_pg_pack->total_size = total_size;
|
|
phys_pg_pack->flags = args->flags;
|
|
phys_pg_pack->contiguous = contiguous;
|
|
|
|
phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
|
|
if (!phys_pg_pack->pages) {
|
|
rc = -ENOMEM;
|
|
goto pages_arr_err;
|
|
}
|
|
|
|
if (phys_pg_pack->contiguous) {
|
|
for (i = 0 ; i < num_pgs ; i++)
|
|
phys_pg_pack->pages[i] = paddr + i * page_size;
|
|
} else {
|
|
for (i = 0 ; i < num_pgs ; i++) {
|
|
phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
|
|
vm->dram_pg_pool,
|
|
page_size);
|
|
if (!phys_pg_pack->pages[i]) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate device memory (out of memory)\n");
|
|
rc = -ENOMEM;
|
|
goto page_err;
|
|
}
|
|
|
|
num_curr_pgs++;
|
|
}
|
|
}
|
|
|
|
spin_lock(&vm->idr_lock);
|
|
handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
|
|
GFP_ATOMIC);
|
|
spin_unlock(&vm->idr_lock);
|
|
|
|
if (handle < 0) {
|
|
dev_err(hdev->dev, "Failed to get handle for page\n");
|
|
rc = -EFAULT;
|
|
goto idr_err;
|
|
}
|
|
|
|
for (i = 0 ; i < num_pgs ; i++)
|
|
kref_get(&vm->dram_pg_pool_refcount);
|
|
|
|
phys_pg_pack->handle = handle;
|
|
|
|
atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
|
|
atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
|
|
|
|
*ret_handle = handle;
|
|
|
|
return 0;
|
|
|
|
idr_err:
|
|
page_err:
|
|
if (!phys_pg_pack->contiguous)
|
|
for (i = 0 ; i < num_curr_pgs ; i++)
|
|
gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
|
|
page_size);
|
|
|
|
kvfree(phys_pg_pack->pages);
|
|
pages_arr_err:
|
|
kfree(phys_pg_pack);
|
|
pages_pack_err:
|
|
if (contiguous)
|
|
gen_pool_free(vm->dram_pg_pool, paddr, total_size);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* get_userptr_from_host_va - initialize userptr structure from given host
|
|
* virtual address
|
|
*
|
|
* @hdev : habanalabs device structure
|
|
* @args : parameters containing the virtual address and size
|
|
* @p_userptr : pointer to result userptr structure
|
|
*
|
|
* This function does the following:
|
|
* - Allocate userptr structure
|
|
* - Pin the given host memory using the userptr structure
|
|
* - Perform DMA mapping to have the DMA addresses of the pages
|
|
*/
|
|
static int get_userptr_from_host_va(struct hl_device *hdev,
|
|
struct hl_mem_in *args, struct hl_userptr **p_userptr)
|
|
{
|
|
struct hl_userptr *userptr;
|
|
int rc;
|
|
|
|
userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
|
|
if (!userptr) {
|
|
rc = -ENOMEM;
|
|
goto userptr_err;
|
|
}
|
|
|
|
rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr,
|
|
args->map_host.mem_size, userptr);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to pin host memory\n");
|
|
goto pin_err;
|
|
}
|
|
|
|
rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
|
|
userptr->sgt->nents, DMA_BIDIRECTIONAL);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to map sgt with DMA region\n");
|
|
goto dma_map_err;
|
|
}
|
|
|
|
userptr->dma_mapped = true;
|
|
userptr->dir = DMA_BIDIRECTIONAL;
|
|
userptr->vm_type = VM_TYPE_USERPTR;
|
|
|
|
*p_userptr = userptr;
|
|
|
|
return 0;
|
|
|
|
dma_map_err:
|
|
hl_unpin_host_memory(hdev, userptr);
|
|
pin_err:
|
|
kfree(userptr);
|
|
userptr_err:
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* free_userptr - free userptr structure
|
|
*
|
|
* @hdev : habanalabs device structure
|
|
* @userptr : userptr to free
|
|
*
|
|
* This function does the following:
|
|
* - Unpins the physical pages
|
|
* - Frees the userptr structure
|
|
*/
|
|
static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
|
|
{
|
|
hl_unpin_host_memory(hdev, userptr);
|
|
kfree(userptr);
|
|
}
|
|
|
|
/*
|
|
* dram_pg_pool_do_release - free DRAM pages pool
|
|
*
|
|
* @ref : pointer to reference object
|
|
*
|
|
* This function does the following:
|
|
* - Frees the idr structure of physical pages handles
|
|
* - Frees the generic pool of DRAM physical pages
|
|
*/
|
|
static void dram_pg_pool_do_release(struct kref *ref)
|
|
{
|
|
struct hl_vm *vm = container_of(ref, struct hl_vm,
|
|
dram_pg_pool_refcount);
|
|
|
|
/*
|
|
* free the idr here as only here we know for sure that there are no
|
|
* allocated physical pages and hence there are no handles in use
|
|
*/
|
|
idr_destroy(&vm->phys_pg_pack_handles);
|
|
gen_pool_destroy(vm->dram_pg_pool);
|
|
}
|
|
|
|
/*
|
|
* free_phys_pg_pack - free physical page pack
|
|
*
|
|
* @hdev : habanalabs device structure
|
|
* @phys_pg_pack : physical page pack to free
|
|
*
|
|
* This function does the following:
|
|
* - For DRAM memory only, iterate over the pack and free each physical block
|
|
* structure by returning it to the general pool
|
|
* - Free the hl_vm_phys_pg_pack structure
|
|
*/
|
|
static void free_phys_pg_pack(struct hl_device *hdev,
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack)
|
|
{
|
|
struct hl_vm *vm = &hdev->vm;
|
|
u64 i;
|
|
|
|
if (!phys_pg_pack->created_from_userptr) {
|
|
if (phys_pg_pack->contiguous) {
|
|
gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
|
|
phys_pg_pack->total_size);
|
|
|
|
for (i = 0; i < phys_pg_pack->npages ; i++)
|
|
kref_put(&vm->dram_pg_pool_refcount,
|
|
dram_pg_pool_do_release);
|
|
} else {
|
|
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
|
|
gen_pool_free(vm->dram_pg_pool,
|
|
phys_pg_pack->pages[i],
|
|
phys_pg_pack->page_size);
|
|
kref_put(&vm->dram_pg_pool_refcount,
|
|
dram_pg_pool_do_release);
|
|
}
|
|
}
|
|
}
|
|
|
|
kvfree(phys_pg_pack->pages);
|
|
kfree(phys_pg_pack);
|
|
}
|
|
|
|
/*
|
|
* free_device_memory - free device memory
|
|
*
|
|
* @ctx : current context
|
|
* @handle : handle of the memory chunk to free
|
|
*
|
|
* This function does the following:
|
|
* - Free the device memory related to the given handle
|
|
*/
|
|
static int free_device_memory(struct hl_ctx *ctx, u32 handle)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm *vm = &hdev->vm;
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack;
|
|
|
|
spin_lock(&vm->idr_lock);
|
|
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
|
|
if (phys_pg_pack) {
|
|
if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
|
|
dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
|
|
handle);
|
|
spin_unlock(&vm->idr_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* must remove from idr before the freeing of the physical
|
|
* pages as the refcount of the pool is also the trigger of the
|
|
* idr destroy
|
|
*/
|
|
idr_remove(&vm->phys_pg_pack_handles, handle);
|
|
spin_unlock(&vm->idr_lock);
|
|
|
|
atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
|
|
atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
|
|
|
|
free_phys_pg_pack(hdev, phys_pg_pack);
|
|
} else {
|
|
spin_unlock(&vm->idr_lock);
|
|
dev_err(hdev->dev,
|
|
"free device memory failed, no match for handle %u\n",
|
|
handle);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* clear_va_list_locked - free virtual addresses list
|
|
*
|
|
* @hdev : habanalabs device structure
|
|
* @va_list : list of virtual addresses to free
|
|
*
|
|
* This function does the following:
|
|
* - Iterate over the list and free each virtual addresses block
|
|
*
|
|
* This function should be called only when va_list lock is taken
|
|
*/
|
|
static void clear_va_list_locked(struct hl_device *hdev,
|
|
struct list_head *va_list)
|
|
{
|
|
struct hl_vm_va_block *va_block, *tmp;
|
|
|
|
list_for_each_entry_safe(va_block, tmp, va_list, node) {
|
|
list_del(&va_block->node);
|
|
kfree(va_block);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* print_va_list_locked - print virtual addresses list
|
|
*
|
|
* @hdev : habanalabs device structure
|
|
* @va_list : list of virtual addresses to print
|
|
*
|
|
* This function does the following:
|
|
* - Iterate over the list and print each virtual addresses block
|
|
*
|
|
* This function should be called only when va_list lock is taken
|
|
*/
|
|
static void print_va_list_locked(struct hl_device *hdev,
|
|
struct list_head *va_list)
|
|
{
|
|
#if HL_MMU_DEBUG
|
|
struct hl_vm_va_block *va_block;
|
|
|
|
dev_dbg(hdev->dev, "print va list:\n");
|
|
|
|
list_for_each_entry(va_block, va_list, node)
|
|
dev_dbg(hdev->dev,
|
|
"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
|
|
va_block->start, va_block->end, va_block->size);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* merge_va_blocks_locked - merge a virtual block if possible
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @va_list : pointer to the virtual addresses block list
|
|
* @va_block : virtual block to merge with adjacent blocks
|
|
*
|
|
* This function does the following:
|
|
* - Merge the given blocks with the adjacent blocks if their virtual ranges
|
|
* create a contiguous virtual range
|
|
*
|
|
* This Function should be called only when va_list lock is taken
|
|
*/
|
|
static void merge_va_blocks_locked(struct hl_device *hdev,
|
|
struct list_head *va_list, struct hl_vm_va_block *va_block)
|
|
{
|
|
struct hl_vm_va_block *prev, *next;
|
|
|
|
prev = list_prev_entry(va_block, node);
|
|
if (&prev->node != va_list && prev->end + 1 == va_block->start) {
|
|
prev->end = va_block->end;
|
|
prev->size = prev->end - prev->start;
|
|
list_del(&va_block->node);
|
|
kfree(va_block);
|
|
va_block = prev;
|
|
}
|
|
|
|
next = list_next_entry(va_block, node);
|
|
if (&next->node != va_list && va_block->end + 1 == next->start) {
|
|
next->start = va_block->start;
|
|
next->size = next->end - next->start;
|
|
list_del(&va_block->node);
|
|
kfree(va_block);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add_va_block_locked - add a virtual block to the virtual addresses list
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @va_list : pointer to the virtual addresses block list
|
|
* @start : start virtual address
|
|
* @end : end virtual address
|
|
*
|
|
* This function does the following:
|
|
* - Add the given block to the virtual blocks list and merge with other
|
|
* blocks if a contiguous virtual block can be created
|
|
*
|
|
* This Function should be called only when va_list lock is taken
|
|
*/
|
|
static int add_va_block_locked(struct hl_device *hdev,
|
|
struct list_head *va_list, u64 start, u64 end)
|
|
{
|
|
struct hl_vm_va_block *va_block, *res = NULL;
|
|
u64 size = end - start;
|
|
|
|
print_va_list_locked(hdev, va_list);
|
|
|
|
list_for_each_entry(va_block, va_list, node) {
|
|
/* TODO: remove upon matureness */
|
|
if (hl_mem_area_crosses_range(start, size, va_block->start,
|
|
va_block->end)) {
|
|
dev_err(hdev->dev,
|
|
"block crossing ranges at start 0x%llx, end 0x%llx\n",
|
|
va_block->start, va_block->end);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (va_block->end < start)
|
|
res = va_block;
|
|
}
|
|
|
|
va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
|
|
if (!va_block)
|
|
return -ENOMEM;
|
|
|
|
va_block->start = start;
|
|
va_block->end = end;
|
|
va_block->size = size;
|
|
|
|
if (!res)
|
|
list_add(&va_block->node, va_list);
|
|
else
|
|
list_add(&va_block->node, &res->node);
|
|
|
|
merge_va_blocks_locked(hdev, va_list, va_block);
|
|
|
|
print_va_list_locked(hdev, va_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add_va_block - wrapper for add_va_block_locked
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @va_list : pointer to the virtual addresses block list
|
|
* @start : start virtual address
|
|
* @end : end virtual address
|
|
*
|
|
* This function does the following:
|
|
* - Takes the list lock and calls add_va_block_locked
|
|
*/
|
|
static inline int add_va_block(struct hl_device *hdev,
|
|
struct hl_va_range *va_range, u64 start, u64 end)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&va_range->lock);
|
|
rc = add_va_block_locked(hdev, &va_range->list, start, end);
|
|
mutex_unlock(&va_range->lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* get_va_block - get a virtual block with the requested size
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @va_range : pointer to the virtual addresses range
|
|
* @size : requested block size
|
|
* @hint_addr : hint for request address by the user
|
|
* @is_userptr : is host or DRAM memory
|
|
*
|
|
* This function does the following:
|
|
* - Iterate on the virtual block list to find a suitable virtual block for the
|
|
* requested size
|
|
* - Reserve the requested block and update the list
|
|
* - Return the start address of the virtual block
|
|
*/
|
|
static u64 get_va_block(struct hl_device *hdev,
|
|
struct hl_va_range *va_range, u64 size, u64 hint_addr,
|
|
bool is_userptr)
|
|
{
|
|
struct hl_vm_va_block *va_block, *new_va_block = NULL;
|
|
u64 valid_start, valid_size, prev_start, prev_end, page_mask,
|
|
res_valid_start = 0, res_valid_size = 0;
|
|
u32 page_size;
|
|
bool add_prev = false;
|
|
|
|
if (is_userptr) {
|
|
/*
|
|
* We cannot know if the user allocated memory with huge pages
|
|
* or not, hence we continue with the biggest possible
|
|
* granularity.
|
|
*/
|
|
page_size = PAGE_SIZE_2MB;
|
|
page_mask = PAGE_MASK_2MB;
|
|
} else {
|
|
page_size = hdev->asic_prop.dram_page_size;
|
|
page_mask = ~((u64)page_size - 1);
|
|
}
|
|
|
|
mutex_lock(&va_range->lock);
|
|
|
|
print_va_list_locked(hdev, &va_range->list);
|
|
|
|
list_for_each_entry(va_block, &va_range->list, node) {
|
|
/* calc the first possible aligned addr */
|
|
valid_start = va_block->start;
|
|
|
|
|
|
if (valid_start & (page_size - 1)) {
|
|
valid_start &= page_mask;
|
|
valid_start += page_size;
|
|
if (valid_start > va_block->end)
|
|
continue;
|
|
}
|
|
|
|
valid_size = va_block->end - valid_start;
|
|
|
|
if (valid_size >= size &&
|
|
(!new_va_block || valid_size < res_valid_size)) {
|
|
|
|
new_va_block = va_block;
|
|
res_valid_start = valid_start;
|
|
res_valid_size = valid_size;
|
|
}
|
|
|
|
if (hint_addr && hint_addr >= valid_start &&
|
|
((hint_addr + size) <= va_block->end)) {
|
|
new_va_block = va_block;
|
|
res_valid_start = hint_addr;
|
|
res_valid_size = valid_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!new_va_block) {
|
|
dev_err(hdev->dev, "no available va block for size %llu\n",
|
|
size);
|
|
goto out;
|
|
}
|
|
|
|
if (res_valid_start > new_va_block->start) {
|
|
prev_start = new_va_block->start;
|
|
prev_end = res_valid_start - 1;
|
|
|
|
new_va_block->start = res_valid_start;
|
|
new_va_block->size = res_valid_size;
|
|
|
|
add_prev = true;
|
|
}
|
|
|
|
if (new_va_block->size > size) {
|
|
new_va_block->start += size;
|
|
new_va_block->size = new_va_block->end - new_va_block->start;
|
|
} else {
|
|
list_del(&new_va_block->node);
|
|
kfree(new_va_block);
|
|
}
|
|
|
|
if (add_prev)
|
|
add_va_block_locked(hdev, &va_range->list, prev_start,
|
|
prev_end);
|
|
|
|
print_va_list_locked(hdev, &va_range->list);
|
|
out:
|
|
mutex_unlock(&va_range->lock);
|
|
|
|
return res_valid_start;
|
|
}
|
|
|
|
/*
|
|
* get_sg_info - get number of pages and the DMA address from SG list
|
|
*
|
|
* @sg : the SG list
|
|
* @dma_addr : pointer to DMA address to return
|
|
*
|
|
* Calculate the number of consecutive pages described by the SG list. Take the
|
|
* offset of the address in the first page, add to it the length and round it up
|
|
* to the number of needed pages.
|
|
*/
|
|
static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
|
|
{
|
|
*dma_addr = sg_dma_address(sg);
|
|
|
|
return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
|
|
(PAGE_SIZE - 1)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* init_phys_pg_pack_from_userptr - initialize physical page pack from host
|
|
* memory
|
|
*
|
|
* @ctx : current context
|
|
* @userptr : userptr to initialize from
|
|
* @pphys_pg_pack : res pointer
|
|
*
|
|
* This function does the following:
|
|
* - Pin the physical pages related to the given virtual block
|
|
* - Create a physical page pack from the physical pages related to the given
|
|
* virtual block
|
|
*/
|
|
static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
|
|
struct hl_userptr *userptr,
|
|
struct hl_vm_phys_pg_pack **pphys_pg_pack)
|
|
{
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack;
|
|
struct scatterlist *sg;
|
|
dma_addr_t dma_addr;
|
|
u64 page_mask, total_npages;
|
|
u32 npages, page_size = PAGE_SIZE;
|
|
bool first = true, is_huge_page_opt = true;
|
|
int rc, i, j;
|
|
|
|
phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
|
|
if (!phys_pg_pack)
|
|
return -ENOMEM;
|
|
|
|
phys_pg_pack->vm_type = userptr->vm_type;
|
|
phys_pg_pack->created_from_userptr = true;
|
|
phys_pg_pack->asid = ctx->asid;
|
|
atomic_set(&phys_pg_pack->mapping_cnt, 1);
|
|
|
|
/* Only if all dma_addrs are aligned to 2MB and their
|
|
* sizes is at least 2MB, we can use huge page mapping.
|
|
* We limit the 2MB optimization to this condition,
|
|
* since later on we acquire the related VA range as one
|
|
* consecutive block.
|
|
*/
|
|
total_npages = 0;
|
|
for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
|
|
npages = get_sg_info(sg, &dma_addr);
|
|
|
|
total_npages += npages;
|
|
|
|
if ((npages % PGS_IN_2MB_PAGE) ||
|
|
(dma_addr & (PAGE_SIZE_2MB - 1)))
|
|
is_huge_page_opt = false;
|
|
}
|
|
|
|
if (is_huge_page_opt) {
|
|
page_size = PAGE_SIZE_2MB;
|
|
total_npages /= PGS_IN_2MB_PAGE;
|
|
}
|
|
|
|
page_mask = ~(((u64) page_size) - 1);
|
|
|
|
phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
|
|
GFP_KERNEL);
|
|
if (!phys_pg_pack->pages) {
|
|
rc = -ENOMEM;
|
|
goto page_pack_arr_mem_err;
|
|
}
|
|
|
|
phys_pg_pack->npages = total_npages;
|
|
phys_pg_pack->page_size = page_size;
|
|
phys_pg_pack->total_size = total_npages * page_size;
|
|
|
|
j = 0;
|
|
for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
|
|
npages = get_sg_info(sg, &dma_addr);
|
|
|
|
/* align down to physical page size and save the offset */
|
|
if (first) {
|
|
first = false;
|
|
phys_pg_pack->offset = dma_addr & (page_size - 1);
|
|
dma_addr &= page_mask;
|
|
}
|
|
|
|
while (npages) {
|
|
phys_pg_pack->pages[j++] = dma_addr;
|
|
dma_addr += page_size;
|
|
|
|
if (is_huge_page_opt)
|
|
npages -= PGS_IN_2MB_PAGE;
|
|
else
|
|
npages--;
|
|
}
|
|
}
|
|
|
|
*pphys_pg_pack = phys_pg_pack;
|
|
|
|
return 0;
|
|
|
|
page_pack_arr_mem_err:
|
|
kfree(phys_pg_pack);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* map_phys_page_pack - maps the physical page pack
|
|
*
|
|
* @ctx : current context
|
|
* @vaddr : start address of the virtual area to map from
|
|
* @phys_pg_pack : the pack of physical pages to map to
|
|
*
|
|
* This function does the following:
|
|
* - Maps each chunk of virtual memory to matching physical chunk
|
|
* - Stores number of successful mappings in the given argument
|
|
* - Returns 0 on success, error code otherwise.
|
|
*/
|
|
static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr,
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
|
|
u32 page_size = phys_pg_pack->page_size;
|
|
int rc = 0;
|
|
|
|
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
|
|
paddr = phys_pg_pack->pages[i];
|
|
|
|
rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"map failed for handle %u, npages: %llu, mapped: %llu",
|
|
phys_pg_pack->handle, phys_pg_pack->npages,
|
|
mapped_pg_cnt);
|
|
goto err;
|
|
}
|
|
|
|
mapped_pg_cnt++;
|
|
next_vaddr += page_size;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
next_vaddr = vaddr;
|
|
for (i = 0 ; i < mapped_pg_cnt ; i++) {
|
|
if (hl_mmu_unmap(ctx, next_vaddr, page_size))
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
|
|
phys_pg_pack->handle, next_vaddr,
|
|
phys_pg_pack->pages[i], page_size);
|
|
|
|
next_vaddr += page_size;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
|
|
u64 *paddr)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm *vm = &hdev->vm;
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack;
|
|
u32 handle;
|
|
|
|
handle = lower_32_bits(args->map_device.handle);
|
|
spin_lock(&vm->idr_lock);
|
|
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
|
|
if (!phys_pg_pack) {
|
|
spin_unlock(&vm->idr_lock);
|
|
dev_err(hdev->dev, "no match for handle %u\n", handle);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*paddr = phys_pg_pack->pages[0];
|
|
|
|
spin_unlock(&vm->idr_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* map_device_va - map the given memory
|
|
*
|
|
* @ctx : current context
|
|
* @args : host parameters with handle/host virtual address
|
|
* @device_addr : pointer to result device virtual address
|
|
*
|
|
* This function does the following:
|
|
* - If given a physical device memory handle, map to a device virtual block
|
|
* and return the start address of this block
|
|
* - If given a host virtual address and size, find the related physical pages,
|
|
* map a device virtual block to this pages and return the start address of
|
|
* this block
|
|
*/
|
|
static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
|
|
u64 *device_addr)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm *vm = &hdev->vm;
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack;
|
|
struct hl_userptr *userptr = NULL;
|
|
struct hl_vm_hash_node *hnode;
|
|
enum vm_type_t *vm_type;
|
|
u64 ret_vaddr, hint_addr;
|
|
u32 handle = 0;
|
|
int rc;
|
|
bool is_userptr = args->flags & HL_MEM_USERPTR;
|
|
|
|
/* Assume failure */
|
|
*device_addr = 0;
|
|
|
|
if (is_userptr) {
|
|
rc = get_userptr_from_host_va(hdev, args, &userptr);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to get userptr from va\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = init_phys_pg_pack_from_userptr(ctx, userptr,
|
|
&phys_pg_pack);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"unable to init page pack for vaddr 0x%llx\n",
|
|
args->map_host.host_virt_addr);
|
|
goto init_page_pack_err;
|
|
}
|
|
|
|
vm_type = (enum vm_type_t *) userptr;
|
|
hint_addr = args->map_host.hint_addr;
|
|
} else {
|
|
handle = lower_32_bits(args->map_device.handle);
|
|
|
|
spin_lock(&vm->idr_lock);
|
|
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
|
|
if (!phys_pg_pack) {
|
|
spin_unlock(&vm->idr_lock);
|
|
dev_err(hdev->dev,
|
|
"no match for handle %u\n", handle);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* increment now to avoid freeing device memory while mapping */
|
|
atomic_inc(&phys_pg_pack->mapping_cnt);
|
|
|
|
spin_unlock(&vm->idr_lock);
|
|
|
|
vm_type = (enum vm_type_t *) phys_pg_pack;
|
|
|
|
hint_addr = args->map_device.hint_addr;
|
|
}
|
|
|
|
/*
|
|
* relevant for mapping device physical memory only, as host memory is
|
|
* implicitly shared
|
|
*/
|
|
if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
|
|
phys_pg_pack->asid != ctx->asid) {
|
|
dev_err(hdev->dev,
|
|
"Failed to map memory, handle %u is not shared\n",
|
|
handle);
|
|
rc = -EPERM;
|
|
goto shared_err;
|
|
}
|
|
|
|
hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
|
|
if (!hnode) {
|
|
rc = -ENOMEM;
|
|
goto hnode_err;
|
|
}
|
|
|
|
ret_vaddr = get_va_block(hdev,
|
|
is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
|
|
phys_pg_pack->total_size, hint_addr, is_userptr);
|
|
if (!ret_vaddr) {
|
|
dev_err(hdev->dev, "no available va block for handle %u\n",
|
|
handle);
|
|
rc = -ENOMEM;
|
|
goto va_block_err;
|
|
}
|
|
|
|
mutex_lock(&ctx->mmu_lock);
|
|
|
|
rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack);
|
|
if (rc) {
|
|
mutex_unlock(&ctx->mmu_lock);
|
|
dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
|
|
handle);
|
|
goto map_err;
|
|
}
|
|
|
|
hdev->asic_funcs->mmu_invalidate_cache(hdev, false);
|
|
|
|
mutex_unlock(&ctx->mmu_lock);
|
|
|
|
ret_vaddr += phys_pg_pack->offset;
|
|
|
|
hnode->ptr = vm_type;
|
|
hnode->vaddr = ret_vaddr;
|
|
|
|
mutex_lock(&ctx->mem_hash_lock);
|
|
hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
|
|
mutex_unlock(&ctx->mem_hash_lock);
|
|
|
|
*device_addr = ret_vaddr;
|
|
|
|
if (is_userptr)
|
|
free_phys_pg_pack(hdev, phys_pg_pack);
|
|
|
|
return 0;
|
|
|
|
map_err:
|
|
if (add_va_block(hdev,
|
|
is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
|
|
ret_vaddr,
|
|
ret_vaddr + phys_pg_pack->total_size - 1))
|
|
dev_warn(hdev->dev,
|
|
"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
|
|
handle, ret_vaddr);
|
|
|
|
va_block_err:
|
|
kfree(hnode);
|
|
hnode_err:
|
|
shared_err:
|
|
atomic_dec(&phys_pg_pack->mapping_cnt);
|
|
if (is_userptr)
|
|
free_phys_pg_pack(hdev, phys_pg_pack);
|
|
init_page_pack_err:
|
|
if (is_userptr)
|
|
free_userptr(hdev, userptr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* unmap_device_va - unmap the given device virtual address
|
|
*
|
|
* @ctx : current context
|
|
* @vaddr : device virtual address to unmap
|
|
*
|
|
* This function does the following:
|
|
* - Unmap the physical pages related to the given virtual address
|
|
* - return the device virtual block to the virtual block list
|
|
*/
|
|
static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
|
|
struct hl_vm_hash_node *hnode = NULL;
|
|
struct hl_userptr *userptr = NULL;
|
|
enum vm_type_t *vm_type;
|
|
u64 next_vaddr, i;
|
|
u32 page_size;
|
|
bool is_userptr;
|
|
int rc;
|
|
|
|
/* protect from double entrance */
|
|
mutex_lock(&ctx->mem_hash_lock);
|
|
hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
|
|
if (vaddr == hnode->vaddr)
|
|
break;
|
|
|
|
if (!hnode) {
|
|
mutex_unlock(&ctx->mem_hash_lock);
|
|
dev_err(hdev->dev,
|
|
"unmap failed, no mem hnode for vaddr 0x%llx\n",
|
|
vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hash_del(&hnode->node);
|
|
mutex_unlock(&ctx->mem_hash_lock);
|
|
|
|
vm_type = hnode->ptr;
|
|
|
|
if (*vm_type == VM_TYPE_USERPTR) {
|
|
is_userptr = true;
|
|
userptr = hnode->ptr;
|
|
rc = init_phys_pg_pack_from_userptr(ctx, userptr,
|
|
&phys_pg_pack);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"unable to init page pack for vaddr 0x%llx\n",
|
|
vaddr);
|
|
goto vm_type_err;
|
|
}
|
|
} else if (*vm_type == VM_TYPE_PHYS_PACK) {
|
|
is_userptr = false;
|
|
phys_pg_pack = hnode->ptr;
|
|
} else {
|
|
dev_warn(hdev->dev,
|
|
"unmap failed, unknown vm desc for vaddr 0x%llx\n",
|
|
vaddr);
|
|
rc = -EFAULT;
|
|
goto vm_type_err;
|
|
}
|
|
|
|
if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
|
|
dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
|
|
rc = -EINVAL;
|
|
goto mapping_cnt_err;
|
|
}
|
|
|
|
page_size = phys_pg_pack->page_size;
|
|
vaddr &= ~(((u64) page_size) - 1);
|
|
|
|
next_vaddr = vaddr;
|
|
|
|
mutex_lock(&ctx->mmu_lock);
|
|
|
|
for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
|
|
if (hl_mmu_unmap(ctx, next_vaddr, page_size))
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"unmap failed for vaddr: 0x%llx\n", next_vaddr);
|
|
|
|
/* unmapping on Palladium can be really long, so avoid a CPU
|
|
* soft lockup bug by sleeping a little between unmapping pages
|
|
*/
|
|
if (hdev->pldm)
|
|
usleep_range(500, 1000);
|
|
}
|
|
|
|
hdev->asic_funcs->mmu_invalidate_cache(hdev, true);
|
|
|
|
mutex_unlock(&ctx->mmu_lock);
|
|
|
|
if (add_va_block(hdev,
|
|
is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
|
|
vaddr,
|
|
vaddr + phys_pg_pack->total_size - 1))
|
|
dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n",
|
|
vaddr);
|
|
|
|
atomic_dec(&phys_pg_pack->mapping_cnt);
|
|
kfree(hnode);
|
|
|
|
if (is_userptr) {
|
|
free_phys_pg_pack(hdev, phys_pg_pack);
|
|
free_userptr(hdev, userptr);
|
|
}
|
|
|
|
return 0;
|
|
|
|
mapping_cnt_err:
|
|
if (is_userptr)
|
|
free_phys_pg_pack(hdev, phys_pg_pack);
|
|
vm_type_err:
|
|
mutex_lock(&ctx->mem_hash_lock);
|
|
hash_add(ctx->mem_hash, &hnode->node, vaddr);
|
|
mutex_unlock(&ctx->mem_hash_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
u64 device_addr = 0;
|
|
u32 handle = 0;
|
|
int rc;
|
|
|
|
switch (args->in.op) {
|
|
case HL_MEM_OP_ALLOC:
|
|
if (args->in.alloc.mem_size == 0) {
|
|
dev_err(hdev->dev,
|
|
"alloc size must be larger than 0\n");
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Force contiguous as there are no real MMU
|
|
* translations to overcome physical memory gaps
|
|
*/
|
|
args->in.flags |= HL_MEM_CONTIGUOUS;
|
|
rc = alloc_device_memory(ctx, &args->in, &handle);
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.handle = (__u64) handle;
|
|
break;
|
|
|
|
case HL_MEM_OP_FREE:
|
|
rc = free_device_memory(ctx, args->in.free.handle);
|
|
break;
|
|
|
|
case HL_MEM_OP_MAP:
|
|
if (args->in.flags & HL_MEM_USERPTR) {
|
|
device_addr = args->in.map_host.host_virt_addr;
|
|
rc = 0;
|
|
} else {
|
|
rc = get_paddr_from_handle(ctx, &args->in,
|
|
&device_addr);
|
|
}
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.device_virt_addr = device_addr;
|
|
break;
|
|
|
|
case HL_MEM_OP_UNMAP:
|
|
rc = 0;
|
|
break;
|
|
|
|
default:
|
|
dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
|
|
rc = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
union hl_mem_args *args = data;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
u64 device_addr = 0;
|
|
u32 handle = 0;
|
|
int rc;
|
|
|
|
if (hl_device_disabled_or_in_reset(hdev)) {
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"Device is %s. Can't execute MEMORY IOCTL\n",
|
|
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!hdev->mmu_enable)
|
|
return mem_ioctl_no_mmu(hpriv, args);
|
|
|
|
switch (args->in.op) {
|
|
case HL_MEM_OP_ALLOC:
|
|
if (!hdev->dram_supports_virtual_memory) {
|
|
dev_err(hdev->dev, "DRAM alloc is not supported\n");
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (args->in.alloc.mem_size == 0) {
|
|
dev_err(hdev->dev,
|
|
"alloc size must be larger than 0\n");
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
rc = alloc_device_memory(ctx, &args->in, &handle);
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.handle = (__u64) handle;
|
|
break;
|
|
|
|
case HL_MEM_OP_FREE:
|
|
rc = free_device_memory(ctx, args->in.free.handle);
|
|
break;
|
|
|
|
case HL_MEM_OP_MAP:
|
|
rc = map_device_va(ctx, &args->in, &device_addr);
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.device_virt_addr = device_addr;
|
|
break;
|
|
|
|
case HL_MEM_OP_UNMAP:
|
|
rc = unmap_device_va(ctx,
|
|
args->in.unmap.device_virt_addr);
|
|
break;
|
|
|
|
default:
|
|
dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
|
|
rc = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_pin_host_memory - pins a chunk of host memory
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @addr : the user-space virtual address of the memory area
|
|
* @size : the size of the memory area
|
|
* @userptr : pointer to hl_userptr structure
|
|
*
|
|
* This function does the following:
|
|
* - Pins the physical pages
|
|
* - Create a SG list from those pages
|
|
*/
|
|
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
|
|
struct hl_userptr *userptr)
|
|
{
|
|
u64 start, end;
|
|
u32 npages, offset;
|
|
int rc;
|
|
|
|
if (!size) {
|
|
dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!access_ok((void __user *) (uintptr_t) addr, size)) {
|
|
dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* If the combination of the address and size requested for this memory
|
|
* region causes an integer overflow, return error.
|
|
*/
|
|
if (((addr + size) < addr) ||
|
|
PAGE_ALIGN(addr + size) < (addr + size)) {
|
|
dev_err(hdev->dev,
|
|
"user pointer 0x%llx + %llu causes integer overflow\n",
|
|
addr, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
start = addr & PAGE_MASK;
|
|
offset = addr & ~PAGE_MASK;
|
|
end = PAGE_ALIGN(addr + size);
|
|
npages = (end - start) >> PAGE_SHIFT;
|
|
|
|
userptr->size = size;
|
|
userptr->addr = addr;
|
|
userptr->dma_mapped = false;
|
|
INIT_LIST_HEAD(&userptr->job_node);
|
|
|
|
userptr->vec = frame_vector_create(npages);
|
|
if (!userptr->vec) {
|
|
dev_err(hdev->dev, "Failed to create frame vector\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
|
|
userptr->vec);
|
|
|
|
if (rc != npages) {
|
|
dev_err(hdev->dev,
|
|
"Failed to map host memory, user ptr probably wrong\n");
|
|
if (rc < 0)
|
|
goto destroy_framevec;
|
|
rc = -EFAULT;
|
|
goto put_framevec;
|
|
}
|
|
|
|
if (frame_vector_to_pages(userptr->vec) < 0) {
|
|
dev_err(hdev->dev,
|
|
"Failed to translate frame vector to pages\n");
|
|
rc = -EFAULT;
|
|
goto put_framevec;
|
|
}
|
|
|
|
userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
|
|
if (!userptr->sgt) {
|
|
rc = -ENOMEM;
|
|
goto put_framevec;
|
|
}
|
|
|
|
rc = sg_alloc_table_from_pages(userptr->sgt,
|
|
frame_vector_pages(userptr->vec),
|
|
npages, offset, size, GFP_ATOMIC);
|
|
if (rc < 0) {
|
|
dev_err(hdev->dev, "failed to create SG table from pages\n");
|
|
goto free_sgt;
|
|
}
|
|
|
|
hl_debugfs_add_userptr(hdev, userptr);
|
|
|
|
return 0;
|
|
|
|
free_sgt:
|
|
kfree(userptr->sgt);
|
|
put_framevec:
|
|
put_vaddr_frames(userptr->vec);
|
|
destroy_framevec:
|
|
frame_vector_destroy(userptr->vec);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_unpin_host_memory - unpins a chunk of host memory
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @userptr : pointer to hl_userptr structure
|
|
*
|
|
* This function does the following:
|
|
* - Unpins the physical pages related to the host memory
|
|
* - Free the SG list
|
|
*/
|
|
int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
|
|
{
|
|
struct page **pages;
|
|
|
|
hl_debugfs_remove_userptr(hdev, userptr);
|
|
|
|
if (userptr->dma_mapped)
|
|
hdev->asic_funcs->hl_dma_unmap_sg(hdev,
|
|
userptr->sgt->sgl,
|
|
userptr->sgt->nents,
|
|
userptr->dir);
|
|
|
|
pages = frame_vector_pages(userptr->vec);
|
|
if (!IS_ERR(pages)) {
|
|
int i;
|
|
|
|
for (i = 0; i < frame_vector_count(userptr->vec); i++)
|
|
set_page_dirty_lock(pages[i]);
|
|
}
|
|
put_vaddr_frames(userptr->vec);
|
|
frame_vector_destroy(userptr->vec);
|
|
|
|
list_del(&userptr->job_node);
|
|
|
|
sg_free_table(userptr->sgt);
|
|
kfree(userptr->sgt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hl_userptr_delete_list - clear userptr list
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @userptr_list : pointer to the list to clear
|
|
*
|
|
* This function does the following:
|
|
* - Iterates over the list and unpins the host memory and frees the userptr
|
|
* structure.
|
|
*/
|
|
void hl_userptr_delete_list(struct hl_device *hdev,
|
|
struct list_head *userptr_list)
|
|
{
|
|
struct hl_userptr *userptr, *tmp;
|
|
|
|
list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
|
|
hl_unpin_host_memory(hdev, userptr);
|
|
kfree(userptr);
|
|
}
|
|
|
|
INIT_LIST_HEAD(userptr_list);
|
|
}
|
|
|
|
/*
|
|
* hl_userptr_is_pinned - returns whether the given userptr is pinned
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @userptr_list : pointer to the list to clear
|
|
* @userptr : pointer to userptr to check
|
|
*
|
|
* This function does the following:
|
|
* - Iterates over the list and checks if the given userptr is in it, means is
|
|
* pinned. If so, returns true, otherwise returns false.
|
|
*/
|
|
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
|
|
u32 size, struct list_head *userptr_list,
|
|
struct hl_userptr **userptr)
|
|
{
|
|
list_for_each_entry((*userptr), userptr_list, job_node) {
|
|
if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* hl_va_range_init - initialize virtual addresses range
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
* @va_range : pointer to the range to initialize
|
|
* @start : range start address
|
|
* @end : range end address
|
|
*
|
|
* This function does the following:
|
|
* - Initializes the virtual addresses list of the given range with the given
|
|
* addresses.
|
|
*/
|
|
static int hl_va_range_init(struct hl_device *hdev,
|
|
struct hl_va_range *va_range, u64 start, u64 end)
|
|
{
|
|
int rc;
|
|
|
|
INIT_LIST_HEAD(&va_range->list);
|
|
|
|
/* PAGE_SIZE alignment */
|
|
|
|
if (start & (PAGE_SIZE - 1)) {
|
|
start &= PAGE_MASK;
|
|
start += PAGE_SIZE;
|
|
}
|
|
|
|
if (end & (PAGE_SIZE - 1))
|
|
end &= PAGE_MASK;
|
|
|
|
if (start >= end) {
|
|
dev_err(hdev->dev, "too small vm range for va list\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
rc = add_va_block(hdev, va_range, start, end);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to init host va list\n");
|
|
return rc;
|
|
}
|
|
|
|
va_range->start_addr = start;
|
|
va_range->end_addr = end;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hl_vm_ctx_init_with_ranges - initialize virtual memory for context
|
|
*
|
|
* @ctx : pointer to the habanalabs context structure
|
|
* @host_range_start : host virtual addresses range start
|
|
* @host_range_end : host virtual addresses range end
|
|
* @dram_range_start : dram virtual addresses range start
|
|
* @dram_range_end : dram virtual addresses range end
|
|
*
|
|
* This function initializes the following:
|
|
* - MMU for context
|
|
* - Virtual address to area descriptor hashtable
|
|
* - Virtual block list of available virtual memory
|
|
*/
|
|
static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
|
|
u64 host_range_end, u64 dram_range_start,
|
|
u64 dram_range_end)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
int rc;
|
|
|
|
rc = hl_mmu_ctx_init(ctx);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
|
|
return rc;
|
|
}
|
|
|
|
mutex_init(&ctx->mem_hash_lock);
|
|
hash_init(ctx->mem_hash);
|
|
|
|
mutex_init(&ctx->host_va_range.lock);
|
|
|
|
rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start,
|
|
host_range_end);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to init host vm range\n");
|
|
goto host_vm_err;
|
|
}
|
|
|
|
mutex_init(&ctx->dram_va_range.lock);
|
|
|
|
rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start,
|
|
dram_range_end);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to init dram vm range\n");
|
|
goto dram_vm_err;
|
|
}
|
|
|
|
hl_debugfs_add_ctx_mem_hash(hdev, ctx);
|
|
|
|
return 0;
|
|
|
|
dram_vm_err:
|
|
mutex_destroy(&ctx->dram_va_range.lock);
|
|
|
|
mutex_lock(&ctx->host_va_range.lock);
|
|
clear_va_list_locked(hdev, &ctx->host_va_range.list);
|
|
mutex_unlock(&ctx->host_va_range.lock);
|
|
host_vm_err:
|
|
mutex_destroy(&ctx->host_va_range.lock);
|
|
mutex_destroy(&ctx->mem_hash_lock);
|
|
hl_mmu_ctx_fini(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_vm_ctx_init(struct hl_ctx *ctx)
|
|
{
|
|
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
|
|
u64 host_range_start, host_range_end, dram_range_start,
|
|
dram_range_end;
|
|
|
|
atomic64_set(&ctx->dram_phys_mem, 0);
|
|
|
|
/*
|
|
* - If MMU is enabled, init the ranges as usual.
|
|
* - If MMU is disabled, in case of host mapping, the returned address
|
|
* is the given one.
|
|
* In case of DRAM mapping, the returned address is the physical
|
|
* address of the memory related to the given handle.
|
|
*/
|
|
if (ctx->hdev->mmu_enable) {
|
|
dram_range_start = prop->va_space_dram_start_address;
|
|
dram_range_end = prop->va_space_dram_end_address;
|
|
host_range_start = prop->va_space_host_start_address;
|
|
host_range_end = prop->va_space_host_end_address;
|
|
} else {
|
|
dram_range_start = prop->dram_user_base_address;
|
|
dram_range_end = prop->dram_end_address;
|
|
host_range_start = prop->dram_user_base_address;
|
|
host_range_end = prop->dram_end_address;
|
|
}
|
|
|
|
return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
|
|
dram_range_start, dram_range_end);
|
|
}
|
|
|
|
/*
|
|
* hl_va_range_fini - clear a virtual addresses range
|
|
*
|
|
* @hdev : pointer to the habanalabs structure
|
|
* va_range : pointer to virtual addresses range
|
|
*
|
|
* This function initializes the following:
|
|
* - Checks that the given range contains the whole initial range
|
|
* - Frees the virtual addresses block list and its lock
|
|
*/
|
|
static void hl_va_range_fini(struct hl_device *hdev,
|
|
struct hl_va_range *va_range)
|
|
{
|
|
struct hl_vm_va_block *va_block;
|
|
|
|
if (list_empty(&va_range->list)) {
|
|
dev_warn(hdev->dev,
|
|
"va list should not be empty on cleanup!\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!list_is_singular(&va_range->list)) {
|
|
dev_warn(hdev->dev,
|
|
"va list should not contain multiple blocks on cleanup!\n");
|
|
goto free_va_list;
|
|
}
|
|
|
|
va_block = list_first_entry(&va_range->list, typeof(*va_block), node);
|
|
|
|
if (va_block->start != va_range->start_addr ||
|
|
va_block->end != va_range->end_addr) {
|
|
dev_warn(hdev->dev,
|
|
"wrong va block on cleanup, from 0x%llx to 0x%llx\n",
|
|
va_block->start, va_block->end);
|
|
goto free_va_list;
|
|
}
|
|
|
|
free_va_list:
|
|
mutex_lock(&va_range->lock);
|
|
clear_va_list_locked(hdev, &va_range->list);
|
|
mutex_unlock(&va_range->lock);
|
|
|
|
out:
|
|
mutex_destroy(&va_range->lock);
|
|
}
|
|
|
|
/*
|
|
* hl_vm_ctx_fini - virtual memory teardown of context
|
|
*
|
|
* @ctx : pointer to the habanalabs context structure
|
|
*
|
|
* This function perform teardown the following:
|
|
* - Virtual block list of available virtual memory
|
|
* - Virtual address to area descriptor hashtable
|
|
* - MMU for context
|
|
*
|
|
* In addition this function does the following:
|
|
* - Unmaps the existing hashtable nodes if the hashtable is not empty. The
|
|
* hashtable should be empty as no valid mappings should exist at this
|
|
* point.
|
|
* - Frees any existing physical page list from the idr which relates to the
|
|
* current context asid.
|
|
* - This function checks the virtual block list for correctness. At this point
|
|
* the list should contain one element which describes the whole virtual
|
|
* memory range of the context. Otherwise, a warning is printed.
|
|
*/
|
|
void hl_vm_ctx_fini(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm *vm = &hdev->vm;
|
|
struct hl_vm_phys_pg_pack *phys_pg_list;
|
|
struct hl_vm_hash_node *hnode;
|
|
struct hlist_node *tmp_node;
|
|
int i;
|
|
|
|
hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
|
|
|
|
if (!hash_empty(ctx->mem_hash))
|
|
dev_notice(hdev->dev, "ctx is freed while it has va in use\n");
|
|
|
|
hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
|
|
dev_dbg(hdev->dev,
|
|
"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
|
|
hnode->vaddr, ctx->asid);
|
|
unmap_device_va(ctx, hnode->vaddr);
|
|
}
|
|
|
|
spin_lock(&vm->idr_lock);
|
|
idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
|
|
if (phys_pg_list->asid == ctx->asid) {
|
|
dev_dbg(hdev->dev,
|
|
"page list 0x%p of asid %d is still alive\n",
|
|
phys_pg_list, ctx->asid);
|
|
atomic64_sub(phys_pg_list->total_size,
|
|
&hdev->dram_used_mem);
|
|
free_phys_pg_pack(hdev, phys_pg_list);
|
|
idr_remove(&vm->phys_pg_pack_handles, i);
|
|
}
|
|
spin_unlock(&vm->idr_lock);
|
|
|
|
hl_va_range_fini(hdev, &ctx->dram_va_range);
|
|
hl_va_range_fini(hdev, &ctx->host_va_range);
|
|
|
|
mutex_destroy(&ctx->mem_hash_lock);
|
|
hl_mmu_ctx_fini(ctx);
|
|
}
|
|
|
|
/*
|
|
* hl_vm_init - initialize virtual memory module
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
*
|
|
* This function initializes the following:
|
|
* - MMU module
|
|
* - DRAM physical pages pool of 2MB
|
|
* - Idr for device memory allocation handles
|
|
*/
|
|
int hl_vm_init(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct hl_vm *vm = &hdev->vm;
|
|
int rc;
|
|
|
|
vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
|
|
if (!vm->dram_pg_pool) {
|
|
dev_err(hdev->dev, "Failed to create dram page pool\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kref_init(&vm->dram_pg_pool_refcount);
|
|
|
|
rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
|
|
prop->dram_end_address - prop->dram_user_base_address,
|
|
-1);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to add memory to dram page pool %d\n", rc);
|
|
goto pool_add_err;
|
|
}
|
|
|
|
spin_lock_init(&vm->idr_lock);
|
|
idr_init(&vm->phys_pg_pack_handles);
|
|
|
|
atomic64_set(&hdev->dram_used_mem, 0);
|
|
|
|
vm->init_done = true;
|
|
|
|
return 0;
|
|
|
|
pool_add_err:
|
|
gen_pool_destroy(vm->dram_pg_pool);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_vm_fini - virtual memory module teardown
|
|
*
|
|
* @hdev : pointer to the habanalabs device structure
|
|
*
|
|
* This function perform teardown to the following:
|
|
* - Idr for device memory allocation handles
|
|
* - DRAM physical pages pool of 2MB
|
|
* - MMU module
|
|
*/
|
|
void hl_vm_fini(struct hl_device *hdev)
|
|
{
|
|
struct hl_vm *vm = &hdev->vm;
|
|
|
|
if (!vm->init_done)
|
|
return;
|
|
|
|
/*
|
|
* At this point all the contexts should be freed and hence no DRAM
|
|
* memory should be in use. Hence the DRAM pool should be freed here.
|
|
*/
|
|
if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
|
|
dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
|
|
__func__);
|
|
|
|
vm->init_done = false;
|
|
}
|