linux/drivers/mmc/host/omap_hsmmc.c
David Brownell eb25082657 omap_hsmmc: only MMC1 allows HCTL.SDVS != 1.8V
Based on a patch from Tony Lindgren ... after initialization,
never change HCTL.SDVS except for MMC1.  The other controller
instances only support 1.8V in that field, although they can
suport other card/SDIO/eMMC/... voltages with level shifting
solutions such as external transceivers.

MMC2 behavior sanity tested on Overo/WLAN, OMAP3430 SDP, and
custom hardware.  MMC1 also sanity tested on those platforms
plus Beagle.  This also fixes a bug preventing MMC2 (and also
presumably MMC3) from powering down when requested.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
2009-02-18 22:09:56 +01:00

1268 lines
31 KiB
C

/*
* drivers/mmc/host/omap_hsmmc.c
*
* Driver for OMAP2430/3430 MMC controller.
*
* Copyright (C) 2007 Texas Instruments.
*
* Authors:
* Syed Mohammed Khasim <x0khasim@ti.com>
* Madhusudhan <madhu.cr@ti.com>
* Mohit Jalori <mjalori@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/mmc/host.h>
#include <linux/io.h>
#include <linux/semaphore.h>
#include <mach/dma.h>
#include <mach/hardware.h>
#include <mach/board.h>
#include <mach/mmc.h>
#include <mach/cpu.h>
/* OMAP HSMMC Host Controller Registers */
#define OMAP_HSMMC_SYSCONFIG 0x0010
#define OMAP_HSMMC_CON 0x002C
#define OMAP_HSMMC_BLK 0x0104
#define OMAP_HSMMC_ARG 0x0108
#define OMAP_HSMMC_CMD 0x010C
#define OMAP_HSMMC_RSP10 0x0110
#define OMAP_HSMMC_RSP32 0x0114
#define OMAP_HSMMC_RSP54 0x0118
#define OMAP_HSMMC_RSP76 0x011C
#define OMAP_HSMMC_DATA 0x0120
#define OMAP_HSMMC_HCTL 0x0128
#define OMAP_HSMMC_SYSCTL 0x012C
#define OMAP_HSMMC_STAT 0x0130
#define OMAP_HSMMC_IE 0x0134
#define OMAP_HSMMC_ISE 0x0138
#define OMAP_HSMMC_CAPA 0x0140
#define VS18 (1 << 26)
#define VS30 (1 << 25)
#define SDVS18 (0x5 << 9)
#define SDVS30 (0x6 << 9)
#define SDVS33 (0x7 << 9)
#define SDVSCLR 0xFFFFF1FF
#define SDVSDET 0x00000400
#define AUTOIDLE 0x1
#define SDBP (1 << 8)
#define DTO 0xe
#define ICE 0x1
#define ICS 0x2
#define CEN (1 << 2)
#define CLKD_MASK 0x0000FFC0
#define CLKD_SHIFT 6
#define DTO_MASK 0x000F0000
#define DTO_SHIFT 16
#define INT_EN_MASK 0x307F0033
#define INIT_STREAM (1 << 1)
#define DP_SELECT (1 << 21)
#define DDIR (1 << 4)
#define DMA_EN 0x1
#define MSBS (1 << 5)
#define BCE (1 << 1)
#define FOUR_BIT (1 << 1)
#define CC 0x1
#define TC 0x02
#define OD 0x1
#define ERR (1 << 15)
#define CMD_TIMEOUT (1 << 16)
#define DATA_TIMEOUT (1 << 20)
#define CMD_CRC (1 << 17)
#define DATA_CRC (1 << 21)
#define CARD_ERR (1 << 28)
#define STAT_CLEAR 0xFFFFFFFF
#define INIT_STREAM_CMD 0x00000000
#define DUAL_VOLT_OCR_BIT 7
#define SRC (1 << 25)
#define SRD (1 << 26)
/*
* FIXME: Most likely all the data using these _DEVID defines should come
* from the platform_data, or implemented in controller and slot specific
* functions.
*/
#define OMAP_MMC1_DEVID 0
#define OMAP_MMC2_DEVID 1
#define OMAP_MMC_DATADIR_NONE 0
#define OMAP_MMC_DATADIR_READ 1
#define OMAP_MMC_DATADIR_WRITE 2
#define MMC_TIMEOUT_MS 20
#define OMAP_MMC_MASTER_CLOCK 96000000
#define DRIVER_NAME "mmci-omap-hs"
/*
* One controller can have multiple slots, like on some omap boards using
* omap.c controller driver. Luckily this is not currently done on any known
* omap_hsmmc.c device.
*/
#define mmc_slot(host) (host->pdata->slots[host->slot_id])
/*
* MMC Host controller read/write API's
*/
#define OMAP_HSMMC_READ(base, reg) \
__raw_readl((base) + OMAP_HSMMC_##reg)
#define OMAP_HSMMC_WRITE(base, reg, val) \
__raw_writel((val), (base) + OMAP_HSMMC_##reg)
struct mmc_omap_host {
struct device *dev;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct clk *fclk;
struct clk *iclk;
struct clk *dbclk;
struct semaphore sem;
struct work_struct mmc_carddetect_work;
void __iomem *base;
resource_size_t mapbase;
unsigned int id;
unsigned int dma_len;
unsigned int dma_dir;
unsigned char bus_mode;
unsigned char datadir;
u32 *buffer;
u32 bytesleft;
int suspended;
int irq;
int carddetect;
int use_dma, dma_ch;
int initstr;
int slot_id;
int dbclk_enabled;
struct omap_mmc_platform_data *pdata;
};
/*
* Stop clock to the card
*/
static void omap_mmc_stop_clock(struct mmc_omap_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stoped\n");
}
/*
* Send init stream sequence to card
* before sending IDLE command
*/
static void send_init_stream(struct mmc_omap_host *host)
{
int reg = 0;
unsigned long timeout;
disable_irq(host->irq);
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((reg != CC) && time_before(jiffies, timeout))
reg = OMAP_HSMMC_READ(host->base, STAT) & CC;
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
enable_irq(host->irq);
}
static inline
int mmc_omap_cover_is_closed(struct mmc_omap_host *host)
{
int r = 1;
if (host->pdata->slots[host->slot_id].get_cover_state)
r = host->pdata->slots[host->slot_id].get_cover_state(host->dev,
host->slot_id);
return r;
}
static ssize_t
mmc_omap_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_omap_cover_is_closed(host) ? "closed" :
"open");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, mmc_omap_show_cover_switch, NULL);
static ssize_t
mmc_omap_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_host *host = mmc_priv(mmc);
struct omap_mmc_slot_data slot = host->pdata->slots[host->slot_id];
return sprintf(buf, "slot:%s\n", slot.name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, mmc_omap_show_slot_name, NULL);
/*
* Configure the response type and send the cmd.
*/
static void
mmc_omap_start_command(struct mmc_omap_host *host, struct mmc_command *cmd,
struct mmc_data *data)
{
int cmdreg = 0, resptype = 0, cmdtype = 0;
dev_dbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
host->cmd = cmd;
/*
* Clear status bits and enable interrupts
*/
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, INT_EN_MASK);
OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
resptype = 1;
else
resptype = 2;
}
/*
* Unlike OMAP1 controller, the cmdtype does not seem to be based on
* ac, bc, adtc, bcr. Only commands ending an open ended transfer need
* a val of 0x3, rest 0x0.
*/
if (cmd == host->mrq->stop)
cmdtype = 0x3;
cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
if (data) {
cmdreg |= DP_SELECT | MSBS | BCE;
if (data->flags & MMC_DATA_READ)
cmdreg |= DDIR;
else
cmdreg &= ~(DDIR);
}
if (host->use_dma)
cmdreg |= DMA_EN;
OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
}
/*
* Notify the transfer complete to MMC core
*/
static void
mmc_omap_xfer_done(struct mmc_omap_host *host, struct mmc_data *data)
{
host->data = NULL;
if (host->use_dma && host->dma_ch != -1)
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_len,
host->dma_dir);
host->datadir = OMAP_MMC_DATADIR_NONE;
if (!data->error)
data->bytes_xfered += data->blocks * (data->blksz);
else
data->bytes_xfered = 0;
if (!data->stop) {
host->mrq = NULL;
mmc_request_done(host->mmc, data->mrq);
return;
}
mmc_omap_start_command(host, data->stop, NULL);
}
/*
* Notify the core about command completion
*/
static void
mmc_omap_cmd_done(struct mmc_omap_host *host, struct mmc_command *cmd)
{
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
}
}
if (host->data == NULL || cmd->error) {
host->mrq = NULL;
mmc_request_done(host->mmc, cmd->mrq);
}
}
/*
* DMA clean up for command errors
*/
static void mmc_dma_cleanup(struct mmc_omap_host *host)
{
host->data->error = -ETIMEDOUT;
if (host->use_dma && host->dma_ch != -1) {
dma_unmap_sg(mmc_dev(host->mmc), host->data->sg, host->dma_len,
host->dma_dir);
omap_free_dma(host->dma_ch);
host->dma_ch = -1;
up(&host->sem);
}
host->data = NULL;
host->datadir = OMAP_MMC_DATADIR_NONE;
}
/*
* Readable error output
*/
#ifdef CONFIG_MMC_DEBUG
static void mmc_omap_report_irq(struct mmc_omap_host *host, u32 status)
{
/* --- means reserved bit without definition at documentation */
static const char *mmc_omap_status_bits[] = {
"CC", "TC", "BGE", "---", "BWR", "BRR", "---", "---", "CIRQ",
"OBI", "---", "---", "---", "---", "---", "ERRI", "CTO", "CCRC",
"CEB", "CIE", "DTO", "DCRC", "DEB", "---", "ACE", "---",
"---", "---", "---", "CERR", "CERR", "BADA", "---", "---", "---"
};
char res[256];
char *buf = res;
int len, i;
len = sprintf(buf, "MMC IRQ 0x%x :", status);
buf += len;
for (i = 0; i < ARRAY_SIZE(mmc_omap_status_bits); i++)
if (status & (1 << i)) {
len = sprintf(buf, " %s", mmc_omap_status_bits[i]);
buf += len;
}
dev_dbg(mmc_dev(host->mmc), "%s\n", res);
}
#endif /* CONFIG_MMC_DEBUG */
/*
* MMC controller IRQ handler
*/
static irqreturn_t mmc_omap_irq(int irq, void *dev_id)
{
struct mmc_omap_host *host = dev_id;
struct mmc_data *data;
int end_cmd = 0, end_trans = 0, status;
if (host->cmd == NULL && host->data == NULL) {
OMAP_HSMMC_WRITE(host->base, STAT,
OMAP_HSMMC_READ(host->base, STAT));
return IRQ_HANDLED;
}
data = host->data;
status = OMAP_HSMMC_READ(host->base, STAT);
dev_dbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
if (status & ERR) {
#ifdef CONFIG_MMC_DEBUG
mmc_omap_report_irq(host, status);
#endif
if ((status & CMD_TIMEOUT) ||
(status & CMD_CRC)) {
if (host->cmd) {
if (status & CMD_TIMEOUT) {
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base,
SYSCTL) | SRC);
while (OMAP_HSMMC_READ(host->base,
SYSCTL) & SRC)
;
host->cmd->error = -ETIMEDOUT;
} else {
host->cmd->error = -EILSEQ;
}
end_cmd = 1;
}
if (host->data)
mmc_dma_cleanup(host);
}
if ((status & DATA_TIMEOUT) ||
(status & DATA_CRC)) {
if (host->data) {
if (status & DATA_TIMEOUT)
mmc_dma_cleanup(host);
else
host->data->error = -EILSEQ;
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base,
SYSCTL) | SRD);
while (OMAP_HSMMC_READ(host->base,
SYSCTL) & SRD)
;
end_trans = 1;
}
}
if (status & CARD_ERR) {
dev_dbg(mmc_dev(host->mmc),
"Ignoring card err CMD%d\n", host->cmd->opcode);
if (host->cmd)
end_cmd = 1;
if (host->data)
end_trans = 1;
}
}
OMAP_HSMMC_WRITE(host->base, STAT, status);
if (end_cmd || (status & CC))
mmc_omap_cmd_done(host, host->cmd);
if (end_trans || (status & TC))
mmc_omap_xfer_done(host, data);
return IRQ_HANDLED;
}
/*
* Switch MMC interface voltage ... only relevant for MMC1.
*
* MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
* The MMC2 transceiver controls are used instead of DAT4..DAT7.
* Some chips, like eMMC ones, use internal transceivers.
*/
static int omap_mmc_switch_opcond(struct mmc_omap_host *host, int vdd)
{
u32 reg_val = 0;
int ret;
if (host->id != OMAP_MMC1_DEVID)
return 0;
/* Disable the clocks */
clk_disable(host->fclk);
clk_disable(host->iclk);
clk_disable(host->dbclk);
/* Turn the power off */
ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
if (ret != 0)
goto err;
/* Turn the power ON with given VDD 1.8 or 3.0v */
ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
if (ret != 0)
goto err;
clk_enable(host->fclk);
clk_enable(host->iclk);
clk_enable(host->dbclk);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
reg_val = OMAP_HSMMC_READ(host->base, HCTL);
/*
* If a MMC dual voltage card is detected, the set_ios fn calls
* this fn with VDD bit set for 1.8V. Upon card removal from the
* slot, omap_mmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
*
* Cope with a bit of slop in the range ... per data sheets:
* - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
* but recommended values are 1.71V to 1.89V
* - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
* but recommended values are 2.7V to 3.3V
*
* Board setup code shouldn't permit anything very out-of-range.
* TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
* middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
*/
if ((1 << vdd) <= MMC_VDD_23_24)
reg_val |= SDVS18;
else
reg_val |= SDVS30;
OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
return 0;
err:
dev_dbg(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
return ret;
}
/*
* Work Item to notify the core about card insertion/removal
*/
static void mmc_omap_detect(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
mmc_carddetect_work);
struct omap_mmc_slot_data *slot = &mmc_slot(host);
host->carddetect = slot->card_detect(slot->card_detect_irq);
sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
if (host->carddetect) {
mmc_detect_change(host->mmc, (HZ * 200) / 1000);
} else {
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | SRD);
while (OMAP_HSMMC_READ(host->base, SYSCTL) & SRD)
;
mmc_detect_change(host->mmc, (HZ * 50) / 1000);
}
}
/*
* ISR for handling card insertion and removal
*/
static irqreturn_t omap_mmc_cd_handler(int irq, void *dev_id)
{
struct mmc_omap_host *host = (struct mmc_omap_host *)dev_id;
schedule_work(&host->mmc_carddetect_work);
return IRQ_HANDLED;
}
/*
* DMA call back function
*/
static void mmc_omap_dma_cb(int lch, u16 ch_status, void *data)
{
struct mmc_omap_host *host = data;
if (ch_status & OMAP2_DMA_MISALIGNED_ERR_IRQ)
dev_dbg(mmc_dev(host->mmc), "MISALIGNED_ADRS_ERR\n");
if (host->dma_ch < 0)
return;
omap_free_dma(host->dma_ch);
host->dma_ch = -1;
/*
* DMA Callback: run in interrupt context.
* mutex_unlock will through a kernel warning if used.
*/
up(&host->sem);
}
/*
* Configure dma src and destination parameters
*/
static int mmc_omap_config_dma_param(int sync_dir, struct mmc_omap_host *host,
struct mmc_data *data)
{
if (sync_dir == 0) {
omap_set_dma_dest_params(host->dma_ch, 0,
OMAP_DMA_AMODE_CONSTANT,
(host->mapbase + OMAP_HSMMC_DATA), 0, 0);
omap_set_dma_src_params(host->dma_ch, 0,
OMAP_DMA_AMODE_POST_INC,
sg_dma_address(&data->sg[0]), 0, 0);
} else {
omap_set_dma_src_params(host->dma_ch, 0,
OMAP_DMA_AMODE_CONSTANT,
(host->mapbase + OMAP_HSMMC_DATA), 0, 0);
omap_set_dma_dest_params(host->dma_ch, 0,
OMAP_DMA_AMODE_POST_INC,
sg_dma_address(&data->sg[0]), 0, 0);
}
return 0;
}
/*
* Routine to configure and start DMA for the MMC card
*/
static int
mmc_omap_start_dma_transfer(struct mmc_omap_host *host, struct mmc_request *req)
{
int sync_dev, sync_dir = 0;
int dma_ch = 0, ret = 0, err = 1;
struct mmc_data *data = req->data;
/*
* If for some reason the DMA transfer is still active,
* we wait for timeout period and free the dma
*/
if (host->dma_ch != -1) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(100);
if (down_trylock(&host->sem)) {
omap_free_dma(host->dma_ch);
host->dma_ch = -1;
up(&host->sem);
return err;
}
} else {
if (down_trylock(&host->sem))
return err;
}
if (!(data->flags & MMC_DATA_WRITE)) {
host->dma_dir = DMA_FROM_DEVICE;
if (host->id == OMAP_MMC1_DEVID)
sync_dev = OMAP24XX_DMA_MMC1_RX;
else
sync_dev = OMAP24XX_DMA_MMC2_RX;
} else {
host->dma_dir = DMA_TO_DEVICE;
if (host->id == OMAP_MMC1_DEVID)
sync_dev = OMAP24XX_DMA_MMC1_TX;
else
sync_dev = OMAP24XX_DMA_MMC2_TX;
}
ret = omap_request_dma(sync_dev, "MMC/SD", mmc_omap_dma_cb,
host, &dma_ch);
if (ret != 0) {
dev_dbg(mmc_dev(host->mmc),
"%s: omap_request_dma() failed with %d\n",
mmc_hostname(host->mmc), ret);
return ret;
}
host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma_dir);
host->dma_ch = dma_ch;
if (!(data->flags & MMC_DATA_WRITE))
mmc_omap_config_dma_param(1, host, data);
else
mmc_omap_config_dma_param(0, host, data);
if ((data->blksz % 4) == 0)
omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S32,
(data->blksz / 4), data->blocks, OMAP_DMA_SYNC_FRAME,
sync_dev, sync_dir);
else
/* REVISIT: The MMC buffer increments only when MSB is written.
* Return error for blksz which is non multiple of four.
*/
return -EINVAL;
omap_start_dma(dma_ch);
return 0;
}
static void set_data_timeout(struct mmc_omap_host *host,
struct mmc_request *req)
{
unsigned int timeout, cycle_ns;
uint32_t reg, clkd, dto = 0;
reg = OMAP_HSMMC_READ(host->base, SYSCTL);
clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
if (clkd == 0)
clkd = 1;
cycle_ns = 1000000000 / (clk_get_rate(host->fclk) / clkd);
timeout = req->data->timeout_ns / cycle_ns;
timeout += req->data->timeout_clks;
if (timeout) {
while ((timeout & 0x80000000) == 0) {
dto += 1;
timeout <<= 1;
}
dto = 31 - dto;
timeout <<= 1;
if (timeout && dto)
dto += 1;
if (dto >= 13)
dto -= 13;
else
dto = 0;
if (dto > 14)
dto = 14;
}
reg &= ~DTO_MASK;
reg |= dto << DTO_SHIFT;
OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
}
/*
* Configure block length for MMC/SD cards and initiate the transfer.
*/
static int
mmc_omap_prepare_data(struct mmc_omap_host *host, struct mmc_request *req)
{
int ret;
host->data = req->data;
if (req->data == NULL) {
host->datadir = OMAP_MMC_DATADIR_NONE;
OMAP_HSMMC_WRITE(host->base, BLK, 0);
return 0;
}
OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
| (req->data->blocks << 16));
set_data_timeout(host, req);
host->datadir = (req->data->flags & MMC_DATA_WRITE) ?
OMAP_MMC_DATADIR_WRITE : OMAP_MMC_DATADIR_READ;
if (host->use_dma) {
ret = mmc_omap_start_dma_transfer(host, req);
if (ret != 0) {
dev_dbg(mmc_dev(host->mmc), "MMC start dma failure\n");
return ret;
}
}
return 0;
}
/*
* Request function. for read/write operation
*/
static void omap_mmc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct mmc_omap_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != NULL);
host->mrq = req;
mmc_omap_prepare_data(host, req);
mmc_omap_start_command(host, req->cmd, req->data);
}
/* Routine to configure clock values. Exposed API to core */
static void omap_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_host *host = mmc_priv(mmc);
u16 dsor = 0;
unsigned long regval;
unsigned long timeout;
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
/*
* Reset interface voltage to 3V if it's 1.8V now;
* only relevant on MMC-1, the others always use 1.8V.
*
* REVISIT: If we are able to detect cards after unplugging
* a 1.8V card, this code should not be needed.
*/
if (host->id != OMAP_MMC1_DEVID)
break;
if (!(OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET)) {
int vdd = fls(host->mmc->ocr_avail) - 1;
if (omap_mmc_switch_opcond(host, vdd) != 0)
host->mmc->ios.vdd = vdd;
}
break;
case MMC_POWER_UP:
mmc_slot(host).set_power(host->dev, host->slot_id, 1, ios->vdd);
break;
}
switch (mmc->ios.bus_width) {
case MMC_BUS_WIDTH_4:
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
break;
case MMC_BUS_WIDTH_1:
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
break;
}
if (host->id == OMAP_MMC1_DEVID) {
/* Only MMC1 can interface at 3V without some flavor
* of external transceiver; but they all handle 1.8V.
*/
if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
(ios->vdd == DUAL_VOLT_OCR_BIT)) {
/*
* The mmc_select_voltage fn of the core does
* not seem to set the power_mode to
* MMC_POWER_UP upon recalculating the voltage.
* vdd 1.8v.
*/
if (omap_mmc_switch_opcond(host, ios->vdd) != 0)
dev_dbg(mmc_dev(host->mmc),
"Switch operation failed\n");
}
}
if (ios->clock) {
dsor = OMAP_MMC_MASTER_CLOCK / ios->clock;
if (dsor < 1)
dsor = 1;
if (OMAP_MMC_MASTER_CLOCK / dsor > ios->clock)
dsor++;
if (dsor > 250)
dsor = 250;
}
omap_mmc_stop_clock(host);
regval = OMAP_HSMMC_READ(host->base, SYSCTL);
regval = regval & ~(CLKD_MASK);
regval = regval | (dsor << 6) | (DTO << 16);
OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
/* Wait till the ICS bit is set */
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != 0x2
&& time_before(jiffies, timeout))
msleep(1);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
if (ios->power_mode == MMC_POWER_ON)
send_init_stream(host);
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) | OD);
}
static int omap_hsmmc_get_cd(struct mmc_host *mmc)
{
struct mmc_omap_host *host = mmc_priv(mmc);
struct omap_mmc_platform_data *pdata = host->pdata;
if (!pdata->slots[0].card_detect)
return -ENOSYS;
return pdata->slots[0].card_detect(pdata->slots[0].card_detect_irq);
}
static int omap_hsmmc_get_ro(struct mmc_host *mmc)
{
struct mmc_omap_host *host = mmc_priv(mmc);
struct omap_mmc_platform_data *pdata = host->pdata;
if (!pdata->slots[0].get_ro)
return -ENOSYS;
return pdata->slots[0].get_ro(host->dev, 0);
}
static struct mmc_host_ops mmc_omap_ops = {
.request = omap_mmc_request,
.set_ios = omap_mmc_set_ios,
.get_cd = omap_hsmmc_get_cd,
.get_ro = omap_hsmmc_get_ro,
/* NYET -- enable_sdio_irq */
};
static int __init omap_mmc_probe(struct platform_device *pdev)
{
struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_host *mmc;
struct mmc_omap_host *host = NULL;
struct resource *res;
int ret = 0, irq;
u32 hctl, capa;
if (pdata == NULL) {
dev_err(&pdev->dev, "Platform Data is missing\n");
return -ENXIO;
}
if (pdata->nr_slots == 0) {
dev_err(&pdev->dev, "No Slots\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (res == NULL || irq < 0)
return -ENXIO;
res = request_mem_region(res->start, res->end - res->start + 1,
pdev->name);
if (res == NULL)
return -EBUSY;
mmc = mmc_alloc_host(sizeof(struct mmc_omap_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto err;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdata = pdata;
host->dev = &pdev->dev;
host->use_dma = 1;
host->dev->dma_mask = &pdata->dma_mask;
host->dma_ch = -1;
host->irq = irq;
host->id = pdev->id;
host->slot_id = 0;
host->mapbase = res->start;
host->base = ioremap(host->mapbase, SZ_4K);
platform_set_drvdata(pdev, host);
INIT_WORK(&host->mmc_carddetect_work, mmc_omap_detect);
mmc->ops = &mmc_omap_ops;
mmc->f_min = 400000;
mmc->f_max = 52000000;
sema_init(&host->sem, 1);
host->iclk = clk_get(&pdev->dev, "mmchs_ick");
if (IS_ERR(host->iclk)) {
ret = PTR_ERR(host->iclk);
host->iclk = NULL;
goto err1;
}
host->fclk = clk_get(&pdev->dev, "mmchs_fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
host->fclk = NULL;
clk_put(host->iclk);
goto err1;
}
if (clk_enable(host->fclk) != 0) {
clk_put(host->iclk);
clk_put(host->fclk);
goto err1;
}
if (clk_enable(host->iclk) != 0) {
clk_disable(host->fclk);
clk_put(host->iclk);
clk_put(host->fclk);
goto err1;
}
host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
/*
* MMC can still work without debounce clock.
*/
if (IS_ERR(host->dbclk))
dev_warn(mmc_dev(host->mmc), "Failed to get debounce clock\n");
else
if (clk_enable(host->dbclk) != 0)
dev_dbg(mmc_dev(host->mmc), "Enabling debounce"
" clk failed\n");
else
host->dbclk_enabled = 1;
#ifdef CONFIG_MMC_BLOCK_BOUNCE
mmc->max_phys_segs = 1;
mmc->max_hw_segs = 1;
#endif
mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
mmc->ocr_avail = mmc_slot(host).ocr_mask;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED;
if (pdata->slots[host->slot_id].wires >= 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
/* Only MMC1 supports 3.0V */
if (host->id == OMAP_MMC1_DEVID) {
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | hctl);
OMAP_HSMMC_WRITE(host->base, CAPA,
OMAP_HSMMC_READ(host->base, CAPA) | capa);
/* Set the controller to AUTO IDLE mode */
OMAP_HSMMC_WRITE(host->base, SYSCONFIG,
OMAP_HSMMC_READ(host->base, SYSCONFIG) | AUTOIDLE);
/* Set SD bus power bit */
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
/* Request IRQ for MMC operations */
ret = request_irq(host->irq, mmc_omap_irq, IRQF_DISABLED,
mmc_hostname(mmc), host);
if (ret) {
dev_dbg(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
goto err_irq;
}
if (pdata->init != NULL) {
if (pdata->init(&pdev->dev) != 0) {
dev_dbg(mmc_dev(host->mmc),
"Unable to configure MMC IRQs\n");
goto err_irq_cd_init;
}
}
/* Request IRQ for card detect */
if ((mmc_slot(host).card_detect_irq) && (mmc_slot(host).card_detect)) {
ret = request_irq(mmc_slot(host).card_detect_irq,
omap_mmc_cd_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING
| IRQF_DISABLED,
mmc_hostname(mmc), host);
if (ret) {
dev_dbg(mmc_dev(host->mmc),
"Unable to grab MMC CD IRQ\n");
goto err_irq_cd;
}
}
OMAP_HSMMC_WRITE(host->base, ISE, INT_EN_MASK);
OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
mmc_add_host(mmc);
if (host->pdata->slots[host->slot_id].name != NULL) {
ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
if (ret < 0)
goto err_slot_name;
}
if (mmc_slot(host).card_detect_irq && mmc_slot(host).card_detect &&
host->pdata->slots[host->slot_id].get_cover_state) {
ret = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (ret < 0)
goto err_cover_switch;
}
return 0;
err_cover_switch:
device_remove_file(&mmc->class_dev, &dev_attr_cover_switch);
err_slot_name:
mmc_remove_host(mmc);
err_irq_cd:
free_irq(mmc_slot(host).card_detect_irq, host);
err_irq_cd_init:
free_irq(host->irq, host);
err_irq:
clk_disable(host->fclk);
clk_disable(host->iclk);
clk_put(host->fclk);
clk_put(host->iclk);
if (host->dbclk_enabled) {
clk_disable(host->dbclk);
clk_put(host->dbclk);
}
err1:
iounmap(host->base);
err:
dev_dbg(mmc_dev(host->mmc), "Probe Failed\n");
release_mem_region(res->start, res->end - res->start + 1);
if (host)
mmc_free_host(mmc);
return ret;
}
static int omap_mmc_remove(struct platform_device *pdev)
{
struct mmc_omap_host *host = platform_get_drvdata(pdev);
struct resource *res;
if (host) {
mmc_remove_host(host->mmc);
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
free_irq(host->irq, host);
if (mmc_slot(host).card_detect_irq)
free_irq(mmc_slot(host).card_detect_irq, host);
flush_scheduled_work();
clk_disable(host->fclk);
clk_disable(host->iclk);
clk_put(host->fclk);
clk_put(host->iclk);
if (host->dbclk_enabled) {
clk_disable(host->dbclk);
clk_put(host->dbclk);
}
mmc_free_host(host->mmc);
iounmap(host->base);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, res->end - res->start + 1);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM
static int omap_mmc_suspend(struct platform_device *pdev, pm_message_t state)
{
int ret = 0;
struct mmc_omap_host *host = platform_get_drvdata(pdev);
if (host && host->suspended)
return 0;
if (host) {
ret = mmc_suspend_host(host->mmc, state);
if (ret == 0) {
host->suspended = 1;
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
if (host->pdata->suspend) {
ret = host->pdata->suspend(&pdev->dev,
host->slot_id);
if (ret)
dev_dbg(mmc_dev(host->mmc),
"Unable to handle MMC board"
" level suspend\n");
}
if (host->id == OMAP_MMC1_DEVID
&& !(OMAP_HSMMC_READ(host->base, HCTL)
& SDVSDET)) {
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL)
& SDVSCLR);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL)
| SDVS30);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL)
| SDBP);
}
clk_disable(host->fclk);
clk_disable(host->iclk);
clk_disable(host->dbclk);
}
}
return ret;
}
/* Routine to resume the MMC device */
static int omap_mmc_resume(struct platform_device *pdev)
{
int ret = 0;
struct mmc_omap_host *host = platform_get_drvdata(pdev);
if (host && !host->suspended)
return 0;
if (host) {
ret = clk_enable(host->fclk);
if (ret)
goto clk_en_err;
ret = clk_enable(host->iclk);
if (ret) {
clk_disable(host->fclk);
clk_put(host->fclk);
goto clk_en_err;
}
if (clk_enable(host->dbclk) != 0)
dev_dbg(mmc_dev(host->mmc),
"Enabling debounce clk failed\n");
if (host->pdata->resume) {
ret = host->pdata->resume(&pdev->dev, host->slot_id);
if (ret)
dev_dbg(mmc_dev(host->mmc),
"Unmask interrupt failed\n");
}
/* Notify the core to resume the host */
ret = mmc_resume_host(host->mmc);
if (ret == 0)
host->suspended = 0;
}
return ret;
clk_en_err:
dev_dbg(mmc_dev(host->mmc),
"Failed to enable MMC clocks during resume\n");
return ret;
}
#else
#define omap_mmc_suspend NULL
#define omap_mmc_resume NULL
#endif
static struct platform_driver omap_mmc_driver = {
.probe = omap_mmc_probe,
.remove = omap_mmc_remove,
.suspend = omap_mmc_suspend,
.resume = omap_mmc_resume,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init omap_mmc_init(void)
{
/* Register the MMC driver */
return platform_driver_register(&omap_mmc_driver);
}
static void __exit omap_mmc_cleanup(void)
{
/* Unregister MMC driver */
platform_driver_unregister(&omap_mmc_driver);
}
module_init(omap_mmc_init);
module_exit(omap_mmc_cleanup);
MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");