linux/drivers/usb/phy/phy-msm-usb.c
Ivan T. Ivanov 6f98f545b0 usb: phy: msm: Add D+/D- lines route control
apq8016-sbc board is using Dual SPDT USB Switch (TC7USB40MU),
witch is controlled by GPIO to de/multiplex D+/D- USB lines to
USB2513B Hub and uB connector. Add support for this.

Signed-off-by: Ivan T. Ivanov <ivan.ivanov@linaro.org>
Signed-off-by: Felipe Balbi <balbi@ti.com>
2015-07-30 11:43:36 -05:00

1988 lines
48 KiB
C

/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reboot.h>
#include <linux/reset.h>
#include <linux/usb.h>
#include <linux/usb/otg.h>
#include <linux/usb/of.h>
#include <linux/usb/ulpi.h>
#include <linux/usb/gadget.h>
#include <linux/usb/hcd.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/regulator/consumer.h>
#define MSM_USB_BASE (motg->regs)
#define DRIVER_NAME "msm_otg"
#define ULPI_IO_TIMEOUT_USEC (10 * 1000)
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
#define USB_PHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_PHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_PHY_3P3_HPM_LOAD 50000 /* uA */
#define USB_PHY_3P3_LPM_LOAD 4000 /* uA */
#define USB_PHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_PHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_PHY_1P8_HPM_LOAD 50000 /* uA */
#define USB_PHY_1P8_LPM_LOAD 4000 /* uA */
#define USB_PHY_VDD_DIG_VOL_MIN 1000000 /* uV */
#define USB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */
#define USB_PHY_SUSP_DIG_VOL 500000 /* uV */
enum vdd_levels {
VDD_LEVEL_NONE = 0,
VDD_LEVEL_MIN,
VDD_LEVEL_MAX,
};
static int msm_hsusb_init_vddcx(struct msm_otg *motg, int init)
{
int ret = 0;
if (init) {
ret = regulator_set_voltage(motg->vddcx,
motg->vdd_levels[VDD_LEVEL_MIN],
motg->vdd_levels[VDD_LEVEL_MAX]);
if (ret) {
dev_err(motg->phy.dev, "Cannot set vddcx voltage\n");
return ret;
}
ret = regulator_enable(motg->vddcx);
if (ret)
dev_err(motg->phy.dev, "unable to enable hsusb vddcx\n");
} else {
ret = regulator_set_voltage(motg->vddcx, 0,
motg->vdd_levels[VDD_LEVEL_MAX]);
if (ret)
dev_err(motg->phy.dev, "Cannot set vddcx voltage\n");
ret = regulator_disable(motg->vddcx);
if (ret)
dev_err(motg->phy.dev, "unable to disable hsusb vddcx\n");
}
return ret;
}
static int msm_hsusb_ldo_init(struct msm_otg *motg, int init)
{
int rc = 0;
if (init) {
rc = regulator_set_voltage(motg->v3p3, USB_PHY_3P3_VOL_MIN,
USB_PHY_3P3_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "Cannot set v3p3 voltage\n");
goto exit;
}
rc = regulator_enable(motg->v3p3);
if (rc) {
dev_err(motg->phy.dev, "unable to enable the hsusb 3p3\n");
goto exit;
}
rc = regulator_set_voltage(motg->v1p8, USB_PHY_1P8_VOL_MIN,
USB_PHY_1P8_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "Cannot set v1p8 voltage\n");
goto disable_3p3;
}
rc = regulator_enable(motg->v1p8);
if (rc) {
dev_err(motg->phy.dev, "unable to enable the hsusb 1p8\n");
goto disable_3p3;
}
return 0;
}
regulator_disable(motg->v1p8);
disable_3p3:
regulator_disable(motg->v3p3);
exit:
return rc;
}
static int msm_hsusb_ldo_set_mode(struct msm_otg *motg, int on)
{
int ret = 0;
if (on) {
ret = regulator_set_load(motg->v1p8, USB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
pr_err("Could not set HPM for v1p8\n");
return ret;
}
ret = regulator_set_load(motg->v3p3, USB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
pr_err("Could not set HPM for v3p3\n");
regulator_set_load(motg->v1p8, USB_PHY_1P8_LPM_LOAD);
return ret;
}
} else {
ret = regulator_set_load(motg->v1p8, USB_PHY_1P8_LPM_LOAD);
if (ret < 0)
pr_err("Could not set LPM for v1p8\n");
ret = regulator_set_load(motg->v3p3, USB_PHY_3P3_LPM_LOAD);
if (ret < 0)
pr_err("Could not set LPM for v3p3\n");
}
pr_debug("reg (%s)\n", on ? "HPM" : "LPM");
return ret < 0 ? ret : 0;
}
static int ulpi_read(struct usb_phy *phy, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
/* initiate read operation */
writel(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_read: timeout %08x\n",
readl(USB_ULPI_VIEWPORT));
return -ETIMEDOUT;
}
return ULPI_DATA_READ(readl(USB_ULPI_VIEWPORT));
}
static int ulpi_write(struct usb_phy *phy, u32 val, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
/* initiate write operation */
writel(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_write: timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static struct usb_phy_io_ops msm_otg_io_ops = {
.read = ulpi_read,
.write = ulpi_write,
};
static void ulpi_init(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
int *seq = pdata->phy_init_seq, idx;
u32 addr = ULPI_EXT_VENDOR_SPECIFIC;
for (idx = 0; idx < pdata->phy_init_sz; idx++) {
if (seq[idx] == -1)
continue;
dev_vdbg(motg->phy.dev, "ulpi: write 0x%02x to 0x%02x\n",
seq[idx], addr + idx);
ulpi_write(&motg->phy, seq[idx], addr + idx);
}
}
static int msm_phy_notify_disconnect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int val;
if (motg->manual_pullup) {
val = ULPI_MISC_A_VBUSVLDEXT | ULPI_MISC_A_VBUSVLDEXTSEL;
usb_phy_io_write(phy, val, ULPI_CLR(ULPI_MISC_A));
}
/*
* Put the transceiver in non-driving mode. Otherwise host
* may not detect soft-disconnection.
*/
val = ulpi_read(phy, ULPI_FUNC_CTRL);
val &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
val |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING;
ulpi_write(phy, val, ULPI_FUNC_CTRL);
return 0;
}
static int msm_otg_link_clk_reset(struct msm_otg *motg, bool assert)
{
int ret;
if (assert)
ret = reset_control_assert(motg->link_rst);
else
ret = reset_control_deassert(motg->link_rst);
if (ret)
dev_err(motg->phy.dev, "usb link clk reset %s failed\n",
assert ? "assert" : "deassert");
return ret;
}
static int msm_otg_phy_clk_reset(struct msm_otg *motg)
{
int ret = 0;
if (motg->phy_rst)
ret = reset_control_reset(motg->phy_rst);
if (ret)
dev_err(motg->phy.dev, "usb phy clk reset failed\n");
return ret;
}
static int msm_link_reset(struct msm_otg *motg)
{
u32 val;
int ret;
ret = msm_otg_link_clk_reset(motg, 1);
if (ret)
return ret;
/* wait for 1ms delay as suggested in HPG. */
usleep_range(1000, 1200);
ret = msm_otg_link_clk_reset(motg, 0);
if (ret)
return ret;
if (motg->phy_number)
writel(readl(USB_PHY_CTRL2) | BIT(16), USB_PHY_CTRL2);
/* put transceiver in serial mode as part of reset */
val = readl(USB_PORTSC) & ~PORTSC_PTS_MASK;
writel(val | PORTSC_PTS_SERIAL, USB_PORTSC);
return 0;
}
static int msm_otg_reset(struct usb_phy *phy)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
writel(USBCMD_RESET, USB_USBCMD);
while (cnt < LINK_RESET_TIMEOUT_USEC) {
if (!(readl(USB_USBCMD) & USBCMD_RESET))
break;
udelay(1);
cnt++;
}
if (cnt >= LINK_RESET_TIMEOUT_USEC)
return -ETIMEDOUT;
/* select ULPI phy and clear other status/control bits in PORTSC */
writel(PORTSC_PTS_ULPI, USB_PORTSC);
writel(0x0, USB_AHBBURST);
writel(0x08, USB_AHBMODE);
if (motg->phy_number)
writel(readl(USB_PHY_CTRL2) | BIT(16), USB_PHY_CTRL2);
return 0;
}
static void msm_phy_reset(struct msm_otg *motg)
{
void __iomem *addr;
if (motg->pdata->phy_type != SNPS_28NM_INTEGRATED_PHY) {
msm_otg_phy_clk_reset(motg);
return;
}
addr = USB_PHY_CTRL;
if (motg->phy_number)
addr = USB_PHY_CTRL2;
/* Assert USB PHY_POR */
writel(readl(addr) | PHY_POR_ASSERT, addr);
/*
* wait for minimum 10 microseconds as suggested in HPG.
* Use a slightly larger value since the exact value didn't
* work 100% of the time.
*/
udelay(12);
/* Deassert USB PHY_POR */
writel(readl(addr) & ~PHY_POR_ASSERT, addr);
}
static int msm_usb_reset(struct usb_phy *phy)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int ret;
if (!IS_ERR(motg->core_clk))
clk_prepare_enable(motg->core_clk);
ret = msm_link_reset(motg);
if (ret) {
dev_err(phy->dev, "phy_reset failed\n");
return ret;
}
ret = msm_otg_reset(&motg->phy);
if (ret) {
dev_err(phy->dev, "link reset failed\n");
return ret;
}
msleep(100);
/* Reset USB PHY after performing USB Link RESET */
msm_phy_reset(motg);
if (!IS_ERR(motg->core_clk))
clk_disable_unprepare(motg->core_clk);
return 0;
}
static int msm_phy_init(struct usb_phy *phy)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
u32 val, ulpi_val = 0;
/* Program USB PHY Override registers. */
ulpi_init(motg);
/*
* It is recommended in HPG to reset USB PHY after programming
* USB PHY Override registers.
*/
msm_phy_reset(motg);
if (pdata->otg_control == OTG_PHY_CONTROL) {
val = readl(USB_OTGSC);
if (pdata->mode == USB_DR_MODE_OTG) {
ulpi_val = ULPI_INT_IDGRD | ULPI_INT_SESS_VALID;
val |= OTGSC_IDIE | OTGSC_BSVIE;
} else if (pdata->mode == USB_DR_MODE_PERIPHERAL) {
ulpi_val = ULPI_INT_SESS_VALID;
val |= OTGSC_BSVIE;
}
writel(val, USB_OTGSC);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_RISE);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_FALL);
}
if (motg->manual_pullup) {
val = ULPI_MISC_A_VBUSVLDEXTSEL | ULPI_MISC_A_VBUSVLDEXT;
ulpi_write(phy, val, ULPI_SET(ULPI_MISC_A));
val = readl(USB_GENCONFIG_2);
val |= GENCONFIG_2_SESS_VLD_CTRL_EN;
writel(val, USB_GENCONFIG_2);
val = readl(USB_USBCMD);
val |= USBCMD_SESS_VLD_CTRL;
writel(val, USB_USBCMD);
val = ulpi_read(phy, ULPI_FUNC_CTRL);
val &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
val |= ULPI_FUNC_CTRL_OPMODE_NORMAL;
ulpi_write(phy, val, ULPI_FUNC_CTRL);
}
if (motg->phy_number)
writel(readl(USB_PHY_CTRL2) | BIT(16), USB_PHY_CTRL2);
return 0;
}
#define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000)
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#ifdef CONFIG_PM
static int msm_hsusb_config_vddcx(struct msm_otg *motg, int high)
{
int max_vol = motg->vdd_levels[VDD_LEVEL_MAX];
int min_vol;
int ret;
if (high)
min_vol = motg->vdd_levels[VDD_LEVEL_MIN];
else
min_vol = motg->vdd_levels[VDD_LEVEL_NONE];
ret = regulator_set_voltage(motg->vddcx, min_vol, max_vol);
if (ret) {
pr_err("Cannot set vddcx voltage\n");
return ret;
}
pr_debug("%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol);
return ret;
}
static int msm_otg_suspend(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
struct msm_otg_platform_data *pdata = motg->pdata;
void __iomem *addr;
int cnt = 0;
if (atomic_read(&motg->in_lpm))
return 0;
disable_irq(motg->irq);
/*
* Chipidea 45-nm PHY suspend sequence:
*
* Interrupt Latch Register auto-clear feature is not present
* in all PHY versions. Latch register is clear on read type.
* Clear latch register to avoid spurious wakeup from
* low power mode (LPM).
*
* PHY comparators are disabled when PHY enters into low power
* mode (LPM). Keep PHY comparators ON in LPM only when we expect
* VBUS/Id notifications from USB PHY. Otherwise turn off USB
* PHY comparators. This save significant amount of power.
*
* PLL is not turned off when PHY enters into low power mode (LPM).
* Disable PLL for maximum power savings.
*/
if (motg->pdata->phy_type == CI_45NM_INTEGRATED_PHY) {
ulpi_read(phy, 0x14);
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(phy, 0x01, 0x30);
ulpi_write(phy, 0x08, 0x09);
}
/*
* PHY may take some time or even fail to enter into low power
* mode (LPM). Hence poll for 500 msec and reset the PHY and link
* in failure case.
*/
writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) {
dev_err(phy->dev, "Unable to suspend PHY\n");
msm_otg_reset(phy);
enable_irq(motg->irq);
return -ETIMEDOUT;
}
/*
* PHY has capability to generate interrupt asynchronously in low
* power mode (LPM). This interrupt is level triggered. So USB IRQ
* line must be disabled till async interrupt enable bit is cleared
* in USBCMD register. Assert STP (ULPI interface STOP signal) to
* block data communication from PHY.
*/
writel(readl(USB_USBCMD) | ASYNC_INTR_CTRL | ULPI_STP_CTRL, USB_USBCMD);
addr = USB_PHY_CTRL;
if (motg->phy_number)
addr = USB_PHY_CTRL2;
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY &&
motg->pdata->otg_control == OTG_PMIC_CONTROL)
writel(readl(addr) | PHY_RETEN, addr);
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->clk);
if (!IS_ERR(motg->core_clk))
clk_disable_unprepare(motg->core_clk);
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY &&
motg->pdata->otg_control == OTG_PMIC_CONTROL) {
msm_hsusb_ldo_set_mode(motg, 0);
msm_hsusb_config_vddcx(motg, 0);
}
if (device_may_wakeup(phy->dev))
enable_irq_wake(motg->irq);
if (bus)
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 1);
enable_irq(motg->irq);
dev_info(phy->dev, "USB in low power mode\n");
return 0;
}
static int msm_otg_resume(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
void __iomem *addr;
int cnt = 0;
unsigned temp;
if (!atomic_read(&motg->in_lpm))
return 0;
clk_prepare_enable(motg->pclk);
clk_prepare_enable(motg->clk);
if (!IS_ERR(motg->core_clk))
clk_prepare_enable(motg->core_clk);
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY &&
motg->pdata->otg_control == OTG_PMIC_CONTROL) {
addr = USB_PHY_CTRL;
if (motg->phy_number)
addr = USB_PHY_CTRL2;
msm_hsusb_ldo_set_mode(motg, 1);
msm_hsusb_config_vddcx(motg, 1);
writel(readl(addr) & ~PHY_RETEN, addr);
}
temp = readl(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel(temp, USB_USBCMD);
/*
* PHY comes out of low power mode (LPM) in case of wakeup
* from asynchronous interrupt.
*/
if (!(readl(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
writel(readl(USB_PORTSC) & ~PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_RESUME_TIMEOUT_USEC) {
if (!(readl(USB_PORTSC) & PORTSC_PHCD))
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_RESUME_TIMEOUT_USEC) {
/*
* This is a fatal error. Reset the link and
* PHY. USB state can not be restored. Re-insertion
* of USB cable is the only way to get USB working.
*/
dev_err(phy->dev, "Unable to resume USB. Re-plugin the cable\n");
msm_otg_reset(phy);
}
skip_phy_resume:
if (device_may_wakeup(phy->dev))
disable_irq_wake(motg->irq);
if (bus)
set_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 0);
if (motg->async_int) {
motg->async_int = 0;
pm_runtime_put(phy->dev);
enable_irq(motg->irq);
}
dev_info(phy->dev, "USB exited from low power mode\n");
return 0;
}
#endif
static void msm_otg_notify_charger(struct msm_otg *motg, unsigned mA)
{
if (motg->cur_power == mA)
return;
/* TODO: Notify PMIC about available current */
dev_info(motg->phy.dev, "Avail curr from USB = %u\n", mA);
motg->cur_power = mA;
}
static int msm_otg_set_power(struct usb_phy *phy, unsigned mA)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
/*
* Gadget driver uses set_power method to notify about the
* available current based on suspend/configured states.
*
* IDEV_CHG can be drawn irrespective of suspend/un-configured
* states when CDP/ACA is connected.
*/
if (motg->chg_type == USB_SDP_CHARGER)
msm_otg_notify_charger(motg, mA);
return 0;
}
static void msm_otg_start_host(struct usb_phy *phy, int on)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
struct usb_hcd *hcd;
if (!phy->otg->host)
return;
hcd = bus_to_hcd(phy->otg->host);
if (on) {
dev_dbg(phy->dev, "host on\n");
if (pdata->vbus_power)
pdata->vbus_power(1);
/*
* Some boards have a switch cotrolled by gpio
* to enable/disable internal HUB. Enable internal
* HUB before kicking the host.
*/
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_A_HOST);
#ifdef CONFIG_USB
usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
device_wakeup_enable(hcd->self.controller);
#endif
} else {
dev_dbg(phy->dev, "host off\n");
#ifdef CONFIG_USB
usb_remove_hcd(hcd);
#endif
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_UNDEFINED);
if (pdata->vbus_power)
pdata->vbus_power(0);
}
}
static int msm_otg_set_host(struct usb_otg *otg, struct usb_bus *host)
{
struct msm_otg *motg = container_of(otg->usb_phy, struct msm_otg, phy);
struct usb_hcd *hcd;
/*
* Fail host registration if this board can support
* only peripheral configuration.
*/
if (motg->pdata->mode == USB_DR_MODE_PERIPHERAL) {
dev_info(otg->usb_phy->dev, "Host mode is not supported\n");
return -ENODEV;
}
if (!host) {
if (otg->state == OTG_STATE_A_HOST) {
pm_runtime_get_sync(otg->usb_phy->dev);
msm_otg_start_host(otg->usb_phy, 0);
otg->host = NULL;
otg->state = OTG_STATE_UNDEFINED;
schedule_work(&motg->sm_work);
} else {
otg->host = NULL;
}
return 0;
}
hcd = bus_to_hcd(host);
hcd->power_budget = motg->pdata->power_budget;
otg->host = host;
dev_dbg(otg->usb_phy->dev, "host driver registered w/ tranceiver\n");
/*
* Kick the state machine work, if peripheral is not supported
* or peripheral is already registered with us.
*/
if (motg->pdata->mode == USB_DR_MODE_HOST || otg->gadget) {
pm_runtime_get_sync(otg->usb_phy->dev);
schedule_work(&motg->sm_work);
}
return 0;
}
static void msm_otg_start_peripheral(struct usb_phy *phy, int on)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
if (!phy->otg->gadget)
return;
if (on) {
dev_dbg(phy->dev, "gadget on\n");
/*
* Some boards have a switch cotrolled by gpio
* to enable/disable internal HUB. Disable internal
* HUB before kicking the gadget.
*/
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_B_PERIPHERAL);
usb_gadget_vbus_connect(phy->otg->gadget);
} else {
dev_dbg(phy->dev, "gadget off\n");
usb_gadget_vbus_disconnect(phy->otg->gadget);
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_UNDEFINED);
}
}
static int msm_otg_set_peripheral(struct usb_otg *otg,
struct usb_gadget *gadget)
{
struct msm_otg *motg = container_of(otg->usb_phy, struct msm_otg, phy);
/*
* Fail peripheral registration if this board can support
* only host configuration.
*/
if (motg->pdata->mode == USB_DR_MODE_HOST) {
dev_info(otg->usb_phy->dev, "Peripheral mode is not supported\n");
return -ENODEV;
}
if (!gadget) {
if (otg->state == OTG_STATE_B_PERIPHERAL) {
pm_runtime_get_sync(otg->usb_phy->dev);
msm_otg_start_peripheral(otg->usb_phy, 0);
otg->gadget = NULL;
otg->state = OTG_STATE_UNDEFINED;
schedule_work(&motg->sm_work);
} else {
otg->gadget = NULL;
}
return 0;
}
otg->gadget = gadget;
dev_dbg(otg->usb_phy->dev,
"peripheral driver registered w/ tranceiver\n");
/*
* Kick the state machine work, if host is not supported
* or host is already registered with us.
*/
if (motg->pdata->mode == USB_DR_MODE_PERIPHERAL || otg->host) {
pm_runtime_get_sync(otg->usb_phy->dev);
schedule_work(&motg->sm_work);
}
return 0;
}
static bool msm_chg_check_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
ret = chg_det & (1 << 4);
break;
case SNPS_28NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn off charger block */
chg_det |= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
/* control chg block via ULPI */
chg_det &= ~(1 << 3);
ulpi_write(phy, chg_det, 0x34);
/* put it in host mode for enabling D- source */
chg_det &= ~(1 << 2);
ulpi_write(phy, chg_det, 0x34);
/* Turn on chg detect block */
chg_det &= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
/* enable chg detection */
chg_det &= ~(1 << 0);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/*
* Configure DM as current source, DP as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x8, 0x85);
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
ret = chg_det & (1 << 4);
break;
case SNPS_28NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* enable chg detection */
chg_det &= ~(1 << 0);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/*
* Configure DP as current source, DM as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 line_state;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
line_state = ulpi_read(phy, 0x15);
ret = !(line_state & 1);
break;
case SNPS_28NM_INTEGRATED_PHY:
line_state = ulpi_read(phy, 0x87);
ret = line_state & 2;
break;
default:
break;
}
return ret;
}
static void msm_chg_disable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
chg_det &= ~(1 << 5);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
ulpi_write(phy, 0x10, 0x86);
break;
default:
break;
}
}
static void msm_chg_enable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn on D+ current source */
chg_det |= (1 << 5);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Data contact detection enable */
ulpi_write(phy, 0x10, 0x85);
break;
default:
break;
}
}
static void msm_chg_block_on(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl, chg_det;
/* put the controller in non-driving mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* control chg block via ULPI */
chg_det &= ~(1 << 3);
ulpi_write(phy, chg_det, 0x34);
/* Turn on chg detect block */
chg_det &= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Clear charger detecting control bits */
ulpi_write(phy, 0x3F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
udelay(100);
break;
default:
break;
}
}
static void msm_chg_block_off(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl, chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn off charger block */
chg_det |= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Clear charger detecting control bits */
ulpi_write(phy, 0x3F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
break;
default:
break;
}
/* put the controller in normal mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
}
#define MSM_CHG_DCD_POLL_TIME (100 * HZ/1000) /* 100 msec */
#define MSM_CHG_DCD_MAX_RETRIES 6 /* Tdcd_tmout = 6 * 100 msec */
#define MSM_CHG_PRIMARY_DET_TIME (40 * HZ/1000) /* TVDPSRC_ON */
#define MSM_CHG_SECONDARY_DET_TIME (40 * HZ/1000) /* TVDMSRC_ON */
static void msm_chg_detect_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, chg_work.work);
struct usb_phy *phy = &motg->phy;
bool is_dcd, tmout, vout;
unsigned long delay;
dev_dbg(phy->dev, "chg detection work\n");
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
pm_runtime_get_sync(phy->dev);
msm_chg_block_on(motg);
msm_chg_enable_dcd(motg);
motg->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
motg->dcd_retries = 0;
delay = MSM_CHG_DCD_POLL_TIME;
break;
case USB_CHG_STATE_WAIT_FOR_DCD:
is_dcd = msm_chg_check_dcd(motg);
tmout = ++motg->dcd_retries == MSM_CHG_DCD_MAX_RETRIES;
if (is_dcd || tmout) {
msm_chg_disable_dcd(motg);
msm_chg_enable_primary_det(motg);
delay = MSM_CHG_PRIMARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_DCD_DONE;
} else {
delay = MSM_CHG_DCD_POLL_TIME;
}
break;
case USB_CHG_STATE_DCD_DONE:
vout = msm_chg_check_primary_det(motg);
if (vout) {
msm_chg_enable_secondary_det(motg);
delay = MSM_CHG_SECONDARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_PRIMARY_DONE;
} else {
motg->chg_type = USB_SDP_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
}
break;
case USB_CHG_STATE_PRIMARY_DONE:
vout = msm_chg_check_secondary_det(motg);
if (vout)
motg->chg_type = USB_DCP_CHARGER;
else
motg->chg_type = USB_CDP_CHARGER;
motg->chg_state = USB_CHG_STATE_SECONDARY_DONE;
/* fall through */
case USB_CHG_STATE_SECONDARY_DONE:
motg->chg_state = USB_CHG_STATE_DETECTED;
case USB_CHG_STATE_DETECTED:
msm_chg_block_off(motg);
dev_dbg(phy->dev, "charger = %d\n", motg->chg_type);
schedule_work(&motg->sm_work);
return;
default:
return;
}
schedule_delayed_work(&motg->chg_work, delay);
}
/*
* We support OTG, Peripheral only and Host only configurations. In case
* of OTG, mode switch (host-->peripheral/peripheral-->host) can happen
* via Id pin status or user request (debugfs). Id/BSV interrupts are not
* enabled when switch is controlled by user and default mode is supplied
* by board file, which can be changed by userspace later.
*/
static void msm_otg_init_sm(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
u32 otgsc = readl(USB_OTGSC);
switch (pdata->mode) {
case USB_DR_MODE_OTG:
if (pdata->otg_control == OTG_PHY_CONTROL) {
if (otgsc & OTGSC_ID)
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
} else if (pdata->otg_control == OTG_USER_CONTROL) {
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
}
break;
case USB_DR_MODE_HOST:
clear_bit(ID, &motg->inputs);
break;
case USB_DR_MODE_PERIPHERAL:
set_bit(ID, &motg->inputs);
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
break;
default:
break;
}
}
static void msm_otg_sm_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, sm_work);
struct usb_otg *otg = motg->phy.otg;
switch (otg->state) {
case OTG_STATE_UNDEFINED:
dev_dbg(otg->usb_phy->dev, "OTG_STATE_UNDEFINED state\n");
msm_otg_reset(otg->usb_phy);
msm_otg_init_sm(motg);
otg->state = OTG_STATE_B_IDLE;
/* FALL THROUGH */
case OTG_STATE_B_IDLE:
dev_dbg(otg->usb_phy->dev, "OTG_STATE_B_IDLE state\n");
if (!test_bit(ID, &motg->inputs) && otg->host) {
/* disable BSV bit */
writel(readl(USB_OTGSC) & ~OTGSC_BSVIE, USB_OTGSC);
msm_otg_start_host(otg->usb_phy, 1);
otg->state = OTG_STATE_A_HOST;
} else if (test_bit(B_SESS_VLD, &motg->inputs)) {
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
msm_chg_detect_work(&motg->chg_work.work);
break;
case USB_CHG_STATE_DETECTED:
switch (motg->chg_type) {
case USB_DCP_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
break;
case USB_CDP_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
msm_otg_start_peripheral(otg->usb_phy,
1);
otg->state
= OTG_STATE_B_PERIPHERAL;
break;
case USB_SDP_CHARGER:
msm_otg_notify_charger(motg, IUNIT);
msm_otg_start_peripheral(otg->usb_phy,
1);
otg->state
= OTG_STATE_B_PERIPHERAL;
break;
default:
break;
}
break;
default:
break;
}
} else {
/*
* If charger detection work is pending, decrement
* the pm usage counter to balance with the one that
* is incremented in charger detection work.
*/
if (cancel_delayed_work_sync(&motg->chg_work)) {
pm_runtime_put_sync(otg->usb_phy->dev);
msm_otg_reset(otg->usb_phy);
}
msm_otg_notify_charger(motg, 0);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
}
if (otg->state == OTG_STATE_B_IDLE)
pm_runtime_put_sync(otg->usb_phy->dev);
break;
case OTG_STATE_B_PERIPHERAL:
dev_dbg(otg->usb_phy->dev, "OTG_STATE_B_PERIPHERAL state\n");
if (!test_bit(B_SESS_VLD, &motg->inputs) ||
!test_bit(ID, &motg->inputs)) {
msm_otg_notify_charger(motg, 0);
msm_otg_start_peripheral(otg->usb_phy, 0);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
otg->state = OTG_STATE_B_IDLE;
msm_otg_reset(otg->usb_phy);
schedule_work(w);
}
break;
case OTG_STATE_A_HOST:
dev_dbg(otg->usb_phy->dev, "OTG_STATE_A_HOST state\n");
if (test_bit(ID, &motg->inputs)) {
msm_otg_start_host(otg->usb_phy, 0);
otg->state = OTG_STATE_B_IDLE;
msm_otg_reset(otg->usb_phy);
schedule_work(w);
}
break;
default:
break;
}
}
static irqreturn_t msm_otg_irq(int irq, void *data)
{
struct msm_otg *motg = data;
struct usb_phy *phy = &motg->phy;
u32 otgsc = 0;
if (atomic_read(&motg->in_lpm)) {
disable_irq_nosync(irq);
motg->async_int = 1;
pm_runtime_get(phy->dev);
return IRQ_HANDLED;
}
otgsc = readl(USB_OTGSC);
if (!(otgsc & (OTGSC_IDIS | OTGSC_BSVIS)))
return IRQ_NONE;
if ((otgsc & OTGSC_IDIS) && (otgsc & OTGSC_IDIE)) {
if (otgsc & OTGSC_ID)
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
dev_dbg(phy->dev, "ID set/clear\n");
pm_runtime_get_noresume(phy->dev);
} else if ((otgsc & OTGSC_BSVIS) && (otgsc & OTGSC_BSVIE)) {
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
dev_dbg(phy->dev, "BSV set/clear\n");
pm_runtime_get_noresume(phy->dev);
}
writel(otgsc, USB_OTGSC);
schedule_work(&motg->sm_work);
return IRQ_HANDLED;
}
static int msm_otg_mode_show(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
struct usb_otg *otg = motg->phy.otg;
switch (otg->state) {
case OTG_STATE_A_HOST:
seq_puts(s, "host\n");
break;
case OTG_STATE_B_PERIPHERAL:
seq_puts(s, "peripheral\n");
break;
default:
seq_puts(s, "none\n");
break;
}
return 0;
}
static int msm_otg_mode_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_mode_show, inode->i_private);
}
static ssize_t msm_otg_mode_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct msm_otg *motg = s->private;
char buf[16];
struct usb_otg *otg = motg->phy.otg;
int status = count;
enum usb_dr_mode req_mode;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) {
status = -EFAULT;
goto out;
}
if (!strncmp(buf, "host", 4)) {
req_mode = USB_DR_MODE_HOST;
} else if (!strncmp(buf, "peripheral", 10)) {
req_mode = USB_DR_MODE_PERIPHERAL;
} else if (!strncmp(buf, "none", 4)) {
req_mode = USB_DR_MODE_UNKNOWN;
} else {
status = -EINVAL;
goto out;
}
switch (req_mode) {
case USB_DR_MODE_UNKNOWN:
switch (otg->state) {
case OTG_STATE_A_HOST:
case OTG_STATE_B_PERIPHERAL:
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_DR_MODE_PERIPHERAL:
switch (otg->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_A_HOST:
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_DR_MODE_HOST:
switch (otg->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_B_PERIPHERAL:
clear_bit(ID, &motg->inputs);
break;
default:
goto out;
}
break;
default:
goto out;
}
pm_runtime_get_sync(otg->usb_phy->dev);
schedule_work(&motg->sm_work);
out:
return status;
}
static const struct file_operations msm_otg_mode_fops = {
.open = msm_otg_mode_open,
.read = seq_read,
.write = msm_otg_mode_write,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *msm_otg_dbg_root;
static struct dentry *msm_otg_dbg_mode;
static int msm_otg_debugfs_init(struct msm_otg *motg)
{
msm_otg_dbg_root = debugfs_create_dir("msm_otg", NULL);
if (!msm_otg_dbg_root || IS_ERR(msm_otg_dbg_root))
return -ENODEV;
msm_otg_dbg_mode = debugfs_create_file("mode", S_IRUGO | S_IWUSR,
msm_otg_dbg_root, motg, &msm_otg_mode_fops);
if (!msm_otg_dbg_mode) {
debugfs_remove(msm_otg_dbg_root);
msm_otg_dbg_root = NULL;
return -ENODEV;
}
return 0;
}
static void msm_otg_debugfs_cleanup(void)
{
debugfs_remove(msm_otg_dbg_mode);
debugfs_remove(msm_otg_dbg_root);
}
static const struct of_device_id msm_otg_dt_match[] = {
{
.compatible = "qcom,usb-otg-ci",
.data = (void *) CI_45NM_INTEGRATED_PHY
},
{
.compatible = "qcom,usb-otg-snps",
.data = (void *) SNPS_28NM_INTEGRATED_PHY
},
{ }
};
MODULE_DEVICE_TABLE(of, msm_otg_dt_match);
static int msm_otg_vbus_notifier(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct msm_usb_cable *vbus = container_of(nb, struct msm_usb_cable, nb);
struct msm_otg *motg = container_of(vbus, struct msm_otg, vbus);
if (event)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
if (test_bit(B_SESS_VLD, &motg->inputs)) {
/* Switch D+/D- lines to Device connector */
gpiod_set_value_cansleep(motg->switch_gpio, 0);
} else {
/* Switch D+/D- lines to Hub */
gpiod_set_value_cansleep(motg->switch_gpio, 1);
}
schedule_work(&motg->sm_work);
return NOTIFY_DONE;
}
static int msm_otg_id_notifier(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct msm_usb_cable *id = container_of(nb, struct msm_usb_cable, nb);
struct msm_otg *motg = container_of(id, struct msm_otg, id);
if (event)
clear_bit(ID, &motg->inputs);
else
set_bit(ID, &motg->inputs);
schedule_work(&motg->sm_work);
return NOTIFY_DONE;
}
static int msm_otg_read_dt(struct platform_device *pdev, struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata;
struct extcon_dev *ext_id, *ext_vbus;
const struct of_device_id *id;
struct device_node *node = pdev->dev.of_node;
struct property *prop;
int len, ret, words;
u32 val, tmp[3];
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
motg->pdata = pdata;
id = of_match_device(msm_otg_dt_match, &pdev->dev);
pdata->phy_type = (enum msm_usb_phy_type) id->data;
motg->link_rst = devm_reset_control_get(&pdev->dev, "link");
if (IS_ERR(motg->link_rst))
return PTR_ERR(motg->link_rst);
motg->phy_rst = devm_reset_control_get(&pdev->dev, "phy");
if (IS_ERR(motg->phy_rst))
motg->phy_rst = NULL;
pdata->mode = of_usb_get_dr_mode(node);
if (pdata->mode == USB_DR_MODE_UNKNOWN)
pdata->mode = USB_DR_MODE_OTG;
pdata->otg_control = OTG_PHY_CONTROL;
if (!of_property_read_u32(node, "qcom,otg-control", &val))
if (val == OTG_PMIC_CONTROL)
pdata->otg_control = val;
if (!of_property_read_u32(node, "qcom,phy-num", &val) && val < 2)
motg->phy_number = val;
motg->vdd_levels[VDD_LEVEL_NONE] = USB_PHY_SUSP_DIG_VOL;
motg->vdd_levels[VDD_LEVEL_MIN] = USB_PHY_VDD_DIG_VOL_MIN;
motg->vdd_levels[VDD_LEVEL_MAX] = USB_PHY_VDD_DIG_VOL_MAX;
if (of_get_property(node, "qcom,vdd-levels", &len) &&
len == sizeof(tmp)) {
of_property_read_u32_array(node, "qcom,vdd-levels",
tmp, len / sizeof(*tmp));
motg->vdd_levels[VDD_LEVEL_NONE] = tmp[VDD_LEVEL_NONE];
motg->vdd_levels[VDD_LEVEL_MIN] = tmp[VDD_LEVEL_MIN];
motg->vdd_levels[VDD_LEVEL_MAX] = tmp[VDD_LEVEL_MAX];
}
motg->manual_pullup = of_property_read_bool(node, "qcom,manual-pullup");
motg->switch_gpio = devm_gpiod_get_optional(&pdev->dev, "switch",
GPIOD_OUT_LOW);
if (IS_ERR(motg->switch_gpio))
return PTR_ERR(motg->switch_gpio);
ext_id = ERR_PTR(-ENODEV);
ext_vbus = ERR_PTR(-ENODEV);
if (of_property_read_bool(node, "extcon")) {
/* Each one of them is not mandatory */
ext_vbus = extcon_get_edev_by_phandle(&pdev->dev, 0);
if (IS_ERR(ext_vbus) && PTR_ERR(ext_vbus) != -ENODEV)
return PTR_ERR(ext_vbus);
ext_id = extcon_get_edev_by_phandle(&pdev->dev, 1);
if (IS_ERR(ext_id) && PTR_ERR(ext_id) != -ENODEV)
return PTR_ERR(ext_id);
}
if (!IS_ERR(ext_vbus)) {
motg->vbus.extcon = ext_vbus;
motg->vbus.nb.notifier_call = msm_otg_vbus_notifier;
ret = extcon_register_notifier(ext_vbus, EXTCON_USB,
&motg->vbus.nb);
if (ret < 0) {
dev_err(&pdev->dev, "register VBUS notifier failed\n");
return ret;
}
ret = extcon_get_cable_state_(ext_vbus, EXTCON_USB);
if (ret)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
}
if (!IS_ERR(ext_id)) {
motg->id.extcon = ext_id;
motg->id.nb.notifier_call = msm_otg_id_notifier;
ret = extcon_register_notifier(ext_id, EXTCON_USB_HOST,
&motg->id.nb);
if (ret < 0) {
dev_err(&pdev->dev, "register ID notifier failed\n");
return ret;
}
ret = extcon_get_cable_state_(ext_id, EXTCON_USB_HOST);
if (ret)
clear_bit(ID, &motg->inputs);
else
set_bit(ID, &motg->inputs);
}
prop = of_find_property(node, "qcom,phy-init-sequence", &len);
if (!prop || !len)
return 0;
words = len / sizeof(u32);
if (words >= ULPI_EXT_VENDOR_SPECIFIC) {
dev_warn(&pdev->dev, "Too big PHY init sequence %d\n", words);
return 0;
}
pdata->phy_init_seq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!pdata->phy_init_seq)
return 0;
ret = of_property_read_u32_array(node, "qcom,phy-init-sequence",
pdata->phy_init_seq, words);
if (!ret)
pdata->phy_init_sz = words;
return 0;
}
static int msm_otg_reboot_notify(struct notifier_block *this,
unsigned long code, void *unused)
{
struct msm_otg *motg = container_of(this, struct msm_otg, reboot);
/*
* Ensure that D+/D- lines are routed to uB connector, so
* we could load bootloader/kernel at next reboot
*/
gpiod_set_value_cansleep(motg->switch_gpio, 0);
return NOTIFY_DONE;
}
static int msm_otg_probe(struct platform_device *pdev)
{
struct regulator_bulk_data regs[3];
int ret = 0;
struct device_node *np = pdev->dev.of_node;
struct msm_otg_platform_data *pdata;
struct resource *res;
struct msm_otg *motg;
struct usb_phy *phy;
void __iomem *phy_select;
motg = devm_kzalloc(&pdev->dev, sizeof(struct msm_otg), GFP_KERNEL);
if (!motg)
return -ENOMEM;
pdata = dev_get_platdata(&pdev->dev);
if (!pdata) {
if (!np)
return -ENXIO;
ret = msm_otg_read_dt(pdev, motg);
if (ret)
return ret;
}
motg->phy.otg = devm_kzalloc(&pdev->dev, sizeof(struct usb_otg),
GFP_KERNEL);
if (!motg->phy.otg)
return -ENOMEM;
phy = &motg->phy;
phy->dev = &pdev->dev;
motg->clk = devm_clk_get(&pdev->dev, np ? "core" : "usb_hs_clk");
if (IS_ERR(motg->clk)) {
dev_err(&pdev->dev, "failed to get usb_hs_clk\n");
return PTR_ERR(motg->clk);
}
/*
* If USB Core is running its protocol engine based on CORE CLK,
* CORE CLK must be running at >55Mhz for correct HSUSB
* operation and USB core cannot tolerate frequency changes on
* CORE CLK.
*/
motg->pclk = devm_clk_get(&pdev->dev, np ? "iface" : "usb_hs_pclk");
if (IS_ERR(motg->pclk)) {
dev_err(&pdev->dev, "failed to get usb_hs_pclk\n");
return PTR_ERR(motg->pclk);
}
/*
* USB core clock is not present on all MSM chips. This
* clock is introduced to remove the dependency on AXI
* bus frequency.
*/
motg->core_clk = devm_clk_get(&pdev->dev,
np ? "alt_core" : "usb_hs_core_clk");
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
motg->regs = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!motg->regs)
return -ENOMEM;
/*
* NOTE: The PHYs can be multiplexed between the chipidea controller
* and the dwc3 controller, using a single bit. It is important that
* the dwc3 driver does not set this bit in an incompatible way.
*/
if (motg->phy_number) {
phy_select = devm_ioremap_nocache(&pdev->dev, USB2_PHY_SEL, 4);
if (!phy_select)
return -ENOMEM;
/* Enable second PHY with the OTG port */
writel(0x1, phy_select);
}
dev_info(&pdev->dev, "OTG regs = %p\n", motg->regs);
motg->irq = platform_get_irq(pdev, 0);
if (motg->irq < 0) {
dev_err(&pdev->dev, "platform_get_irq failed\n");
return motg->irq;
}
regs[0].supply = "vddcx";
regs[1].supply = "v3p3";
regs[2].supply = "v1p8";
ret = devm_regulator_bulk_get(motg->phy.dev, ARRAY_SIZE(regs), regs);
if (ret)
return ret;
motg->vddcx = regs[0].consumer;
motg->v3p3 = regs[1].consumer;
motg->v1p8 = regs[2].consumer;
clk_set_rate(motg->clk, 60000000);
clk_prepare_enable(motg->clk);
clk_prepare_enable(motg->pclk);
if (!IS_ERR(motg->core_clk))
clk_prepare_enable(motg->core_clk);
ret = msm_hsusb_init_vddcx(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vddcx configuration failed\n");
goto disable_clks;
}
ret = msm_hsusb_ldo_init(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg configuration failed\n");
goto disable_vddcx;
}
ret = msm_hsusb_ldo_set_mode(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg enable failed\n");
goto disable_ldo;
}
writel(0, USB_USBINTR);
writel(0, USB_OTGSC);
INIT_WORK(&motg->sm_work, msm_otg_sm_work);
INIT_DELAYED_WORK(&motg->chg_work, msm_chg_detect_work);
ret = devm_request_irq(&pdev->dev, motg->irq, msm_otg_irq, IRQF_SHARED,
"msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed\n");
goto disable_ldo;
}
phy->init = msm_phy_init;
phy->set_power = msm_otg_set_power;
phy->notify_disconnect = msm_phy_notify_disconnect;
phy->type = USB_PHY_TYPE_USB2;
phy->io_ops = &msm_otg_io_ops;
phy->otg->usb_phy = &motg->phy;
phy->otg->set_host = msm_otg_set_host;
phy->otg->set_peripheral = msm_otg_set_peripheral;
msm_usb_reset(phy);
ret = usb_add_phy_dev(&motg->phy);
if (ret) {
dev_err(&pdev->dev, "usb_add_phy failed\n");
goto disable_ldo;
}
platform_set_drvdata(pdev, motg);
device_init_wakeup(&pdev->dev, 1);
if (motg->pdata->mode == USB_DR_MODE_OTG &&
motg->pdata->otg_control == OTG_USER_CONTROL) {
ret = msm_otg_debugfs_init(motg);
if (ret)
dev_dbg(&pdev->dev, "Can not create mode change file\n");
}
if (test_bit(B_SESS_VLD, &motg->inputs)) {
/* Switch D+/D- lines to Device connector */
gpiod_set_value_cansleep(motg->switch_gpio, 0);
} else {
/* Switch D+/D- lines to Hub */
gpiod_set_value_cansleep(motg->switch_gpio, 1);
}
motg->reboot.notifier_call = msm_otg_reboot_notify;
register_reboot_notifier(&motg->reboot);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return 0;
disable_ldo:
msm_hsusb_ldo_init(motg, 0);
disable_vddcx:
msm_hsusb_init_vddcx(motg, 0);
disable_clks:
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->clk);
if (!IS_ERR(motg->core_clk))
clk_disable_unprepare(motg->core_clk);
return ret;
}
static int msm_otg_remove(struct platform_device *pdev)
{
struct msm_otg *motg = platform_get_drvdata(pdev);
struct usb_phy *phy = &motg->phy;
int cnt = 0;
if (phy->otg->host || phy->otg->gadget)
return -EBUSY;
unregister_reboot_notifier(&motg->reboot);
/*
* Ensure that D+/D- lines are routed to uB connector, so
* we could load bootloader/kernel at next reboot
*/
gpiod_set_value_cansleep(motg->switch_gpio, 0);
extcon_unregister_notifier(motg->id.extcon, EXTCON_USB_HOST, &motg->id.nb);
extcon_unregister_notifier(motg->vbus.extcon, EXTCON_USB, &motg->vbus.nb);
msm_otg_debugfs_cleanup();
cancel_delayed_work_sync(&motg->chg_work);
cancel_work_sync(&motg->sm_work);
pm_runtime_resume(&pdev->dev);
device_init_wakeup(&pdev->dev, 0);
pm_runtime_disable(&pdev->dev);
usb_remove_phy(phy);
disable_irq(motg->irq);
/*
* Put PHY in low power mode.
*/
ulpi_read(phy, 0x14);
ulpi_write(phy, 0x08, 0x09);
writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC)
dev_err(phy->dev, "Unable to suspend PHY\n");
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->clk);
if (!IS_ERR(motg->core_clk))
clk_disable_unprepare(motg->core_clk);
msm_hsusb_ldo_init(motg, 0);
pm_runtime_set_suspended(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int msm_otg_runtime_idle(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
struct usb_otg *otg = motg->phy.otg;
dev_dbg(dev, "OTG runtime idle\n");
/*
* It is observed some times that a spurious interrupt
* comes when PHY is put into LPM immediately after PHY reset.
* This 1 sec delay also prevents entering into LPM immediately
* after asynchronous interrupt.
*/
if (otg->state != OTG_STATE_UNDEFINED)
pm_schedule_suspend(dev, 1000);
return -EAGAIN;
}
static int msm_otg_runtime_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime suspend\n");
return msm_otg_suspend(motg);
}
static int msm_otg_runtime_resume(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime resume\n");
return msm_otg_resume(motg);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int msm_otg_pm_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG PM suspend\n");
return msm_otg_suspend(motg);
}
static int msm_otg_pm_resume(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
int ret;
dev_dbg(dev, "OTG PM resume\n");
ret = msm_otg_resume(motg);
if (ret)
return ret;
/*
* Runtime PM Documentation recommends bringing the
* device to full powered state upon resume.
*/
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
}
#endif
static const struct dev_pm_ops msm_otg_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_otg_pm_suspend, msm_otg_pm_resume)
SET_RUNTIME_PM_OPS(msm_otg_runtime_suspend, msm_otg_runtime_resume,
msm_otg_runtime_idle)
};
static struct platform_driver msm_otg_driver = {
.probe = msm_otg_probe,
.remove = msm_otg_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &msm_otg_dev_pm_ops,
.of_match_table = msm_otg_dt_match,
},
};
module_platform_driver(msm_otg_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM USB transceiver driver");