linux/arch/s390/kernel/perf_cpum_sf.c
Hendrik Brueckner eaf785d51d s390/cpum_sf: Remove initialization of PMU event index
The git commit c719f56092
"perf: Fix and clean up initialization of pmu::event_idx" removed
the PMU event index callback for all architectures but x86,
remove the initialization of the event index as well.

Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-11-03 13:30:45 +01:00

1643 lines
46 KiB
C

/*
* Performance event support for the System z CPU-measurement Sampling Facility
*
* Copyright IBM Corp. 2013
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*/
#define KMSG_COMPONENT "cpum_sf"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <asm/cpu_mf.h>
#include <asm/irq.h>
#include <asm/debug.h>
#include <asm/timex.h>
/* Minimum number of sample-data-block-tables:
* At least one table is required for the sampling buffer structure.
* A single table contains up to 511 pointers to sample-data-blocks.
*/
#define CPUM_SF_MIN_SDBT 1
/* Number of sample-data-blocks per sample-data-block-table (SDBT):
* A table contains SDB pointers (8 bytes) and one table-link entry
* that points to the origin of the next SDBT.
*/
#define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
/* Maximum page offset for an SDBT table-link entry:
* If this page offset is reached, a table-link entry to the next SDBT
* must be added.
*/
#define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
static inline int require_table_link(const void *sdbt)
{
return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
}
/* Minimum and maximum sampling buffer sizes:
*
* This number represents the maximum size of the sampling buffer taking
* the number of sample-data-block-tables into account. Note that these
* numbers apply to the basic-sampling function only.
* The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
* the diagnostic-sampling function is active.
*
* Sampling buffer size Buffer characteristics
* ---------------------------------------------------
* 64KB == 16 pages (4KB per page)
* 1 page for SDB-tables
* 15 pages for SDBs
*
* 32MB == 8192 pages (4KB per page)
* 16 pages for SDB-tables
* 8176 pages for SDBs
*/
static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
struct sf_buffer {
unsigned long *sdbt; /* Sample-data-block-table origin */
/* buffer characteristics (required for buffer increments) */
unsigned long num_sdb; /* Number of sample-data-blocks */
unsigned long num_sdbt; /* Number of sample-data-block-tables */
unsigned long *tail; /* last sample-data-block-table */
};
struct cpu_hw_sf {
/* CPU-measurement sampling information block */
struct hws_qsi_info_block qsi;
/* CPU-measurement sampling control block */
struct hws_lsctl_request_block lsctl;
struct sf_buffer sfb; /* Sampling buffer */
unsigned int flags; /* Status flags */
struct perf_event *event; /* Scheduled perf event */
};
static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
/* Debug feature */
static debug_info_t *sfdbg;
/*
* sf_disable() - Switch off sampling facility
*/
static int sf_disable(void)
{
struct hws_lsctl_request_block sreq;
memset(&sreq, 0, sizeof(sreq));
return lsctl(&sreq);
}
/*
* sf_buffer_available() - Check for an allocated sampling buffer
*/
static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
{
return !!cpuhw->sfb.sdbt;
}
/*
* deallocate sampling facility buffer
*/
static void free_sampling_buffer(struct sf_buffer *sfb)
{
unsigned long *sdbt, *curr;
if (!sfb->sdbt)
return;
sdbt = sfb->sdbt;
curr = sdbt;
/* Free the SDBT after all SDBs are processed... */
while (1) {
if (!*curr || !sdbt)
break;
/* Process table-link entries */
if (is_link_entry(curr)) {
curr = get_next_sdbt(curr);
if (sdbt)
free_page((unsigned long) sdbt);
/* If the origin is reached, sampling buffer is freed */
if (curr == sfb->sdbt)
break;
else
sdbt = curr;
} else {
/* Process SDB pointer */
if (*curr) {
free_page(*curr);
curr++;
}
}
}
debug_sprintf_event(sfdbg, 5,
"free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
memset(sfb, 0, sizeof(*sfb));
}
static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
{
unsigned long sdb, *trailer;
/* Allocate and initialize sample-data-block */
sdb = get_zeroed_page(gfp_flags);
if (!sdb)
return -ENOMEM;
trailer = trailer_entry_ptr(sdb);
*trailer = SDB_TE_ALERT_REQ_MASK;
/* Link SDB into the sample-data-block-table */
*sdbt = sdb;
return 0;
}
/*
* realloc_sampling_buffer() - extend sampler memory
*
* Allocates new sample-data-blocks and adds them to the specified sampling
* buffer memory.
*
* Important: This modifies the sampling buffer and must be called when the
* sampling facility is disabled.
*
* Returns zero on success, non-zero otherwise.
*/
static int realloc_sampling_buffer(struct sf_buffer *sfb,
unsigned long num_sdb, gfp_t gfp_flags)
{
int i, rc;
unsigned long *new, *tail;
if (!sfb->sdbt || !sfb->tail)
return -EINVAL;
if (!is_link_entry(sfb->tail))
return -EINVAL;
/* Append to the existing sampling buffer, overwriting the table-link
* register.
* The tail variables always points to the "tail" (last and table-link)
* entry in an SDB-table.
*/
tail = sfb->tail;
/* Do a sanity check whether the table-link entry points to
* the sampling buffer origin.
*/
if (sfb->sdbt != get_next_sdbt(tail)) {
debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
"sampling buffer is not linked: origin=%p"
"tail=%p\n",
(void *) sfb->sdbt, (void *) tail);
return -EINVAL;
}
/* Allocate remaining SDBs */
rc = 0;
for (i = 0; i < num_sdb; i++) {
/* Allocate a new SDB-table if it is full. */
if (require_table_link(tail)) {
new = (unsigned long *) get_zeroed_page(gfp_flags);
if (!new) {
rc = -ENOMEM;
break;
}
sfb->num_sdbt++;
/* Link current page to tail of chain */
*tail = (unsigned long)(void *) new + 1;
tail = new;
}
/* Allocate a new sample-data-block.
* If there is not enough memory, stop the realloc process
* and simply use what was allocated. If this is a temporary
* issue, a new realloc call (if required) might succeed.
*/
rc = alloc_sample_data_block(tail, gfp_flags);
if (rc)
break;
sfb->num_sdb++;
tail++;
}
/* Link sampling buffer to its origin */
*tail = (unsigned long) sfb->sdbt + 1;
sfb->tail = tail;
debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
" settings: sdbt=%lu sdb=%lu\n",
sfb->num_sdbt, sfb->num_sdb);
return rc;
}
/*
* allocate_sampling_buffer() - allocate sampler memory
*
* Allocates and initializes a sampling buffer structure using the
* specified number of sample-data-blocks (SDB). For each allocation,
* a 4K page is used. The number of sample-data-block-tables (SDBT)
* are calculated from SDBs.
* Also set the ALERT_REQ mask in each SDBs trailer.
*
* Returns zero on success, non-zero otherwise.
*/
static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
{
int rc;
if (sfb->sdbt)
return -EINVAL;
/* Allocate the sample-data-block-table origin */
sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
if (!sfb->sdbt)
return -ENOMEM;
sfb->num_sdb = 0;
sfb->num_sdbt = 1;
/* Link the table origin to point to itself to prepare for
* realloc_sampling_buffer() invocation.
*/
sfb->tail = sfb->sdbt;
*sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
/* Allocate requested number of sample-data-blocks */
rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
if (rc) {
free_sampling_buffer(sfb);
debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
"realloc_sampling_buffer failed with rc=%i\n", rc);
} else
debug_sprintf_event(sfdbg, 4,
"alloc_sampling_buffer: tear=%p dear=%p\n",
sfb->sdbt, (void *) *sfb->sdbt);
return rc;
}
static void sfb_set_limits(unsigned long min, unsigned long max)
{
struct hws_qsi_info_block si;
CPUM_SF_MIN_SDB = min;
CPUM_SF_MAX_SDB = max;
memset(&si, 0, sizeof(si));
if (!qsi(&si))
CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
}
static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
{
return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
: CPUM_SF_MAX_SDB;
}
static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
struct hw_perf_event *hwc)
{
if (!sfb->sdbt)
return SFB_ALLOC_REG(hwc);
if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
return 0;
}
static int sfb_has_pending_allocs(struct sf_buffer *sfb,
struct hw_perf_event *hwc)
{
return sfb_pending_allocs(sfb, hwc) > 0;
}
static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
{
/* Limit the number of SDBs to not exceed the maximum */
num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
if (num)
SFB_ALLOC_REG(hwc) += num;
}
static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
{
SFB_ALLOC_REG(hwc) = 0;
sfb_account_allocs(num, hwc);
}
static size_t event_sample_size(struct hw_perf_event *hwc)
{
struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
size_t sample_size;
/* The sample size depends on the sampling function: The basic-sampling
* function must be always enabled, diagnostic-sampling function is
* optional.
*/
sample_size = sfr->bsdes;
if (SAMPL_DIAG_MODE(hwc))
sample_size += sfr->dsdes;
return sample_size;
}
static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
{
if (cpuhw->sfb.sdbt)
free_sampling_buffer(&cpuhw->sfb);
}
static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
{
unsigned long n_sdb, freq, factor;
size_t sfr_size, sample_size;
struct sf_raw_sample *sfr;
/* Allocate raw sample buffer
*
* The raw sample buffer is used to temporarily store sampling data
* entries for perf raw sample processing. The buffer size mainly
* depends on the size of diagnostic-sampling data entries which is
* machine-specific. The exact size calculation includes:
* 1. The first 4 bytes of diagnostic-sampling data entries are
* already reflected in the sf_raw_sample structure. Subtract
* these bytes.
* 2. The perf raw sample data must be 8-byte aligned (u64) and
* perf's internal data size must be considered too. So add
* an additional u32 for correct alignment and subtract before
* allocating the buffer.
* 3. Store the raw sample buffer pointer in the perf event
* hardware structure.
*/
sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) +
sizeof(u32), sizeof(u64));
sfr_size -= sizeof(u32);
sfr = kzalloc(sfr_size, GFP_KERNEL);
if (!sfr)
return -ENOMEM;
sfr->size = sfr_size;
sfr->bsdes = cpuhw->qsi.bsdes;
sfr->dsdes = cpuhw->qsi.dsdes;
RAWSAMPLE_REG(hwc) = (unsigned long) sfr;
/* Calculate sampling buffers using 4K pages
*
* 1. Determine the sample data size which depends on the used
* sampling functions, for example, basic-sampling or
* basic-sampling with diagnostic-sampling.
*
* 2. Use the sampling frequency as input. The sampling buffer is
* designed for almost one second. This can be adjusted through
* the "factor" variable.
* In any case, alloc_sampling_buffer() sets the Alert Request
* Control indicator to trigger a measurement-alert to harvest
* sample-data-blocks (sdb).
*
* 3. Compute the number of sample-data-blocks and ensure a minimum
* of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
* exceed a "calculated" maximum. The symbolic maximum is
* designed for basic-sampling only and needs to be increased if
* diagnostic-sampling is active.
* See also the remarks for these symbolic constants.
*
* 4. Compute the number of sample-data-block-tables (SDBT) and
* ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
* to 511 SDBs).
*/
sample_size = event_sample_size(hwc);
freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
factor = 1;
n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
if (n_sdb < CPUM_SF_MIN_SDB)
n_sdb = CPUM_SF_MIN_SDB;
/* If there is already a sampling buffer allocated, it is very likely
* that the sampling facility is enabled too. If the event to be
* initialized requires a greater sampling buffer, the allocation must
* be postponed. Changing the sampling buffer requires the sampling
* facility to be in the disabled state. So, account the number of
* required SDBs and let cpumsf_pmu_enable() resize the buffer just
* before the event is started.
*/
sfb_init_allocs(n_sdb, hwc);
if (sf_buffer_available(cpuhw))
return 0;
debug_sprintf_event(sfdbg, 3,
"allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
" sample_size=%lu cpuhw=%p\n",
SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
sample_size, cpuhw);
return alloc_sampling_buffer(&cpuhw->sfb,
sfb_pending_allocs(&cpuhw->sfb, hwc));
}
static unsigned long min_percent(unsigned int percent, unsigned long base,
unsigned long min)
{
return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
}
static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
{
/* Use a percentage-based approach to extend the sampling facility
* buffer. Accept up to 5% sample data loss.
* Vary the extents between 1% to 5% of the current number of
* sample-data-blocks.
*/
if (ratio <= 5)
return 0;
if (ratio <= 25)
return min_percent(1, base, 1);
if (ratio <= 50)
return min_percent(1, base, 1);
if (ratio <= 75)
return min_percent(2, base, 2);
if (ratio <= 100)
return min_percent(3, base, 3);
if (ratio <= 250)
return min_percent(4, base, 4);
return min_percent(5, base, 8);
}
static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
struct hw_perf_event *hwc)
{
unsigned long ratio, num;
if (!OVERFLOW_REG(hwc))
return;
/* The sample_overflow contains the average number of sample data
* that has been lost because sample-data-blocks were full.
*
* Calculate the total number of sample data entries that has been
* discarded. Then calculate the ratio of lost samples to total samples
* per second in percent.
*/
ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
/* Compute number of sample-data-blocks */
num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
if (num)
sfb_account_allocs(num, hwc);
debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
" num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
OVERFLOW_REG(hwc) = 0;
}
/* extend_sampling_buffer() - Extend sampling buffer
* @sfb: Sampling buffer structure (for local CPU)
* @hwc: Perf event hardware structure
*
* Use this function to extend the sampling buffer based on the overflow counter
* and postponed allocation extents stored in the specified Perf event hardware.
*
* Important: This function disables the sampling facility in order to safely
* change the sampling buffer structure. Do not call this function
* when the PMU is active.
*/
static void extend_sampling_buffer(struct sf_buffer *sfb,
struct hw_perf_event *hwc)
{
unsigned long num, num_old;
int rc;
num = sfb_pending_allocs(sfb, hwc);
if (!num)
return;
num_old = sfb->num_sdb;
/* Disable the sampling facility to reset any states and also
* clear pending measurement alerts.
*/
sf_disable();
/* Extend the sampling buffer.
* This memory allocation typically happens in an atomic context when
* called by perf. Because this is a reallocation, it is fine if the
* new SDB-request cannot be satisfied immediately.
*/
rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
if (rc)
debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
"failed with rc=%i\n", rc);
if (sfb_has_pending_allocs(sfb, hwc))
debug_sprintf_event(sfdbg, 5, "sfb: extend: "
"req=%lu alloc=%lu remaining=%lu\n",
num, sfb->num_sdb - num_old,
sfb_pending_allocs(sfb, hwc));
}
/* Number of perf events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_cpumf_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);
#define PMC_INIT 0
#define PMC_RELEASE 1
#define PMC_FAILURE 2
static void setup_pmc_cpu(void *flags)
{
int err;
struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
err = 0;
switch (*((int *) flags)) {
case PMC_INIT:
memset(cpusf, 0, sizeof(*cpusf));
err = qsi(&cpusf->qsi);
if (err)
break;
cpusf->flags |= PMU_F_RESERVED;
err = sf_disable();
if (err)
pr_err("Switching off the sampling facility failed "
"with rc=%i\n", err);
debug_sprintf_event(sfdbg, 5,
"setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
break;
case PMC_RELEASE:
cpusf->flags &= ~PMU_F_RESERVED;
err = sf_disable();
if (err) {
pr_err("Switching off the sampling facility failed "
"with rc=%i\n", err);
} else
deallocate_buffers(cpusf);
debug_sprintf_event(sfdbg, 5,
"setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
break;
}
if (err)
*((int *) flags) |= PMC_FAILURE;
}
static void release_pmc_hardware(void)
{
int flags = PMC_RELEASE;
irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
on_each_cpu(setup_pmc_cpu, &flags, 1);
perf_release_sampling();
}
static int reserve_pmc_hardware(void)
{
int flags = PMC_INIT;
int err;
err = perf_reserve_sampling();
if (err)
return err;
on_each_cpu(setup_pmc_cpu, &flags, 1);
if (flags & PMC_FAILURE) {
release_pmc_hardware();
return -ENODEV;
}
irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
return 0;
}
static void hw_perf_event_destroy(struct perf_event *event)
{
/* Free raw sample buffer */
if (RAWSAMPLE_REG(&event->hw))
kfree((void *) RAWSAMPLE_REG(&event->hw));
/* Release PMC if this is the last perf event */
if (!atomic_add_unless(&num_events, -1, 1)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_dec_return(&num_events) == 0)
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
static void hw_init_period(struct hw_perf_event *hwc, u64 period)
{
hwc->sample_period = period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
static void hw_reset_registers(struct hw_perf_event *hwc,
unsigned long *sdbt_origin)
{
struct sf_raw_sample *sfr;
/* (Re)set to first sample-data-block-table */
TEAR_REG(hwc) = (unsigned long) sdbt_origin;
/* (Re)set raw sampling buffer register */
sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
memset(&sfr->basic, 0, sizeof(sfr->basic));
memset(&sfr->diag, 0, sfr->dsdes);
}
static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
unsigned long rate)
{
return clamp_t(unsigned long, rate,
si->min_sampl_rate, si->max_sampl_rate);
}
static int __hw_perf_event_init(struct perf_event *event)
{
struct cpu_hw_sf *cpuhw;
struct hws_qsi_info_block si;
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
unsigned long rate;
int cpu, err;
/* Reserve CPU-measurement sampling facility */
err = 0;
if (!atomic_inc_not_zero(&num_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
err = -EBUSY;
else
atomic_inc(&num_events);
mutex_unlock(&pmc_reserve_mutex);
}
event->destroy = hw_perf_event_destroy;
if (err)
goto out;
/* Access per-CPU sampling information (query sampling info) */
/*
* The event->cpu value can be -1 to count on every CPU, for example,
* when attaching to a task. If this is specified, use the query
* sampling info from the current CPU, otherwise use event->cpu to
* retrieve the per-CPU information.
* Later, cpuhw indicates whether to allocate sampling buffers for a
* particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
*/
memset(&si, 0, sizeof(si));
cpuhw = NULL;
if (event->cpu == -1)
qsi(&si);
else {
/* Event is pinned to a particular CPU, retrieve the per-CPU
* sampling structure for accessing the CPU-specific QSI.
*/
cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
si = cpuhw->qsi;
}
/* Check sampling facility authorization and, if not authorized,
* fall back to other PMUs. It is safe to check any CPU because
* the authorization is identical for all configured CPUs.
*/
if (!si.as) {
err = -ENOENT;
goto out;
}
/* Always enable basic sampling */
SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
/* Check if diagnostic sampling is requested. Deny if the required
* sampling authorization is missing.
*/
if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
if (!si.ad) {
err = -EPERM;
goto out;
}
SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
}
/* Check and set other sampling flags */
if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
/* The sampling information (si) contains information about the
* min/max sampling intervals and the CPU speed. So calculate the
* correct sampling interval and avoid the whole period adjust
* feedback loop.
*/
rate = 0;
if (attr->freq) {
rate = freq_to_sample_rate(&si, attr->sample_freq);
rate = hw_limit_rate(&si, rate);
attr->freq = 0;
attr->sample_period = rate;
} else {
/* The min/max sampling rates specifies the valid range
* of sample periods. If the specified sample period is
* out of range, limit the period to the range boundary.
*/
rate = hw_limit_rate(&si, hwc->sample_period);
/* The perf core maintains a maximum sample rate that is
* configurable through the sysctl interface. Ensure the
* sampling rate does not exceed this value. This also helps
* to avoid throttling when pushing samples with
* perf_event_overflow().
*/
if (sample_rate_to_freq(&si, rate) >
sysctl_perf_event_sample_rate) {
err = -EINVAL;
debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
goto out;
}
}
SAMPL_RATE(hwc) = rate;
hw_init_period(hwc, SAMPL_RATE(hwc));
/* Initialize sample data overflow accounting */
hwc->extra_reg.reg = REG_OVERFLOW;
OVERFLOW_REG(hwc) = 0;
/* Allocate the per-CPU sampling buffer using the CPU information
* from the event. If the event is not pinned to a particular
* CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
* buffers for each online CPU.
*/
if (cpuhw)
/* Event is pinned to a particular CPU */
err = allocate_buffers(cpuhw, hwc);
else {
/* Event is not pinned, allocate sampling buffer on
* each online CPU
*/
for_each_online_cpu(cpu) {
cpuhw = &per_cpu(cpu_hw_sf, cpu);
err = allocate_buffers(cpuhw, hwc);
if (err)
break;
}
}
out:
return err;
}
static int cpumsf_pmu_event_init(struct perf_event *event)
{
int err;
/* No support for taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_RAW:
if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
(event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
return -ENOENT;
break;
case PERF_TYPE_HARDWARE:
/* Support sampling of CPU cycles in addition to the
* counter facility. However, the counter facility
* is more precise and, hence, restrict this PMU to
* sampling events only.
*/
if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
return -ENOENT;
if (!is_sampling_event(event))
return -ENOENT;
break;
default:
return -ENOENT;
}
/* Check online status of the CPU to which the event is pinned */
if (event->cpu >= nr_cpumask_bits ||
(event->cpu >= 0 && !cpu_online(event->cpu)))
return -ENODEV;
/* Force reset of idle/hv excludes regardless of what the
* user requested.
*/
if (event->attr.exclude_hv)
event->attr.exclude_hv = 0;
if (event->attr.exclude_idle)
event->attr.exclude_idle = 0;
err = __hw_perf_event_init(event);
if (unlikely(err))
if (event->destroy)
event->destroy(event);
return err;
}
static void cpumsf_pmu_enable(struct pmu *pmu)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
struct hw_perf_event *hwc;
int err;
if (cpuhw->flags & PMU_F_ENABLED)
return;
if (cpuhw->flags & PMU_F_ERR_MASK)
return;
/* Check whether to extent the sampling buffer.
*
* Two conditions trigger an increase of the sampling buffer for a
* perf event:
* 1. Postponed buffer allocations from the event initialization.
* 2. Sampling overflows that contribute to pending allocations.
*
* Note that the extend_sampling_buffer() function disables the sampling
* facility, but it can be fully re-enabled using sampling controls that
* have been saved in cpumsf_pmu_disable().
*/
if (cpuhw->event) {
hwc = &cpuhw->event->hw;
/* Account number of overflow-designated buffer extents */
sfb_account_overflows(cpuhw, hwc);
if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
extend_sampling_buffer(&cpuhw->sfb, hwc);
}
/* (Re)enable the PMU and sampling facility */
cpuhw->flags |= PMU_F_ENABLED;
barrier();
err = lsctl(&cpuhw->lsctl);
if (err) {
cpuhw->flags &= ~PMU_F_ENABLED;
pr_err("Loading sampling controls failed: op=%i err=%i\n",
1, err);
return;
}
debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
"tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
cpuhw->lsctl.ed, cpuhw->lsctl.cd,
(void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
}
static void cpumsf_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
struct hws_lsctl_request_block inactive;
struct hws_qsi_info_block si;
int err;
if (!(cpuhw->flags & PMU_F_ENABLED))
return;
if (cpuhw->flags & PMU_F_ERR_MASK)
return;
/* Switch off sampling activation control */
inactive = cpuhw->lsctl;
inactive.cs = 0;
inactive.cd = 0;
err = lsctl(&inactive);
if (err) {
pr_err("Loading sampling controls failed: op=%i err=%i\n",
2, err);
return;
}
/* Save state of TEAR and DEAR register contents */
if (!qsi(&si)) {
/* TEAR/DEAR values are valid only if the sampling facility is
* enabled. Note that cpumsf_pmu_disable() might be called even
* for a disabled sampling facility because cpumsf_pmu_enable()
* controls the enable/disable state.
*/
if (si.es) {
cpuhw->lsctl.tear = si.tear;
cpuhw->lsctl.dear = si.dear;
}
} else
debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
"qsi() failed with err=%i\n", err);
cpuhw->flags &= ~PMU_F_ENABLED;
}
/* perf_exclude_event() - Filter event
* @event: The perf event
* @regs: pt_regs structure
* @sde_regs: Sample-data-entry (sde) regs structure
*
* Filter perf events according to their exclude specification.
*
* Return non-zero if the event shall be excluded.
*/
static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
struct perf_sf_sde_regs *sde_regs)
{
if (event->attr.exclude_user && user_mode(regs))
return 1;
if (event->attr.exclude_kernel && !user_mode(regs))
return 1;
if (event->attr.exclude_guest && sde_regs->in_guest)
return 1;
if (event->attr.exclude_host && !sde_regs->in_guest)
return 1;
return 0;
}
/* perf_push_sample() - Push samples to perf
* @event: The perf event
* @sample: Hardware sample data
*
* Use the hardware sample data to create perf event sample. The sample
* is the pushed to the event subsystem and the function checks for
* possible event overflows. If an event overflow occurs, the PMU is
* stopped.
*
* Return non-zero if an event overflow occurred.
*/
static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr)
{
int overflow;
struct pt_regs regs;
struct perf_sf_sde_regs *sde_regs;
struct perf_sample_data data;
struct perf_raw_record raw;
/* Setup perf sample */
perf_sample_data_init(&data, 0, event->hw.last_period);
raw.size = sfr->size;
raw.data = sfr;
data.raw = &raw;
/* Setup pt_regs to look like an CPU-measurement external interrupt
* using the Program Request Alert code. The regs.int_parm_long
* field which is unused contains additional sample-data-entry related
* indicators.
*/
memset(&regs, 0, sizeof(regs));
regs.int_code = 0x1407;
regs.int_parm = CPU_MF_INT_SF_PRA;
sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
regs.psw.addr = sfr->basic.ia;
if (sfr->basic.T)
regs.psw.mask |= PSW_MASK_DAT;
if (sfr->basic.W)
regs.psw.mask |= PSW_MASK_WAIT;
if (sfr->basic.P)
regs.psw.mask |= PSW_MASK_PSTATE;
switch (sfr->basic.AS) {
case 0x0:
regs.psw.mask |= PSW_ASC_PRIMARY;
break;
case 0x1:
regs.psw.mask |= PSW_ASC_ACCREG;
break;
case 0x2:
regs.psw.mask |= PSW_ASC_SECONDARY;
break;
case 0x3:
regs.psw.mask |= PSW_ASC_HOME;
break;
}
/* The host-program-parameter (hpp) contains the sie control
* block that is set by sie64a() in entry64.S. Check if hpp
* refers to a valid control block and set sde_regs flags
* accordingly. This would allow to use hpp values for other
* purposes too.
* For now, simply use a non-zero value as guest indicator.
*/
if (sfr->basic.hpp)
sde_regs->in_guest = 1;
overflow = 0;
if (perf_exclude_event(event, &regs, sde_regs))
goto out;
if (perf_event_overflow(event, &data, &regs)) {
overflow = 1;
event->pmu->stop(event, 0);
}
perf_event_update_userpage(event);
out:
return overflow;
}
static void perf_event_count_update(struct perf_event *event, u64 count)
{
local64_add(count, &event->count);
}
static int sample_format_is_valid(struct hws_combined_entry *sample,
unsigned int flags)
{
if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
/* Only basic-sampling data entries with data-entry-format
* version of 0x0001 can be processed.
*/
if (sample->basic.def != 0x0001)
return 0;
if (flags & PERF_CPUM_SF_DIAG_MODE)
/* The data-entry-format number of diagnostic-sampling data
* entries can vary. Because diagnostic data is just passed
* through, do only a sanity check on the DEF.
*/
if (sample->diag.def < 0x8001)
return 0;
return 1;
}
static int sample_is_consistent(struct hws_combined_entry *sample,
unsigned long flags)
{
/* This check applies only to basic-sampling data entries of potentially
* combined-sampling data entries. Invalid entries cannot be processed
* by the PMU and, thus, do not deliver an associated
* diagnostic-sampling data entry.
*/
if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE)))
return 0;
/*
* Samples are skipped, if they are invalid or for which the
* instruction address is not predictable, i.e., the wait-state bit is
* set.
*/
if (sample->basic.I || sample->basic.W)
return 0;
return 1;
}
static void reset_sample_slot(struct hws_combined_entry *sample,
unsigned long flags)
{
if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
sample->basic.def = 0;
if (flags & PERF_CPUM_SF_DIAG_MODE)
sample->diag.def = 0;
}
static void sfr_store_sample(struct sf_raw_sample *sfr,
struct hws_combined_entry *sample)
{
if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE))
sfr->basic = sample->basic;
if (sfr->format & PERF_CPUM_SF_DIAG_MODE)
memcpy(&sfr->diag, &sample->diag, sfr->dsdes);
}
static void debug_sample_entry(struct hws_combined_entry *sample,
struct hws_trailer_entry *te,
unsigned long flags)
{
debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
"sampling data entry: te->f=%i basic.def=%04x (%p)"
" diag.def=%04x (%p)\n", te->f,
sample->basic.def, &sample->basic,
(flags & PERF_CPUM_SF_DIAG_MODE)
? sample->diag.def : 0xFFFF,
(flags & PERF_CPUM_SF_DIAG_MODE)
? &sample->diag : NULL);
}
/* hw_collect_samples() - Walk through a sample-data-block and collect samples
* @event: The perf event
* @sdbt: Sample-data-block table
* @overflow: Event overflow counter
*
* Walks through a sample-data-block and collects sampling data entries that are
* then pushed to the perf event subsystem. Depending on the sampling function,
* there can be either basic-sampling or combined-sampling data entries. A
* combined-sampling data entry consists of a basic- and a diagnostic-sampling
* data entry. The sampling function is determined by the flags in the perf
* event hardware structure. The function always works with a combined-sampling
* data entry but ignores the the diagnostic portion if it is not available.
*
* Note that the implementation focuses on basic-sampling data entries and, if
* such an entry is not valid, the entire combined-sampling data entry is
* ignored.
*
* The overflow variables counts the number of samples that has been discarded
* due to a perf event overflow.
*/
static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
unsigned long long *overflow)
{
unsigned long flags = SAMPL_FLAGS(&event->hw);
struct hws_combined_entry *sample;
struct hws_trailer_entry *te;
struct sf_raw_sample *sfr;
size_t sample_size;
/* Prepare and initialize raw sample data */
sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw);
sfr->format = flags & PERF_CPUM_SF_MODE_MASK;
sample_size = event_sample_size(&event->hw);
te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
sample = (struct hws_combined_entry *) *sdbt;
while ((unsigned long *) sample < (unsigned long *) te) {
/* Check for an empty sample */
if (!sample->basic.def)
break;
/* Update perf event period */
perf_event_count_update(event, SAMPL_RATE(&event->hw));
/* Check sampling data entry */
if (sample_format_is_valid(sample, flags)) {
/* If an event overflow occurred, the PMU is stopped to
* throttle event delivery. Remaining sample data is
* discarded.
*/
if (!*overflow) {
if (sample_is_consistent(sample, flags)) {
/* Deliver sample data to perf */
sfr_store_sample(sfr, sample);
*overflow = perf_push_sample(event, sfr);
}
} else
/* Count discarded samples */
*overflow += 1;
} else {
debug_sample_entry(sample, te, flags);
/* Sample slot is not yet written or other record.
*
* This condition can occur if the buffer was reused
* from a combined basic- and diagnostic-sampling.
* If only basic-sampling is then active, entries are
* written into the larger diagnostic entries.
* This is typically the case for sample-data-blocks
* that are not full. Stop processing if the first
* invalid format was detected.
*/
if (!te->f)
break;
}
/* Reset sample slot and advance to next sample */
reset_sample_slot(sample, flags);
sample += sample_size;
}
}
/* hw_perf_event_update() - Process sampling buffer
* @event: The perf event
* @flush_all: Flag to also flush partially filled sample-data-blocks
*
* Processes the sampling buffer and create perf event samples.
* The sampling buffer position are retrieved and saved in the TEAR_REG
* register of the specified perf event.
*
* Only full sample-data-blocks are processed. Specify the flash_all flag
* to also walk through partially filled sample-data-blocks. It is ignored
* if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
* enforces the processing of full sample-data-blocks only (trailer entries
* with the block-full-indicator bit set).
*/
static void hw_perf_event_update(struct perf_event *event, int flush_all)
{
struct hw_perf_event *hwc = &event->hw;
struct hws_trailer_entry *te;
unsigned long *sdbt;
unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
int done;
if (flush_all && SDB_FULL_BLOCKS(hwc))
flush_all = 0;
sdbt = (unsigned long *) TEAR_REG(hwc);
done = event_overflow = sampl_overflow = num_sdb = 0;
while (!done) {
/* Get the trailer entry of the sample-data-block */
te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
/* Leave loop if no more work to do (block full indicator) */
if (!te->f) {
done = 1;
if (!flush_all)
break;
}
/* Check the sample overflow count */
if (te->overflow)
/* Account sample overflows and, if a particular limit
* is reached, extend the sampling buffer.
* For details, see sfb_account_overflows().
*/
sampl_overflow += te->overflow;
/* Timestamps are valid for full sample-data-blocks only */
debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
"overflow=%llu timestamp=0x%llx\n",
sdbt, te->overflow,
(te->f) ? trailer_timestamp(te) : 0ULL);
/* Collect all samples from a single sample-data-block and
* flag if an (perf) event overflow happened. If so, the PMU
* is stopped and remaining samples will be discarded.
*/
hw_collect_samples(event, sdbt, &event_overflow);
num_sdb++;
/* Reset trailer (using compare-double-and-swap) */
do {
te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
te_flags |= SDB_TE_ALERT_REQ_MASK;
} while (!cmpxchg_double(&te->flags, &te->overflow,
te->flags, te->overflow,
te_flags, 0ULL));
/* Advance to next sample-data-block */
sdbt++;
if (is_link_entry(sdbt))
sdbt = get_next_sdbt(sdbt);
/* Update event hardware registers */
TEAR_REG(hwc) = (unsigned long) sdbt;
/* Stop processing sample-data if all samples of the current
* sample-data-block were flushed even if it was not full.
*/
if (flush_all && done)
break;
/* If an event overflow happened, discard samples by
* processing any remaining sample-data-blocks.
*/
if (event_overflow)
flush_all = 1;
}
/* Account sample overflows in the event hardware structure */
if (sampl_overflow)
OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
sampl_overflow, 1 + num_sdb);
if (sampl_overflow || event_overflow)
debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
"overflow stats: sample=%llu event=%llu\n",
sampl_overflow, event_overflow);
}
static void cpumsf_pmu_read(struct perf_event *event)
{
/* Nothing to do ... updates are interrupt-driven */
}
/* Activate sampling control.
* Next call of pmu_enable() starts sampling.
*/
static void cpumsf_pmu_start(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
perf_pmu_disable(event->pmu);
event->hw.state = 0;
cpuhw->lsctl.cs = 1;
if (SAMPL_DIAG_MODE(&event->hw))
cpuhw->lsctl.cd = 1;
perf_pmu_enable(event->pmu);
}
/* Deactivate sampling control.
* Next call of pmu_enable() stops sampling.
*/
static void cpumsf_pmu_stop(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
if (event->hw.state & PERF_HES_STOPPED)
return;
perf_pmu_disable(event->pmu);
cpuhw->lsctl.cs = 0;
cpuhw->lsctl.cd = 0;
event->hw.state |= PERF_HES_STOPPED;
if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
hw_perf_event_update(event, 1);
event->hw.state |= PERF_HES_UPTODATE;
}
perf_pmu_enable(event->pmu);
}
static int cpumsf_pmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
int err;
if (cpuhw->flags & PMU_F_IN_USE)
return -EAGAIN;
if (!cpuhw->sfb.sdbt)
return -EINVAL;
err = 0;
perf_pmu_disable(event->pmu);
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
/* Set up sampling controls. Always program the sampling register
* using the SDB-table start. Reset TEAR_REG event hardware register
* that is used by hw_perf_event_update() to store the sampling buffer
* position after samples have been flushed.
*/
cpuhw->lsctl.s = 0;
cpuhw->lsctl.h = 1;
cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
/* Ensure sampling functions are in the disabled state. If disabled,
* switch on sampling enable control. */
if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
err = -EAGAIN;
goto out;
}
cpuhw->lsctl.es = 1;
if (SAMPL_DIAG_MODE(&event->hw))
cpuhw->lsctl.ed = 1;
/* Set in_use flag and store event */
cpuhw->event = event;
cpuhw->flags |= PMU_F_IN_USE;
if (flags & PERF_EF_START)
cpumsf_pmu_start(event, PERF_EF_RELOAD);
out:
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
return err;
}
static void cpumsf_pmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
perf_pmu_disable(event->pmu);
cpumsf_pmu_stop(event, PERF_EF_UPDATE);
cpuhw->lsctl.es = 0;
cpuhw->lsctl.ed = 0;
cpuhw->flags &= ~PMU_F_IN_USE;
cpuhw->event = NULL;
perf_event_update_userpage(event);
perf_pmu_enable(event->pmu);
}
static int cpumsf_pmu_event_idx(struct perf_event *event)
{
return event->hw.idx;
}
CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
static struct attribute *cpumsf_pmu_events_attr[] = {
CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG),
NULL,
};
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *cpumsf_pmu_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group cpumsf_pmu_events_group = {
.name = "events",
.attrs = cpumsf_pmu_events_attr,
};
static struct attribute_group cpumsf_pmu_format_group = {
.name = "format",
.attrs = cpumsf_pmu_format_attr,
};
static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
&cpumsf_pmu_events_group,
&cpumsf_pmu_format_group,
NULL,
};
static struct pmu cpumf_sampling = {
.pmu_enable = cpumsf_pmu_enable,
.pmu_disable = cpumsf_pmu_disable,
.event_init = cpumsf_pmu_event_init,
.add = cpumsf_pmu_add,
.del = cpumsf_pmu_del,
.start = cpumsf_pmu_start,
.stop = cpumsf_pmu_stop,
.read = cpumsf_pmu_read,
.event_idx = cpumsf_pmu_event_idx,
.attr_groups = cpumsf_pmu_attr_groups,
};
static void cpumf_measurement_alert(struct ext_code ext_code,
unsigned int alert, unsigned long unused)
{
struct cpu_hw_sf *cpuhw;
if (!(alert & CPU_MF_INT_SF_MASK))
return;
inc_irq_stat(IRQEXT_CMS);
cpuhw = this_cpu_ptr(&cpu_hw_sf);
/* Measurement alerts are shared and might happen when the PMU
* is not reserved. Ignore these alerts in this case. */
if (!(cpuhw->flags & PMU_F_RESERVED))
return;
/* The processing below must take care of multiple alert events that
* might be indicated concurrently. */
/* Program alert request */
if (alert & CPU_MF_INT_SF_PRA) {
if (cpuhw->flags & PMU_F_IN_USE)
hw_perf_event_update(cpuhw->event, 0);
else
WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
}
/* Report measurement alerts only for non-PRA codes */
if (alert != CPU_MF_INT_SF_PRA)
debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
/* Sampling authorization change request */
if (alert & CPU_MF_INT_SF_SACA)
qsi(&cpuhw->qsi);
/* Loss of sample data due to high-priority machine activities */
if (alert & CPU_MF_INT_SF_LSDA) {
pr_err("Sample data was lost\n");
cpuhw->flags |= PMU_F_ERR_LSDA;
sf_disable();
}
/* Invalid sampling buffer entry */
if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
alert);
cpuhw->flags |= PMU_F_ERR_IBE;
sf_disable();
}
}
static int cpumf_pmu_notifier(struct notifier_block *self,
unsigned long action, void *hcpu)
{
unsigned int cpu = (long) hcpu;
int flags;
/* Ignore the notification if no events are scheduled on the PMU.
* This might be racy...
*/
if (!atomic_read(&num_events))
return NOTIFY_OK;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
flags = PMC_INIT;
smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
break;
case CPU_DOWN_PREPARE:
flags = PMC_RELEASE;
smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
break;
default:
break;
}
return NOTIFY_OK;
}
static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
{
if (!cpum_sf_avail())
return -ENODEV;
return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
}
static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
{
int rc;
unsigned long min, max;
if (!cpum_sf_avail())
return -ENODEV;
if (!val || !strlen(val))
return -EINVAL;
/* Valid parameter values: "min,max" or "max" */
min = CPUM_SF_MIN_SDB;
max = CPUM_SF_MAX_SDB;
if (strchr(val, ','))
rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
else
rc = kstrtoul(val, 10, &max);
if (min < 2 || min >= max || max > get_num_physpages())
rc = -EINVAL;
if (rc)
return rc;
sfb_set_limits(min, max);
pr_info("The sampling buffer limits have changed to: "
"min=%lu max=%lu (diag=x%lu)\n",
CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
return 0;
}
#define param_check_sfb_size(name, p) __param_check(name, p, void)
static struct kernel_param_ops param_ops_sfb_size = {
.set = param_set_sfb_size,
.get = param_get_sfb_size,
};
#define RS_INIT_FAILURE_QSI 0x0001
#define RS_INIT_FAILURE_BSDES 0x0002
#define RS_INIT_FAILURE_ALRT 0x0003
#define RS_INIT_FAILURE_PERF 0x0004
static void __init pr_cpumsf_err(unsigned int reason)
{
pr_err("Sampling facility support for perf is not available: "
"reason=%04x\n", reason);
}
static int __init init_cpum_sampling_pmu(void)
{
struct hws_qsi_info_block si;
int err;
if (!cpum_sf_avail())
return -ENODEV;
memset(&si, 0, sizeof(si));
if (qsi(&si)) {
pr_cpumsf_err(RS_INIT_FAILURE_QSI);
return -ENODEV;
}
if (si.bsdes != sizeof(struct hws_basic_entry)) {
pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
return -EINVAL;
}
if (si.ad)
sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
if (!sfdbg)
pr_err("Registering for s390dbf failed\n");
debug_register_view(sfdbg, &debug_sprintf_view);
err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
cpumf_measurement_alert);
if (err) {
pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
goto out;
}
err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
if (err) {
pr_cpumsf_err(RS_INIT_FAILURE_PERF);
unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
cpumf_measurement_alert);
goto out;
}
perf_cpu_notifier(cpumf_pmu_notifier);
out:
return err;
}
arch_initcall(init_cpum_sampling_pmu);
core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);