linux/arch/s390/kernel/time.c
Heiko Carstens f8d8977a3d s390/time: convert tod_clock_base to union
Convert tod_clock_base to union tod_clock. This simplifies quite a bit
of code and also fixes a bug in read_persistent_clock64();

void read_persistent_clock64(struct timespec64 *ts)
{
        __u64 delta;

        delta = initial_leap_seconds + TOD_UNIX_EPOCH;
        get_tod_clock_ext(clk);
        *(__u64 *) &clk[1] -= delta;
        if (*(__u64 *) &clk[1] > delta)
                clk[0]--;
        ext_to_timespec64(clk, ts);
}

Assume &clk[1] == 3 and delta == 2; then after the substraction the if
condition becomes true and the epoch part of the clock is decremented
by one because of an assumed overflow, even though there is none.

Fix this by using 128 bit arithmetics and let the compiler do the
right thing:

void read_persistent_clock64(struct timespec64 *ts)
{
        union tod_clock clk;
        u64 delta;

        delta = initial_leap_seconds + TOD_UNIX_EPOCH;
        store_tod_clock_ext(&clk);
        clk.eitod -= delta;
        ext_to_timespec64(&clk, ts);
}

Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-02-13 17:17:54 +01:00

936 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Time of day based timer functions.
*
* S390 version
* Copyright IBM Corp. 1999, 2008
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
*
* Derived from "arch/i386/kernel/time.c"
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
*/
#define KMSG_COMPONENT "time"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/stop_machine.h>
#include <linux/time.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <linux/profile.h>
#include <linux/timex.h>
#include <linux/notifier.h>
#include <linux/timekeeper_internal.h>
#include <linux/clockchips.h>
#include <linux/gfp.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <vdso/vsyscall.h>
#include <vdso/clocksource.h>
#include <vdso/helpers.h>
#include <asm/facility.h>
#include <asm/delay.h>
#include <asm/div64.h>
#include <asm/vdso.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/vtimer.h>
#include <asm/stp.h>
#include <asm/cio.h>
#include "entry.h"
union tod_clock tod_clock_base __section(".data");
EXPORT_SYMBOL_GPL(tod_clock_base);
u64 clock_comparator_max = -1ULL;
EXPORT_SYMBOL_GPL(clock_comparator_max);
static DEFINE_PER_CPU(struct clock_event_device, comparators);
ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
EXPORT_SYMBOL(s390_epoch_delta_notifier);
unsigned char ptff_function_mask[16];
static unsigned long long lpar_offset;
static unsigned long long initial_leap_seconds;
static unsigned long long tod_steering_end;
static long long tod_steering_delta;
/*
* Get time offsets with PTFF
*/
void __init time_early_init(void)
{
struct ptff_qto qto;
struct ptff_qui qui;
/* Initialize TOD steering parameters */
tod_steering_end = tod_clock_base.tod;
vdso_data->arch_data.tod_steering_end = tod_steering_end;
if (!test_facility(28))
return;
ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
/* get LPAR offset */
if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
lpar_offset = qto.tod_epoch_difference;
/* get initial leap seconds */
if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
initial_leap_seconds = (unsigned long long)
((long) qui.old_leap * 4096000000L);
}
/*
* Scheduler clock - returns current time in nanosec units.
*/
unsigned long long notrace sched_clock(void)
{
return tod_to_ns(get_tod_clock_monotonic());
}
NOKPROBE_SYMBOL(sched_clock);
static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
{
unsigned long rem, sec, nsec;
sec = clk->us;
rem = do_div(sec, 1000000);
nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
xt->tv_sec = sec;
xt->tv_nsec = nsec;
}
void clock_comparator_work(void)
{
struct clock_event_device *cd;
S390_lowcore.clock_comparator = clock_comparator_max;
cd = this_cpu_ptr(&comparators);
cd->event_handler(cd);
}
static int s390_next_event(unsigned long delta,
struct clock_event_device *evt)
{
S390_lowcore.clock_comparator = get_tod_clock() + delta;
set_clock_comparator(S390_lowcore.clock_comparator);
return 0;
}
/*
* Set up lowcore and control register of the current cpu to
* enable TOD clock and clock comparator interrupts.
*/
void init_cpu_timer(void)
{
struct clock_event_device *cd;
int cpu;
S390_lowcore.clock_comparator = clock_comparator_max;
set_clock_comparator(S390_lowcore.clock_comparator);
cpu = smp_processor_id();
cd = &per_cpu(comparators, cpu);
cd->name = "comparator";
cd->features = CLOCK_EVT_FEAT_ONESHOT;
cd->mult = 16777;
cd->shift = 12;
cd->min_delta_ns = 1;
cd->min_delta_ticks = 1;
cd->max_delta_ns = LONG_MAX;
cd->max_delta_ticks = ULONG_MAX;
cd->rating = 400;
cd->cpumask = cpumask_of(cpu);
cd->set_next_event = s390_next_event;
clockevents_register_device(cd);
/* Enable clock comparator timer interrupt. */
__ctl_set_bit(0,11);
/* Always allow the timing alert external interrupt. */
__ctl_set_bit(0, 4);
}
static void clock_comparator_interrupt(struct ext_code ext_code,
unsigned int param32,
unsigned long param64)
{
inc_irq_stat(IRQEXT_CLK);
if (S390_lowcore.clock_comparator == clock_comparator_max)
set_clock_comparator(S390_lowcore.clock_comparator);
}
static void stp_timing_alert(struct stp_irq_parm *);
static void timing_alert_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
inc_irq_stat(IRQEXT_TLA);
if (param32 & 0x00038000)
stp_timing_alert((struct stp_irq_parm *) &param32);
}
static void stp_reset(void);
void read_persistent_clock64(struct timespec64 *ts)
{
union tod_clock clk;
u64 delta;
delta = initial_leap_seconds + TOD_UNIX_EPOCH;
store_tod_clock_ext(&clk);
clk.eitod -= delta;
ext_to_timespec64(&clk, ts);
}
void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
struct timespec64 *boot_offset)
{
struct timespec64 boot_time;
union tod_clock clk;
u64 delta;
delta = initial_leap_seconds + TOD_UNIX_EPOCH;
clk = tod_clock_base;
clk.eitod -= delta;
ext_to_timespec64(&clk, &boot_time);
read_persistent_clock64(wall_time);
*boot_offset = timespec64_sub(*wall_time, boot_time);
}
static u64 read_tod_clock(struct clocksource *cs)
{
unsigned long long now, adj;
preempt_disable(); /* protect from changes to steering parameters */
now = get_tod_clock();
adj = tod_steering_end - now;
if (unlikely((s64) adj > 0))
/*
* manually steer by 1 cycle every 2^16 cycles. This
* corresponds to shifting the tod delta by 15. 1s is
* therefore steered in ~9h. The adjust will decrease
* over time, until it finally reaches 0.
*/
now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
preempt_enable();
return now;
}
static struct clocksource clocksource_tod = {
.name = "tod",
.rating = 400,
.read = read_tod_clock,
.mask = CLOCKSOURCE_MASK(64),
.mult = 1000,
.shift = 12,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
};
struct clocksource * __init clocksource_default_clock(void)
{
return &clocksource_tod;
}
/*
* Initialize the TOD clock and the CPU timer of
* the boot cpu.
*/
void __init time_init(void)
{
/* Reset time synchronization interfaces. */
stp_reset();
/* request the clock comparator external interrupt */
if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
panic("Couldn't request external interrupt 0x1004");
/* request the timing alert external interrupt */
if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
panic("Couldn't request external interrupt 0x1406");
if (__clocksource_register(&clocksource_tod) != 0)
panic("Could not register TOD clock source");
/* Enable TOD clock interrupts on the boot cpu. */
init_cpu_timer();
/* Enable cpu timer interrupts on the boot cpu. */
vtime_init();
}
static DEFINE_PER_CPU(atomic_t, clock_sync_word);
static DEFINE_MUTEX(stp_mutex);
static unsigned long clock_sync_flags;
#define CLOCK_SYNC_HAS_STP 0
#define CLOCK_SYNC_STP 1
#define CLOCK_SYNC_STPINFO_VALID 2
/*
* The get_clock function for the physical clock. It will get the current
* TOD clock, subtract the LPAR offset and write the result to *clock.
* The function returns 0 if the clock is in sync with the external time
* source. If the clock mode is local it will return -EOPNOTSUPP and
* -EAGAIN if the clock is not in sync with the external reference.
*/
int get_phys_clock(unsigned long *clock)
{
atomic_t *sw_ptr;
unsigned int sw0, sw1;
sw_ptr = &get_cpu_var(clock_sync_word);
sw0 = atomic_read(sw_ptr);
*clock = get_tod_clock() - lpar_offset;
sw1 = atomic_read(sw_ptr);
put_cpu_var(clock_sync_word);
if (sw0 == sw1 && (sw0 & 0x80000000U))
/* Success: time is in sync. */
return 0;
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return -EOPNOTSUPP;
if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
return -EACCES;
return -EAGAIN;
}
EXPORT_SYMBOL(get_phys_clock);
/*
* Make get_phys_clock() return -EAGAIN.
*/
static void disable_sync_clock(void *dummy)
{
atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
/*
* Clear the in-sync bit 2^31. All get_phys_clock calls will
* fail until the sync bit is turned back on. In addition
* increase the "sequence" counter to avoid the race of an
* stp event and the complete recovery against get_phys_clock.
*/
atomic_andnot(0x80000000, sw_ptr);
atomic_inc(sw_ptr);
}
/*
* Make get_phys_clock() return 0 again.
* Needs to be called from a context disabled for preemption.
*/
static void enable_sync_clock(void)
{
atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
atomic_or(0x80000000, sw_ptr);
}
/*
* Function to check if the clock is in sync.
*/
static inline int check_sync_clock(void)
{
atomic_t *sw_ptr;
int rc;
sw_ptr = &get_cpu_var(clock_sync_word);
rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
put_cpu_var(clock_sync_word);
return rc;
}
/*
* Apply clock delta to the global data structures.
* This is called once on the CPU that performed the clock sync.
*/
static void clock_sync_global(unsigned long long delta)
{
unsigned long now, adj;
struct ptff_qto qto;
/* Fixup the monotonic sched clock. */
tod_clock_base.eitod += delta;
/* Adjust TOD steering parameters. */
now = get_tod_clock();
adj = tod_steering_end - now;
if (unlikely((s64) adj >= 0))
/* Calculate how much of the old adjustment is left. */
tod_steering_delta = (tod_steering_delta < 0) ?
-(adj >> 15) : (adj >> 15);
tod_steering_delta += delta;
if ((abs(tod_steering_delta) >> 48) != 0)
panic("TOD clock sync offset %lli is too large to drift\n",
tod_steering_delta);
tod_steering_end = now + (abs(tod_steering_delta) << 15);
vdso_data->arch_data.tod_steering_end = tod_steering_end;
/* Update LPAR offset. */
if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
lpar_offset = qto.tod_epoch_difference;
/* Call the TOD clock change notifier. */
atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
}
/*
* Apply clock delta to the per-CPU data structures of this CPU.
* This is called for each online CPU after the call to clock_sync_global.
*/
static void clock_sync_local(unsigned long long delta)
{
/* Add the delta to the clock comparator. */
if (S390_lowcore.clock_comparator != clock_comparator_max) {
S390_lowcore.clock_comparator += delta;
set_clock_comparator(S390_lowcore.clock_comparator);
}
/* Adjust the last_update_clock time-stamp. */
S390_lowcore.last_update_clock += delta;
}
/* Single threaded workqueue used for stp sync events */
static struct workqueue_struct *time_sync_wq;
static void __init time_init_wq(void)
{
if (time_sync_wq)
return;
time_sync_wq = create_singlethread_workqueue("timesync");
}
struct clock_sync_data {
atomic_t cpus;
int in_sync;
unsigned long long clock_delta;
};
/*
* Server Time Protocol (STP) code.
*/
static bool stp_online;
static struct stp_sstpi stp_info;
static void *stp_page;
static void stp_work_fn(struct work_struct *work);
static DECLARE_WORK(stp_work, stp_work_fn);
static struct timer_list stp_timer;
static int __init early_parse_stp(char *p)
{
return kstrtobool(p, &stp_online);
}
early_param("stp", early_parse_stp);
/*
* Reset STP attachment.
*/
static void __init stp_reset(void)
{
int rc;
stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
if (rc == 0)
set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
else if (stp_online) {
pr_warn("The real or virtual hardware system does not provide an STP interface\n");
free_page((unsigned long) stp_page);
stp_page = NULL;
stp_online = false;
}
}
static void stp_timeout(struct timer_list *unused)
{
queue_work(time_sync_wq, &stp_work);
}
static int __init stp_init(void)
{
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return 0;
timer_setup(&stp_timer, stp_timeout, 0);
time_init_wq();
if (!stp_online)
return 0;
queue_work(time_sync_wq, &stp_work);
return 0;
}
arch_initcall(stp_init);
/*
* STP timing alert. There are three causes:
* 1) timing status change
* 2) link availability change
* 3) time control parameter change
* In all three cases we are only interested in the clock source state.
* If a STP clock source is now available use it.
*/
static void stp_timing_alert(struct stp_irq_parm *intparm)
{
if (intparm->tsc || intparm->lac || intparm->tcpc)
queue_work(time_sync_wq, &stp_work);
}
/*
* STP sync check machine check. This is called when the timing state
* changes from the synchronized state to the unsynchronized state.
* After a STP sync check the clock is not in sync. The machine check
* is broadcasted to all cpus at the same time.
*/
int stp_sync_check(void)
{
disable_sync_clock(NULL);
return 1;
}
/*
* STP island condition machine check. This is called when an attached
* server attempts to communicate over an STP link and the servers
* have matching CTN ids and have a valid stratum-1 configuration
* but the configurations do not match.
*/
int stp_island_check(void)
{
disable_sync_clock(NULL);
return 1;
}
void stp_queue_work(void)
{
queue_work(time_sync_wq, &stp_work);
}
static int __store_stpinfo(void)
{
int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
if (rc)
clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
else
set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
return rc;
}
static int stpinfo_valid(void)
{
return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
}
static int stp_sync_clock(void *data)
{
struct clock_sync_data *sync = data;
unsigned long long clock_delta, flags;
static int first;
int rc;
enable_sync_clock();
if (xchg(&first, 1) == 0) {
/* Wait until all other cpus entered the sync function. */
while (atomic_read(&sync->cpus) != 0)
cpu_relax();
rc = 0;
if (stp_info.todoff[0] || stp_info.todoff[1] ||
stp_info.todoff[2] || stp_info.todoff[3] ||
stp_info.tmd != 2) {
flags = vdso_update_begin();
rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
&clock_delta);
if (rc == 0) {
sync->clock_delta = clock_delta;
clock_sync_global(clock_delta);
rc = __store_stpinfo();
if (rc == 0 && stp_info.tmd != 2)
rc = -EAGAIN;
}
vdso_update_end(flags);
}
sync->in_sync = rc ? -EAGAIN : 1;
xchg(&first, 0);
} else {
/* Slave */
atomic_dec(&sync->cpus);
/* Wait for in_sync to be set. */
while (READ_ONCE(sync->in_sync) == 0)
__udelay(1);
}
if (sync->in_sync != 1)
/* Didn't work. Clear per-cpu in sync bit again. */
disable_sync_clock(NULL);
/* Apply clock delta to per-CPU fields of this CPU. */
clock_sync_local(sync->clock_delta);
return 0;
}
static int stp_clear_leap(void)
{
struct __kernel_timex txc;
int ret;
memset(&txc, 0, sizeof(txc));
ret = do_adjtimex(&txc);
if (ret < 0)
return ret;
txc.modes = ADJ_STATUS;
txc.status &= ~(STA_INS|STA_DEL);
return do_adjtimex(&txc);
}
static void stp_check_leap(void)
{
struct stp_stzi stzi;
struct stp_lsoib *lsoib = &stzi.lsoib;
struct __kernel_timex txc;
int64_t timediff;
int leapdiff, ret;
if (!stp_info.lu || !check_sync_clock()) {
/*
* Either a scheduled leap second was removed by the operator,
* or STP is out of sync. In both cases, clear the leap second
* kernel flags.
*/
if (stp_clear_leap() < 0)
pr_err("failed to clear leap second flags\n");
return;
}
if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
pr_err("stzi failed\n");
return;
}
timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
leapdiff = lsoib->nlso - lsoib->also;
if (leapdiff != 1 && leapdiff != -1) {
pr_err("Cannot schedule %d leap seconds\n", leapdiff);
return;
}
if (timediff < 0) {
if (stp_clear_leap() < 0)
pr_err("failed to clear leap second flags\n");
} else if (timediff < 7200) {
memset(&txc, 0, sizeof(txc));
ret = do_adjtimex(&txc);
if (ret < 0)
return;
txc.modes = ADJ_STATUS;
if (leapdiff > 0)
txc.status |= STA_INS;
else
txc.status |= STA_DEL;
ret = do_adjtimex(&txc);
if (ret < 0)
pr_err("failed to set leap second flags\n");
/* arm Timer to clear leap second flags */
mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
} else {
/* The day the leap second is scheduled for hasn't been reached. Retry
* in one hour.
*/
mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
}
}
/*
* STP work. Check for the STP state and take over the clock
* synchronization if the STP clock source is usable.
*/
static void stp_work_fn(struct work_struct *work)
{
struct clock_sync_data stp_sync;
int rc;
/* prevent multiple execution. */
mutex_lock(&stp_mutex);
if (!stp_online) {
chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
del_timer_sync(&stp_timer);
goto out_unlock;
}
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
if (rc)
goto out_unlock;
rc = __store_stpinfo();
if (rc || stp_info.c == 0)
goto out_unlock;
/* Skip synchronization if the clock is already in sync. */
if (!check_sync_clock()) {
memset(&stp_sync, 0, sizeof(stp_sync));
cpus_read_lock();
atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
cpus_read_unlock();
}
if (!check_sync_clock())
/*
* There is a usable clock but the synchonization failed.
* Retry after a second.
*/
mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
else if (stp_info.lu)
stp_check_leap();
out_unlock:
mutex_unlock(&stp_mutex);
}
/*
* STP subsys sysfs interface functions
*/
static struct bus_type stp_subsys = {
.name = "stp",
.dev_name = "stp",
};
static ssize_t ctn_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid())
ret = sprintf(buf, "%016llx\n",
*(unsigned long long *) stp_info.ctnid);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(ctn_id);
static ssize_t ctn_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid())
ret = sprintf(buf, "%i\n", stp_info.ctn);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(ctn_type);
static ssize_t dst_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid() && (stp_info.vbits & 0x2000))
ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(dst_offset);
static ssize_t leap_seconds_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid() && (stp_info.vbits & 0x8000))
ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(leap_seconds);
static ssize_t leap_seconds_scheduled_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct stp_stzi stzi;
ssize_t ret;
mutex_lock(&stp_mutex);
if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
mutex_unlock(&stp_mutex);
return -ENODATA;
}
ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
mutex_unlock(&stp_mutex);
if (ret < 0)
return ret;
if (!stzi.lsoib.p)
return sprintf(buf, "0,0\n");
return sprintf(buf, "%llu,%d\n",
tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
stzi.lsoib.nlso - stzi.lsoib.also);
}
static DEVICE_ATTR_RO(leap_seconds_scheduled);
static ssize_t stratum_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid())
ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(stratum);
static ssize_t time_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid() && (stp_info.vbits & 0x0800))
ret = sprintf(buf, "%i\n", (int) stp_info.tto);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(time_offset);
static ssize_t time_zone_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid() && (stp_info.vbits & 0x4000))
ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(time_zone_offset);
static ssize_t timing_mode_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid())
ret = sprintf(buf, "%i\n", stp_info.tmd);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(timing_mode);
static ssize_t timing_state_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t ret = -ENODATA;
mutex_lock(&stp_mutex);
if (stpinfo_valid())
ret = sprintf(buf, "%i\n", stp_info.tst);
mutex_unlock(&stp_mutex);
return ret;
}
static DEVICE_ATTR_RO(timing_state);
static ssize_t online_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", stp_online);
}
static ssize_t online_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int value;
value = simple_strtoul(buf, NULL, 0);
if (value != 0 && value != 1)
return -EINVAL;
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return -EOPNOTSUPP;
mutex_lock(&stp_mutex);
stp_online = value;
if (stp_online)
set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
else
clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
queue_work(time_sync_wq, &stp_work);
mutex_unlock(&stp_mutex);
return count;
}
/*
* Can't use DEVICE_ATTR because the attribute should be named
* stp/online but dev_attr_online already exists in this file ..
*/
static DEVICE_ATTR_RW(online);
static struct attribute *stp_dev_attrs[] = {
&dev_attr_ctn_id.attr,
&dev_attr_ctn_type.attr,
&dev_attr_dst_offset.attr,
&dev_attr_leap_seconds.attr,
&dev_attr_online.attr,
&dev_attr_leap_seconds_scheduled.attr,
&dev_attr_stratum.attr,
&dev_attr_time_offset.attr,
&dev_attr_time_zone_offset.attr,
&dev_attr_timing_mode.attr,
&dev_attr_timing_state.attr,
NULL
};
ATTRIBUTE_GROUPS(stp_dev);
static int __init stp_init_sysfs(void)
{
return subsys_system_register(&stp_subsys, stp_dev_groups);
}
device_initcall(stp_init_sysfs);