linux/drivers/net/wireless/ath/ath6kl/cfg80211.c
Raja Mani 9aa603578f ath6kl: Fix crash during the connection process
Sometimes, the network manager is failing to connect to the AP due
to the below kernel crash message. The reason behind this,
after issuing the connect command to the chip, the chip is sending
disconnect event and then immediately one connect event to the host
in some random cases.

The host driver resets all states (including cfg80211 state machine)
when it receives disconnect event from the chip. But, still the host
driver reports the next received connect event to cfg80211, at that time
cfg80211 SME state would have been in IDLE state, which was causing
the below kernel crash.

Now, host driver's sme state machine is checked every time before
delivering connect event to cfg80211

  WARNING: at net/wireless/sme.c:517 cfg80211_connect_result+0x10d/0x120()
  [..]
  Call Trace:
  [<c0145732>] warn_slowpath_common+0x72/0xa0
  [<c05d676d>] ? cfg80211_connect_result+0x10d/0x120
  [<c05d676d>] ? cfg80211_connect_result+0x10d/0x120
  [<c0145782>] warn_slowpath_null+0x22/0x30
  [<c05d676d>] cfg80211_connect_result+0x10d/0x120
  [<f83ff497>] ath6kl_cfg80211_connect_event+0x427/0x4f0 [ath6kl]
  [<c035d26a>] ? put_dec+0x2a/0xa0
  [<c035d645>] ? number+0x365/0x380
  [<c0154675>] ? mod_timer+0x135/0x260
  [<c035e00e>] ? format_decode+0x2fe/0x370
  [<c01263c8>] ? default_spin_lock_flags+0x8/0x10
  [<c05fd91f>] ? _raw_spin_lock_irqsave+0x2f/0x50
  [<c0146032>] ? console_unlock+0x172/0x1c0
  [<f8402659>] ath6kl_connect_event+0x89/0x400 [ath6kl]
  [<f840826e>] ath6kl_wmi_control_rx+0x98e/0x1d60 [ath6kl]
  [<c01335b5>] ? __wake_up+0x45/0x60
  [<f84053aa>] ath6kl_rx+0x56a/0x770 [ath6kl]
  [<c04d0242>] ? mmc_release_host+0x22/0x40
  [<c04d9329>] ? sdio_release_host+0x19/0x30
  [<f840a27a>] ? ath6kl_sdio_read_write_sync+0x7a/0xc0 [ath6kl]
  [<f83f82b1>] do_rx_completion+0x41/0x50 [ath6kl]
  [<f83faa6a>] htc_rxmsg_pending_handler+0x6ba/0xbd0 [ath6kl]
  [<f8404bb0>] ? ath6kl_tx_data_cleanup+0x30/0x30 [ath6kl]
  [<f840a1c0>] ? ath6kl_sdio_irq_handler+0x30/0x70 [ath6kl]
  [<f83f7cd5>] ath6kldev_intr_bh_handler+0x2a5/0x630 [ath6kl]
  [<f840a1c0>] ath6kl_sdio_irq_handler+0x30/0x70 [ath6kl]
  [<c04d97c7>] sdio_irq_thread+0xc7/0x2d0
  [<c013aeb0>] ? default_wake_function+0x10/0x20
  [<c012fc98>] ? __wake_up_common+0x48/0x70
  [<c04d9700>] ? sdio_claim_irq+0x200/0x200
  [<c0163854>] kthread+0x74/0x80
  [<c01637e0>] ? kthread_worker_fn+0x160/0x160
  [<c0604c06>] kernel_thread_helper+0x6/0x10

Signed-off-by: Raja Mani <rmani@qca.qualcomm.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-08-09 19:45:24 +03:00

1539 lines
39 KiB
C

/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "cfg80211.h"
#include "debug.h"
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.flags = (_flags), \
.hw_value = (_rateid), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = 5000 + (5 * (_channel)), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_rate ath6kl_rates[] = {
RATETAB_ENT(10, 0x1, 0),
RATETAB_ENT(20, 0x2, 0),
RATETAB_ENT(55, 0x4, 0),
RATETAB_ENT(110, 0x8, 0),
RATETAB_ENT(60, 0x10, 0),
RATETAB_ENT(90, 0x20, 0),
RATETAB_ENT(120, 0x40, 0),
RATETAB_ENT(180, 0x80, 0),
RATETAB_ENT(240, 0x100, 0),
RATETAB_ENT(360, 0x200, 0),
RATETAB_ENT(480, 0x400, 0),
RATETAB_ENT(540, 0x800, 0),
};
#define ath6kl_a_rates (ath6kl_rates + 4)
#define ath6kl_a_rates_size 8
#define ath6kl_g_rates (ath6kl_rates + 0)
#define ath6kl_g_rates_size 12
static struct ieee80211_channel ath6kl_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel ath6kl_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_supported_band ath6kl_band_2ghz = {
.n_channels = ARRAY_SIZE(ath6kl_2ghz_channels),
.channels = ath6kl_2ghz_channels,
.n_bitrates = ath6kl_g_rates_size,
.bitrates = ath6kl_g_rates,
};
static struct ieee80211_supported_band ath6kl_band_5ghz = {
.n_channels = ARRAY_SIZE(ath6kl_5ghz_a_channels),
.channels = ath6kl_5ghz_a_channels,
.n_bitrates = ath6kl_a_rates_size,
.bitrates = ath6kl_a_rates,
};
static int ath6kl_set_wpa_version(struct ath6kl *ar,
enum nl80211_wpa_versions wpa_version)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: %u\n", __func__, wpa_version);
if (!wpa_version) {
ar->auth_mode = NONE_AUTH;
} else if (wpa_version & NL80211_WPA_VERSION_2) {
ar->auth_mode = WPA2_AUTH;
} else if (wpa_version & NL80211_WPA_VERSION_1) {
ar->auth_mode = WPA_AUTH;
} else {
ath6kl_err("%s: %u not supported\n", __func__, wpa_version);
return -ENOTSUPP;
}
return 0;
}
static int ath6kl_set_auth_type(struct ath6kl *ar,
enum nl80211_auth_type auth_type)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, auth_type);
switch (auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
ar->dot11_auth_mode = OPEN_AUTH;
break;
case NL80211_AUTHTYPE_SHARED_KEY:
ar->dot11_auth_mode = SHARED_AUTH;
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
ar->dot11_auth_mode = LEAP_AUTH;
break;
case NL80211_AUTHTYPE_AUTOMATIC:
ar->dot11_auth_mode = OPEN_AUTH;
ar->auto_auth_stage = AUTH_OPEN_IN_PROGRESS;
break;
default:
ath6kl_err("%s: 0x%x not spported\n", __func__, auth_type);
return -ENOTSUPP;
}
return 0;
}
static int ath6kl_set_cipher(struct ath6kl *ar, u32 cipher, bool ucast)
{
u8 *ar_cipher = ucast ? &ar->prwise_crypto : &ar->grp_crypto;
u8 *ar_cipher_len = ucast ? &ar->prwise_crypto_len : &ar->grp_crpto_len;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: cipher 0x%x, ucast %u\n",
__func__, cipher, ucast);
switch (cipher) {
case 0:
/* our own hack to use value 0 as no crypto used */
*ar_cipher = NONE_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_WEP40:
*ar_cipher = WEP_CRYPT;
*ar_cipher_len = 5;
break;
case WLAN_CIPHER_SUITE_WEP104:
*ar_cipher = WEP_CRYPT;
*ar_cipher_len = 13;
break;
case WLAN_CIPHER_SUITE_TKIP:
*ar_cipher = TKIP_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_CCMP:
*ar_cipher = AES_CRYPT;
*ar_cipher_len = 0;
break;
default:
ath6kl_err("cipher 0x%x not supported\n", cipher);
return -ENOTSUPP;
}
return 0;
}
static void ath6kl_set_key_mgmt(struct ath6kl *ar, u32 key_mgmt)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, key_mgmt);
if (key_mgmt == WLAN_AKM_SUITE_PSK) {
if (ar->auth_mode == WPA_AUTH)
ar->auth_mode = WPA_PSK_AUTH;
else if (ar->auth_mode == WPA2_AUTH)
ar->auth_mode = WPA2_PSK_AUTH;
} else if (key_mgmt != WLAN_AKM_SUITE_8021X) {
ar->auth_mode = NONE_AUTH;
}
}
static bool ath6kl_cfg80211_ready(struct ath6kl *ar)
{
if (!test_bit(WMI_READY, &ar->flag)) {
ath6kl_err("wmi is not ready\n");
return false;
}
if (!test_bit(WLAN_ENABLED, &ar->flag)) {
ath6kl_err("wlan disabled\n");
return false;
}
return true;
}
static int ath6kl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct ath6kl *ar = ath6kl_priv(dev);
int status;
ar->sme_state = SME_CONNECTING;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("destroy in progress\n");
return -EBUSY;
}
if (test_bit(SKIP_SCAN, &ar->flag) &&
((sme->channel && sme->channel->center_freq == 0) ||
(sme->bssid && is_zero_ether_addr(sme->bssid)))) {
ath6kl_err("SkipScan: channel or bssid invalid\n");
return -EINVAL;
}
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return -ERESTARTSYS;
}
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("busy, destroy in progress\n");
up(&ar->sem);
return -EBUSY;
}
if (ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)]) {
/*
* sleep until the command queue drains
*/
wait_event_interruptible_timeout(ar->event_wq,
ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)] == 0,
WMI_TIMEOUT);
if (signal_pending(current)) {
ath6kl_err("cmd queue drain timeout\n");
up(&ar->sem);
return -EINTR;
}
}
if (test_bit(CONNECTED, &ar->flag) &&
ar->ssid_len == sme->ssid_len &&
!memcmp(ar->ssid, sme->ssid, ar->ssid_len)) {
ar->reconnect_flag = true;
status = ath6kl_wmi_reconnect_cmd(ar->wmi, ar->req_bssid,
ar->ch_hint);
up(&ar->sem);
if (status) {
ath6kl_err("wmi_reconnect_cmd failed\n");
return -EIO;
}
return 0;
} else if (ar->ssid_len == sme->ssid_len &&
!memcmp(ar->ssid, sme->ssid, ar->ssid_len)) {
ath6kl_disconnect(ar);
}
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = sme->ssid_len;
memcpy(ar->ssid, sme->ssid, sme->ssid_len);
if (sme->channel)
ar->ch_hint = sme->channel->center_freq;
memset(ar->req_bssid, 0, sizeof(ar->req_bssid));
if (sme->bssid && !is_broadcast_ether_addr(sme->bssid))
memcpy(ar->req_bssid, sme->bssid, sizeof(ar->req_bssid));
ath6kl_set_wpa_version(ar, sme->crypto.wpa_versions);
status = ath6kl_set_auth_type(ar, sme->auth_type);
if (status) {
up(&ar->sem);
return status;
}
if (sme->crypto.n_ciphers_pairwise)
ath6kl_set_cipher(ar, sme->crypto.ciphers_pairwise[0], true);
else
ath6kl_set_cipher(ar, 0, true);
ath6kl_set_cipher(ar, sme->crypto.cipher_group, false);
if (sme->crypto.n_akm_suites)
ath6kl_set_key_mgmt(ar, sme->crypto.akm_suites[0]);
if ((sme->key_len) &&
(ar->auth_mode == NONE_AUTH) && (ar->prwise_crypto == WEP_CRYPT)) {
struct ath6kl_key *key = NULL;
if (sme->key_idx < WMI_MIN_KEY_INDEX ||
sme->key_idx > WMI_MAX_KEY_INDEX) {
ath6kl_err("key index %d out of bounds\n",
sme->key_idx);
up(&ar->sem);
return -ENOENT;
}
key = &ar->keys[sme->key_idx];
key->key_len = sme->key_len;
memcpy(key->key, sme->key, key->key_len);
key->cipher = ar->prwise_crypto;
ar->def_txkey_index = sme->key_idx;
ath6kl_wmi_addkey_cmd(ar->wmi, sme->key_idx,
ar->prwise_crypto,
GROUP_USAGE | TX_USAGE,
key->key_len,
NULL,
key->key, KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
}
if (!ar->usr_bss_filter) {
if (ath6kl_wmi_bssfilter_cmd(ar->wmi, ALL_BSS_FILTER, 0) != 0) {
ath6kl_err("couldn't set bss filtering\n");
up(&ar->sem);
return -EIO;
}
}
ar->nw_type = ar->next_mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: connect called with authmode %d dot11 auth %d"
" PW crypto %d PW crypto len %d GRP crypto %d"
" GRP crypto len %d channel hint %u\n",
__func__,
ar->auth_mode, ar->dot11_auth_mode, ar->prwise_crypto,
ar->prwise_crypto_len, ar->grp_crypto,
ar->grp_crpto_len, ar->ch_hint);
ar->reconnect_flag = 0;
status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type,
ar->dot11_auth_mode, ar->auth_mode,
ar->prwise_crypto,
ar->prwise_crypto_len,
ar->grp_crypto, ar->grp_crpto_len,
ar->ssid_len, ar->ssid,
ar->req_bssid, ar->ch_hint,
ar->connect_ctrl_flags);
up(&ar->sem);
if (status == -EINVAL) {
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = 0;
ath6kl_err("invalid request\n");
return -ENOENT;
} else if (status) {
ath6kl_err("ath6kl_wmi_connect_cmd failed\n");
return -EIO;
}
if ((!(ar->connect_ctrl_flags & CONNECT_DO_WPA_OFFLOAD)) &&
((ar->auth_mode == WPA_PSK_AUTH)
|| (ar->auth_mode == WPA2_PSK_AUTH))) {
mod_timer(&ar->disconnect_timer,
jiffies + msecs_to_jiffies(DISCON_TIMER_INTVAL));
}
ar->connect_ctrl_flags &= ~CONNECT_DO_WPA_OFFLOAD;
set_bit(CONNECT_PEND, &ar->flag);
return 0;
}
void ath6kl_cfg80211_connect_event(struct ath6kl *ar, u16 channel,
u8 *bssid, u16 listen_intvl,
u16 beacon_intvl,
enum network_type nw_type,
u8 beacon_ie_len, u8 assoc_req_len,
u8 assoc_resp_len, u8 *assoc_info)
{
u16 size = 0;
u16 capability = 0;
struct cfg80211_bss *bss = NULL;
struct ieee80211_mgmt *mgmt = NULL;
struct ieee80211_channel *ibss_ch = NULL;
s32 signal = 50 * 100;
u8 ie_buf_len = 0;
unsigned char ie_buf[256];
unsigned char *ptr_ie_buf = ie_buf;
unsigned char *ieeemgmtbuf = NULL;
u8 source_mac[ETH_ALEN];
u16 capa_mask;
u16 capa_val;
/* capinfo + listen interval */
u8 assoc_req_ie_offset = sizeof(u16) + sizeof(u16);
/* capinfo + status code + associd */
u8 assoc_resp_ie_offset = sizeof(u16) + sizeof(u16) + sizeof(u16);
u8 *assoc_req_ie = assoc_info + beacon_ie_len + assoc_req_ie_offset;
u8 *assoc_resp_ie = assoc_info + beacon_ie_len + assoc_req_len +
assoc_resp_ie_offset;
assoc_req_len -= assoc_req_ie_offset;
assoc_resp_len -= assoc_resp_ie_offset;
ar->auto_auth_stage = AUTH_IDLE;
if (nw_type & ADHOC_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_ADHOC) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in ibss mode\n", __func__);
return;
}
}
if (nw_type & INFRA_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_STATION) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in station mode\n", __func__);
return;
}
}
if (nw_type & ADHOC_NETWORK) {
capa_mask = WLAN_CAPABILITY_IBSS;
capa_val = WLAN_CAPABILITY_IBSS;
} else {
capa_mask = WLAN_CAPABILITY_ESS;
capa_val = WLAN_CAPABILITY_ESS;
}
/* Before informing the join/connect event, make sure that
* bss entry is present in scan list, if it not present
* construct and insert into scan list, otherwise that
* event will be dropped on the way by cfg80211, due to
* this keys will not be plumbed in case of WEP and
* application will not be aware of join/connect status. */
bss = cfg80211_get_bss(ar->wdev->wiphy, NULL, bssid,
ar->wdev->ssid, ar->wdev->ssid_len,
capa_mask, capa_val);
/*
* Earlier we were updating the cfg about bss by making a beacon frame
* only if the entry for bss is not there. This can have some issue if
* ROAM event is generated and a heavy traffic is ongoing. The ROAM
* event is handled through a work queue and by the time it really gets
* handled, BSS would have been aged out. So it is better to update the
* cfg about BSS irrespective of its entry being present right now or
* not.
*/
if (nw_type & ADHOC_NETWORK) {
/* construct 802.11 mgmt beacon */
if (ptr_ie_buf) {
*ptr_ie_buf++ = WLAN_EID_SSID;
*ptr_ie_buf++ = ar->ssid_len;
memcpy(ptr_ie_buf, ar->ssid, ar->ssid_len);
ptr_ie_buf += ar->ssid_len;
*ptr_ie_buf++ = WLAN_EID_IBSS_PARAMS;
*ptr_ie_buf++ = 2; /* length */
*ptr_ie_buf++ = 0; /* ATIM window */
*ptr_ie_buf++ = 0; /* ATIM window */
/* TODO: update ibss params and include supported rates,
* DS param set, extened support rates, wmm. */
ie_buf_len = ptr_ie_buf - ie_buf;
}
capability |= WLAN_CAPABILITY_IBSS;
if (ar->prwise_crypto == WEP_CRYPT)
capability |= WLAN_CAPABILITY_PRIVACY;
memcpy(source_mac, ar->net_dev->dev_addr, ETH_ALEN);
ptr_ie_buf = ie_buf;
} else {
capability = *(u16 *) (&assoc_info[beacon_ie_len]);
memcpy(source_mac, bssid, ETH_ALEN);
ptr_ie_buf = assoc_req_ie;
ie_buf_len = assoc_req_len;
}
size = offsetof(struct ieee80211_mgmt, u)
+ sizeof(mgmt->u.beacon)
+ ie_buf_len;
ieeemgmtbuf = kzalloc(size, GFP_ATOMIC);
if (!ieeemgmtbuf) {
ath6kl_err("ieee mgmt buf alloc error\n");
cfg80211_put_bss(bss);
return;
}
mgmt = (struct ieee80211_mgmt *)ieeemgmtbuf;
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_BEACON);
memset(mgmt->da, 0xff, ETH_ALEN); /* broadcast addr */
memcpy(mgmt->sa, source_mac, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
mgmt->u.beacon.beacon_int = cpu_to_le16(beacon_intvl);
mgmt->u.beacon.capab_info = cpu_to_le16(capability);
memcpy(mgmt->u.beacon.variable, ptr_ie_buf, ie_buf_len);
ibss_ch = ieee80211_get_channel(ar->wdev->wiphy, (int)channel);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: inform bss with bssid %pM channel %d beacon_intvl %d capability 0x%x\n",
__func__, mgmt->bssid, ibss_ch->hw_value,
beacon_intvl, capability);
bss = cfg80211_inform_bss_frame(ar->wdev->wiphy,
ibss_ch, mgmt,
size, signal, GFP_KERNEL);
kfree(ieeemgmtbuf);
cfg80211_put_bss(bss);
if (nw_type & ADHOC_NETWORK) {
cfg80211_ibss_joined(ar->net_dev, bssid, GFP_KERNEL);
return;
}
if (ar->sme_state == SME_CONNECTING) {
/* inform connect result to cfg80211 */
ar->sme_state = SME_CONNECTED;
cfg80211_connect_result(ar->net_dev, bssid,
assoc_req_ie, assoc_req_len,
assoc_resp_ie, assoc_resp_len,
WLAN_STATUS_SUCCESS, GFP_KERNEL);
} else if (ar->sme_state == SME_CONNECTED) {
/* inform roam event to cfg80211 */
cfg80211_roamed(ar->net_dev, ibss_ch, bssid,
assoc_req_ie, assoc_req_len,
assoc_resp_ie, assoc_resp_len, GFP_KERNEL);
}
}
static int ath6kl_cfg80211_disconnect(struct wiphy *wiphy,
struct net_device *dev, u16 reason_code)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(dev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: reason=%u\n", __func__,
reason_code);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("busy, destroy in progress\n");
return -EBUSY;
}
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return -ERESTARTSYS;
}
ar->reconnect_flag = 0;
ath6kl_disconnect(ar);
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = 0;
if (!test_bit(SKIP_SCAN, &ar->flag))
memset(ar->req_bssid, 0, sizeof(ar->req_bssid));
up(&ar->sem);
return 0;
}
void ath6kl_cfg80211_disconnect_event(struct ath6kl *ar, u8 reason,
u8 *bssid, u8 assoc_resp_len,
u8 *assoc_info, u16 proto_reason)
{
struct ath6kl_key *key = NULL;
u16 status;
if (ar->scan_req) {
cfg80211_scan_done(ar->scan_req, true);
ar->scan_req = NULL;
}
if (ar->nw_type & ADHOC_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_ADHOC) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in ibss mode\n", __func__);
return;
}
memset(bssid, 0, ETH_ALEN);
cfg80211_ibss_joined(ar->net_dev, bssid, GFP_KERNEL);
return;
}
if (ar->nw_type & INFRA_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_STATION) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in station mode\n", __func__);
return;
}
}
if (!test_bit(CONNECT_PEND, &ar->flag)) {
if (reason != DISCONNECT_CMD)
ath6kl_wmi_disconnect_cmd(ar->wmi);
return;
}
if (reason == NO_NETWORK_AVAIL) {
/* connect cmd failed */
ath6kl_wmi_disconnect_cmd(ar->wmi);
return;
}
if (reason != DISCONNECT_CMD)
return;
if (!ar->auto_auth_stage) {
clear_bit(CONNECT_PEND, &ar->flag);
if (ar->sme_state == SME_CONNECTING) {
cfg80211_connect_result(ar->net_dev,
bssid, NULL, 0,
NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
} else {
cfg80211_disconnected(ar->net_dev, reason,
NULL, 0, GFP_KERNEL);
}
ar->sme_state = SME_DISCONNECTED;
return;
}
if (ar->dot11_auth_mode != OPEN_AUTH)
return;
/*
* If the current auth algorithm is open, try shared and
* make autoAuthStage idle. We do not make it leap for now
* being.
*/
key = &ar->keys[ar->def_txkey_index];
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return;
}
ar->dot11_auth_mode = SHARED_AUTH;
ar->auto_auth_stage = AUTH_IDLE;
ath6kl_wmi_addkey_cmd(ar->wmi,
ar->def_txkey_index,
ar->prwise_crypto,
GROUP_USAGE | TX_USAGE,
key->key_len, NULL,
key->key,
KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
status = ath6kl_wmi_connect_cmd(ar->wmi,
ar->nw_type,
ar->dot11_auth_mode,
ar->auth_mode,
ar->prwise_crypto,
ar->prwise_crypto_len,
ar->grp_crypto,
ar->grp_crpto_len,
ar->ssid_len,
ar->ssid,
ar->req_bssid,
ar->ch_hint,
ar->connect_ctrl_flags);
up(&ar->sem);
}
static inline bool is_ch_11a(u16 ch)
{
return (!((ch >= 2412) && (ch <= 2484)));
}
/* struct ath6kl_node_table::nt_nodelock is locked when calling this */
void ath6kl_cfg80211_scan_node(struct wiphy *wiphy, struct bss *ni)
{
u16 size;
unsigned char *ieeemgmtbuf = NULL;
struct ieee80211_mgmt *mgmt;
struct ieee80211_channel *channel;
struct ieee80211_supported_band *band;
struct ath6kl_common_ie *cie;
s32 signal;
int freq;
cie = &ni->ni_cie;
if (is_ch_11a(cie->ie_chan))
band = wiphy->bands[IEEE80211_BAND_5GHZ]; /* 11a */
else if ((cie->ie_erp) || (cie->ie_xrates))
band = wiphy->bands[IEEE80211_BAND_2GHZ]; /* 11g */
else
band = wiphy->bands[IEEE80211_BAND_2GHZ]; /* 11b */
size = ni->ni_framelen + offsetof(struct ieee80211_mgmt, u);
ieeemgmtbuf = kmalloc(size, GFP_ATOMIC);
if (!ieeemgmtbuf) {
ath6kl_err("ieee mgmt buf alloc error\n");
return;
}
/*
* TODO: Update target to include 802.11 mac header while sending
* bss info. Target removes 802.11 mac header while sending the bss
* info to host, cfg80211 needs it, for time being just filling the
* da, sa and bssid fields alone.
*/
mgmt = (struct ieee80211_mgmt *)ieeemgmtbuf;
memset(mgmt->da, 0xff, ETH_ALEN); /*broadcast addr */
memcpy(mgmt->sa, ni->ni_macaddr, ETH_ALEN);
memcpy(mgmt->bssid, ni->ni_macaddr, ETH_ALEN);
memcpy(ieeemgmtbuf + offsetof(struct ieee80211_mgmt, u),
ni->ni_buf, ni->ni_framelen);
freq = cie->ie_chan;
channel = ieee80211_get_channel(wiphy, freq);
signal = ni->ni_snr * 100;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: bssid %pM ch %d freq %d size %d\n", __func__,
mgmt->bssid, channel->hw_value, freq, size);
cfg80211_inform_bss_frame(wiphy, channel, mgmt,
size, signal, GFP_ATOMIC);
kfree(ieeemgmtbuf);
}
static int ath6kl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
int ret = 0;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (!ar->usr_bss_filter) {
if (ath6kl_wmi_bssfilter_cmd(ar->wmi,
(test_bit(CONNECTED, &ar->flag) ?
ALL_BUT_BSS_FILTER :
ALL_BSS_FILTER), 0) != 0) {
ath6kl_err("couldn't set bss filtering\n");
return -EIO;
}
}
if (request->n_ssids && request->ssids[0].ssid_len) {
u8 i;
if (request->n_ssids > (MAX_PROBED_SSID_INDEX - 1))
request->n_ssids = MAX_PROBED_SSID_INDEX - 1;
for (i = 0; i < request->n_ssids; i++)
ath6kl_wmi_probedssid_cmd(ar->wmi, i + 1,
SPECIFIC_SSID_FLAG,
request->ssids[i].ssid_len,
request->ssids[i].ssid);
}
if (ath6kl_wmi_startscan_cmd(ar->wmi, WMI_LONG_SCAN, 0,
false, 0, 0, 0, NULL) != 0) {
ath6kl_err("wmi_startscan_cmd failed\n");
ret = -EIO;
}
ar->scan_req = request;
return ret;
}
void ath6kl_cfg80211_scan_complete_event(struct ath6kl *ar, int status)
{
int i;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: status %d\n", __func__, status);
if (!ar->scan_req)
return;
if ((status == -ECANCELED) || (status == -EBUSY)) {
cfg80211_scan_done(ar->scan_req, true);
goto out;
}
/* Translate data to cfg80211 mgmt format */
wlan_iterate_nodes(&ar->scan_table, ar->wdev->wiphy);
cfg80211_scan_done(ar->scan_req, false);
if (ar->scan_req->n_ssids && ar->scan_req->ssids[0].ssid_len) {
for (i = 0; i < ar->scan_req->n_ssids; i++) {
ath6kl_wmi_probedssid_cmd(ar->wmi, i + 1,
DISABLE_SSID_FLAG,
0, NULL);
}
}
out:
ar->scan_req = NULL;
}
static int ath6kl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr,
struct key_params *params)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
struct ath6kl_key *key = NULL;
u8 key_usage;
u8 key_type;
int status = 0;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
key = &ar->keys[key_index];
memset(key, 0, sizeof(struct ath6kl_key));
if (pairwise)
key_usage = PAIRWISE_USAGE;
else
key_usage = GROUP_USAGE;
if (params) {
if (params->key_len > WLAN_MAX_KEY_LEN ||
params->seq_len > sizeof(key->seq))
return -EINVAL;
key->key_len = params->key_len;
memcpy(key->key, params->key, key->key_len);
key->seq_len = params->seq_len;
memcpy(key->seq, params->seq, key->seq_len);
key->cipher = params->cipher;
}
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
key_type = WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
key_type = TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
key_type = AES_CRYPT;
break;
default:
return -ENOTSUPP;
}
if (((ar->auth_mode == WPA_PSK_AUTH)
|| (ar->auth_mode == WPA2_PSK_AUTH))
&& (key_usage & GROUP_USAGE))
del_timer(&ar->disconnect_timer);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: index %d, key_len %d, key_type 0x%x, key_usage 0x%x, seq_len %d\n",
__func__, key_index, key->key_len, key_type,
key_usage, key->seq_len);
ar->def_txkey_index = key_index;
status = ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index,
key_type, key_usage, key->key_len,
key->seq, key->key, KEY_OP_INIT_VAL,
(u8 *) mac_addr, SYNC_BOTH_WMIFLAG);
if (status)
return -EIO;
return 0;
}
static int ath6kl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
if (!ar->keys[key_index].key_len) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: index %d is empty\n", __func__, key_index);
return 0;
}
ar->keys[key_index].key_len = 0;
return ath6kl_wmi_deletekey_cmd(ar->wmi, key_index);
}
static int ath6kl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr, void *cookie,
void (*callback) (void *cookie,
struct key_params *))
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
struct ath6kl_key *key = NULL;
struct key_params params;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
key = &ar->keys[key_index];
memset(&params, 0, sizeof(params));
params.cipher = key->cipher;
params.key_len = key->key_len;
params.seq_len = key->seq_len;
params.seq = key->seq;
params.key = key->key;
callback(cookie, &params);
return key->key_len ? 0 : -ENOENT;
}
static int ath6kl_cfg80211_set_default_key(struct wiphy *wiphy,
struct net_device *ndev,
u8 key_index, bool unicast,
bool multicast)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
struct ath6kl_key *key = NULL;
int status = 0;
u8 key_usage;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n",
__func__, key_index);
return -ENOENT;
}
if (!ar->keys[key_index].key_len) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: invalid key index %d\n",
__func__, key_index);
return -EINVAL;
}
ar->def_txkey_index = key_index;
key = &ar->keys[ar->def_txkey_index];
key_usage = GROUP_USAGE;
if (ar->prwise_crypto == WEP_CRYPT)
key_usage |= TX_USAGE;
status = ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index,
ar->prwise_crypto, key_usage,
key->key_len, key->seq, key->key,
KEY_OP_INIT_VAL, NULL,
SYNC_BOTH_WMIFLAG);
if (status)
return -EIO;
return 0;
}
void ath6kl_cfg80211_tkip_micerr_event(struct ath6kl *ar, u8 keyid,
bool ismcast)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: keyid %d, ismcast %d\n", __func__, keyid, ismcast);
cfg80211_michael_mic_failure(ar->net_dev, ar->bssid,
(ismcast ? NL80211_KEYTYPE_GROUP :
NL80211_KEYTYPE_PAIRWISE), keyid, NULL,
GFP_KERNEL);
}
static int ath6kl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
int ret;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: changed 0x%x\n", __func__,
changed);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
ret = ath6kl_wmi_set_rts_cmd(ar->wmi, wiphy->rts_threshold);
if (ret != 0) {
ath6kl_err("ath6kl_wmi_set_rts_cmd failed\n");
return -EIO;
}
}
return 0;
}
/*
* The type nl80211_tx_power_setting replaces the following
* data type from 2.6.36 onwards
*/
static int ath6kl_cfg80211_set_txpower(struct wiphy *wiphy,
enum nl80211_tx_power_setting type,
int dbm)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
u8 ath6kl_dbm;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x, dbm %d\n", __func__,
type, dbm);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
return 0;
case NL80211_TX_POWER_LIMITED:
ar->tx_pwr = ath6kl_dbm = dbm;
break;
default:
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x not supported\n",
__func__, type);
return -EOPNOTSUPP;
}
ath6kl_wmi_set_tx_pwr_cmd(ar->wmi, ath6kl_dbm);
return 0;
}
static int ath6kl_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (test_bit(CONNECTED, &ar->flag)) {
ar->tx_pwr = 0;
if (ath6kl_wmi_get_tx_pwr_cmd(ar->wmi) != 0) {
ath6kl_err("ath6kl_wmi_get_tx_pwr_cmd failed\n");
return -EIO;
}
wait_event_interruptible_timeout(ar->event_wq, ar->tx_pwr != 0,
5 * HZ);
if (signal_pending(current)) {
ath6kl_err("target did not respond\n");
return -EINTR;
}
}
*dbm = ar->tx_pwr;
return 0;
}
static int ath6kl_cfg80211_set_power_mgmt(struct wiphy *wiphy,
struct net_device *dev,
bool pmgmt, int timeout)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct wmi_power_mode_cmd mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: pmgmt %d, timeout %d\n",
__func__, pmgmt, timeout);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (pmgmt) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: max perf\n", __func__);
mode.pwr_mode = REC_POWER;
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: rec power\n", __func__);
mode.pwr_mode = MAX_PERF_POWER;
}
if (ath6kl_wmi_powermode_cmd(ar->wmi, mode.pwr_mode) != 0) {
ath6kl_err("wmi_powermode_cmd failed\n");
return -EIO;
}
return 0;
}
static int ath6kl_cfg80211_change_iface(struct wiphy *wiphy,
struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct ath6kl *ar = ath6kl_priv(ndev);
struct wireless_dev *wdev = ar->wdev;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type %u\n", __func__, type);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
switch (type) {
case NL80211_IFTYPE_STATION:
ar->next_mode = INFRA_NETWORK;
break;
case NL80211_IFTYPE_ADHOC:
ar->next_mode = ADHOC_NETWORK;
break;
default:
ath6kl_err("invalid interface type %u\n", type);
return -EOPNOTSUPP;
}
wdev->iftype = type;
return 0;
}
static int ath6kl_cfg80211_join_ibss(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_ibss_params *ibss_param)
{
struct ath6kl *ar = ath6kl_priv(dev);
int status;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
ar->ssid_len = ibss_param->ssid_len;
memcpy(ar->ssid, ibss_param->ssid, ar->ssid_len);
if (ibss_param->channel)
ar->ch_hint = ibss_param->channel->center_freq;
if (ibss_param->channel_fixed) {
/*
* TODO: channel_fixed: The channel should be fixed, do not
* search for IBSSs to join on other channels. Target
* firmware does not support this feature, needs to be
* updated.
*/
return -EOPNOTSUPP;
}
memset(ar->req_bssid, 0, sizeof(ar->req_bssid));
if (ibss_param->bssid && !is_broadcast_ether_addr(ibss_param->bssid))
memcpy(ar->req_bssid, ibss_param->bssid, sizeof(ar->req_bssid));
ath6kl_set_wpa_version(ar, 0);
status = ath6kl_set_auth_type(ar, NL80211_AUTHTYPE_OPEN_SYSTEM);
if (status)
return status;
if (ibss_param->privacy) {
ath6kl_set_cipher(ar, WLAN_CIPHER_SUITE_WEP40, true);
ath6kl_set_cipher(ar, WLAN_CIPHER_SUITE_WEP40, false);
} else {
ath6kl_set_cipher(ar, 0, true);
ath6kl_set_cipher(ar, 0, false);
}
ar->nw_type = ar->next_mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: connect called with authmode %d dot11 auth %d"
" PW crypto %d PW crypto len %d GRP crypto %d"
" GRP crypto len %d channel hint %u\n",
__func__,
ar->auth_mode, ar->dot11_auth_mode, ar->prwise_crypto,
ar->prwise_crypto_len, ar->grp_crypto,
ar->grp_crpto_len, ar->ch_hint);
status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type,
ar->dot11_auth_mode, ar->auth_mode,
ar->prwise_crypto,
ar->prwise_crypto_len,
ar->grp_crypto, ar->grp_crpto_len,
ar->ssid_len, ar->ssid,
ar->req_bssid, ar->ch_hint,
ar->connect_ctrl_flags);
set_bit(CONNECT_PEND, &ar->flag);
return 0;
}
static int ath6kl_cfg80211_leave_ibss(struct wiphy *wiphy,
struct net_device *dev)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(dev);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
ath6kl_disconnect(ar);
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = 0;
return 0;
}
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
};
static bool is_rate_legacy(s32 rate)
{
static const s32 legacy[] = { 1000, 2000, 5500, 11000,
6000, 9000, 12000, 18000, 24000,
36000, 48000, 54000
};
u8 i;
for (i = 0; i < ARRAY_SIZE(legacy); i++)
if (rate == legacy[i])
return true;
return false;
}
static bool is_rate_ht20(s32 rate, u8 *mcs, bool *sgi)
{
static const s32 ht20[] = { 6500, 13000, 19500, 26000, 39000,
52000, 58500, 65000, 72200
};
u8 i;
for (i = 0; i < ARRAY_SIZE(ht20); i++) {
if (rate == ht20[i]) {
if (i == ARRAY_SIZE(ht20) - 1)
/* last rate uses sgi */
*sgi = true;
else
*sgi = false;
*mcs = i;
return true;
}
}
return false;
}
static bool is_rate_ht40(s32 rate, u8 *mcs, bool *sgi)
{
static const s32 ht40[] = { 13500, 27000, 40500, 54000,
81000, 108000, 121500, 135000,
150000
};
u8 i;
for (i = 0; i < ARRAY_SIZE(ht40); i++) {
if (rate == ht40[i]) {
if (i == ARRAY_SIZE(ht40) - 1)
/* last rate uses sgi */
*sgi = true;
else
*sgi = false;
*mcs = i;
return true;
}
}
return false;
}
static int ath6kl_get_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_info *sinfo)
{
struct ath6kl *ar = ath6kl_priv(dev);
long left;
bool sgi;
s32 rate;
int ret;
u8 mcs;
if (memcmp(mac, ar->bssid, ETH_ALEN) != 0)
return -ENOENT;
if (down_interruptible(&ar->sem))
return -EBUSY;
set_bit(STATS_UPDATE_PEND, &ar->flag);
ret = ath6kl_wmi_get_stats_cmd(ar->wmi);
if (ret != 0) {
up(&ar->sem);
return -EIO;
}
left = wait_event_interruptible_timeout(ar->event_wq,
!test_bit(STATS_UPDATE_PEND,
&ar->flag),
WMI_TIMEOUT);
up(&ar->sem);
if (left == 0)
return -ETIMEDOUT;
else if (left < 0)
return left;
if (ar->target_stats.rx_byte) {
sinfo->rx_bytes = ar->target_stats.rx_byte;
sinfo->filled |= STATION_INFO_RX_BYTES;
sinfo->rx_packets = ar->target_stats.rx_pkt;
sinfo->filled |= STATION_INFO_RX_PACKETS;
}
if (ar->target_stats.tx_byte) {
sinfo->tx_bytes = ar->target_stats.tx_byte;
sinfo->filled |= STATION_INFO_TX_BYTES;
sinfo->tx_packets = ar->target_stats.tx_pkt;
sinfo->filled |= STATION_INFO_TX_PACKETS;
}
sinfo->signal = ar->target_stats.cs_rssi;
sinfo->filled |= STATION_INFO_SIGNAL;
rate = ar->target_stats.tx_ucast_rate;
if (is_rate_legacy(rate)) {
sinfo->txrate.legacy = rate / 100;
} else if (is_rate_ht20(rate, &mcs, &sgi)) {
if (sgi) {
sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
sinfo->txrate.mcs = mcs - 1;
} else {
sinfo->txrate.mcs = mcs;
}
sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS;
} else if (is_rate_ht40(rate, &mcs, &sgi)) {
if (sgi) {
sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
sinfo->txrate.mcs = mcs - 1;
} else {
sinfo->txrate.mcs = mcs;
}
sinfo->txrate.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS;
} else {
ath6kl_warn("invalid rate: %d\n", rate);
return 0;
}
sinfo->filled |= STATION_INFO_TX_BITRATE;
return 0;
}
static int ath6kl_set_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct ath6kl *ar = ath6kl_priv(netdev);
return ath6kl_wmi_setpmkid_cmd(ar->wmi, pmksa->bssid,
pmksa->pmkid, true);
}
static int ath6kl_del_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct ath6kl *ar = ath6kl_priv(netdev);
return ath6kl_wmi_setpmkid_cmd(ar->wmi, pmksa->bssid,
pmksa->pmkid, false);
}
static int ath6kl_flush_pmksa(struct wiphy *wiphy, struct net_device *netdev)
{
struct ath6kl *ar = ath6kl_priv(netdev);
if (test_bit(CONNECTED, &ar->flag))
return ath6kl_wmi_setpmkid_cmd(ar->wmi, ar->bssid, NULL, false);
return 0;
}
static struct cfg80211_ops ath6kl_cfg80211_ops = {
.change_virtual_intf = ath6kl_cfg80211_change_iface,
.scan = ath6kl_cfg80211_scan,
.connect = ath6kl_cfg80211_connect,
.disconnect = ath6kl_cfg80211_disconnect,
.add_key = ath6kl_cfg80211_add_key,
.get_key = ath6kl_cfg80211_get_key,
.del_key = ath6kl_cfg80211_del_key,
.set_default_key = ath6kl_cfg80211_set_default_key,
.set_wiphy_params = ath6kl_cfg80211_set_wiphy_params,
.set_tx_power = ath6kl_cfg80211_set_txpower,
.get_tx_power = ath6kl_cfg80211_get_txpower,
.set_power_mgmt = ath6kl_cfg80211_set_power_mgmt,
.join_ibss = ath6kl_cfg80211_join_ibss,
.leave_ibss = ath6kl_cfg80211_leave_ibss,
.get_station = ath6kl_get_station,
.set_pmksa = ath6kl_set_pmksa,
.del_pmksa = ath6kl_del_pmksa,
.flush_pmksa = ath6kl_flush_pmksa,
};
struct wireless_dev *ath6kl_cfg80211_init(struct device *dev)
{
int ret = 0;
struct wireless_dev *wdev;
wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
if (!wdev) {
ath6kl_err("couldn't allocate wireless device\n");
return NULL;
}
/* create a new wiphy for use with cfg80211 */
wdev->wiphy = wiphy_new(&ath6kl_cfg80211_ops, sizeof(struct ath6kl));
if (!wdev->wiphy) {
ath6kl_err("couldn't allocate wiphy device\n");
kfree(wdev);
return NULL;
}
/* set device pointer for wiphy */
set_wiphy_dev(wdev->wiphy, dev);
wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
/* max num of ssids that can be probed during scanning */
wdev->wiphy->max_scan_ssids = MAX_PROBED_SSID_INDEX;
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &ath6kl_band_2ghz;
wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &ath6kl_band_5ghz;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->cipher_suites = cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
ret = wiphy_register(wdev->wiphy);
if (ret < 0) {
ath6kl_err("couldn't register wiphy device\n");
wiphy_free(wdev->wiphy);
kfree(wdev);
return NULL;
}
return wdev;
}
void ath6kl_cfg80211_deinit(struct ath6kl *ar)
{
struct wireless_dev *wdev = ar->wdev;
if (ar->scan_req) {
cfg80211_scan_done(ar->scan_req, true);
ar->scan_req = NULL;
}
if (!wdev)
return;
wiphy_unregister(wdev->wiphy);
wiphy_free(wdev->wiphy);
kfree(wdev);
}