linux/drivers/infiniband/hw/hfi1/init.c
Vishwanathapura, Niranjana 64551ede6c IB/hfi1: VNIC SDMA support
HFI1 VNIC SDMA support enables transmission of VNIC packets over SDMA.
Map VNIC queues to SDMA engines and support halting and wakeup of the
VNIC queues.

Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Niranjana Vishwanathapura <niranjana.vishwanathapura@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-04-20 15:19:41 -04:00

1877 lines
50 KiB
C

/*
* Copyright(c) 2015-2017 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/hrtimer.h>
#include <rdma/rdma_vt.h>
#include "hfi.h"
#include "device.h"
#include "common.h"
#include "trace.h"
#include "mad.h"
#include "sdma.h"
#include "debugfs.h"
#include "verbs.h"
#include "aspm.h"
#include "affinity.h"
#include "vnic.h"
#undef pr_fmt
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
/*
* min buffers we want to have per context, after driver
*/
#define HFI1_MIN_USER_CTXT_BUFCNT 7
#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
#define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
/*
* Number of user receive contexts we are configured to use (to allow for more
* pio buffers per ctxt, etc.) Zero means use one user context per CPU.
*/
int num_user_contexts = -1;
module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
MODULE_PARM_DESC(
num_user_contexts, "Set max number of user contexts to use");
uint krcvqs[RXE_NUM_DATA_VL];
int krcvqsset;
module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
/* computed based on above array */
unsigned long n_krcvqs;
static unsigned hfi1_rcvarr_split = 25;
module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
static uint eager_buffer_size = (2 << 20); /* 2MB */
module_param(eager_buffer_size, uint, S_IRUGO);
MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
static uint hfi1_hdrq_entsize = 32;
module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
unsigned int user_credit_return_threshold = 33; /* default is 33% */
module_param(user_credit_return_threshold, uint, S_IRUGO);
MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
static inline u64 encode_rcv_header_entry_size(u16);
static struct idr hfi1_unit_table;
u32 hfi1_cpulist_count;
unsigned long *hfi1_cpulist;
/*
* Common code for creating the receive context array.
*/
int hfi1_create_ctxts(struct hfi1_devdata *dd)
{
unsigned i;
int ret;
/* Control context has to be always 0 */
BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
GFP_KERNEL, dd->node);
if (!dd->rcd)
goto nomem;
/* create one or more kernel contexts */
for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
struct hfi1_pportdata *ppd;
struct hfi1_ctxtdata *rcd;
ppd = dd->pport + (i % dd->num_pports);
/* dd->rcd[i] gets assigned inside the callee */
rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
if (!rcd) {
dd_dev_err(dd,
"Unable to allocate kernel receive context, failing\n");
goto nomem;
}
/*
* Set up the kernel context flags here and now because they
* use default values for all receive side memories. User
* contexts will be handled as they are created.
*/
rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
HFI1_CAP_KGET(NODROP_RHQ_FULL) |
HFI1_CAP_KGET(NODROP_EGR_FULL) |
HFI1_CAP_KGET(DMA_RTAIL);
/* Control context must use DMA_RTAIL */
if (rcd->ctxt == HFI1_CTRL_CTXT)
rcd->flags |= HFI1_CAP_DMA_RTAIL;
rcd->seq_cnt = 1;
rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
if (!rcd->sc) {
dd_dev_err(dd,
"Unable to allocate kernel send context, failing\n");
goto nomem;
}
ret = hfi1_init_ctxt(rcd->sc);
if (ret < 0) {
dd_dev_err(dd,
"Failed to setup kernel receive context, failing\n");
ret = -EFAULT;
goto bail;
}
}
/*
* Initialize aspm, to be done after gen3 transition and setting up
* contexts and before enabling interrupts
*/
aspm_init(dd);
return 0;
nomem:
ret = -ENOMEM;
bail:
if (dd->rcd) {
for (i = 0; i < dd->num_rcv_contexts; ++i)
hfi1_free_ctxtdata(dd, dd->rcd[i]);
}
kfree(dd->rcd);
dd->rcd = NULL;
return ret;
}
/*
* Common code for user and kernel context setup.
*/
struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
int numa)
{
struct hfi1_devdata *dd = ppd->dd;
struct hfi1_ctxtdata *rcd;
unsigned kctxt_ngroups = 0;
u32 base;
if (dd->rcv_entries.nctxt_extra >
dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
(dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
if (rcd) {
u32 rcvtids, max_entries;
hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
INIT_LIST_HEAD(&rcd->qp_wait_list);
rcd->ppd = ppd;
rcd->dd = dd;
rcd->cnt = 1;
rcd->ctxt = ctxt;
dd->rcd[ctxt] = rcd;
rcd->numa_id = numa;
rcd->rcv_array_groups = dd->rcv_entries.ngroups;
mutex_init(&rcd->exp_lock);
/*
* Calculate the context's RcvArray entry starting point.
* We do this here because we have to take into account all
* the RcvArray entries that previous context would have
* taken and we have to account for any extra groups assigned
* to the static (kernel) or dynamic (vnic/user) contexts.
*/
if (ctxt < dd->first_dyn_alloc_ctxt) {
if (ctxt < kctxt_ngroups) {
base = ctxt * (dd->rcv_entries.ngroups + 1);
rcd->rcv_array_groups++;
} else
base = kctxt_ngroups +
(ctxt * dd->rcv_entries.ngroups);
} else {
u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
kctxt_ngroups);
if (ct < dd->rcv_entries.nctxt_extra) {
base += ct * (dd->rcv_entries.ngroups + 1);
rcd->rcv_array_groups++;
} else
base += dd->rcv_entries.nctxt_extra +
(ct * dd->rcv_entries.ngroups);
}
rcd->eager_base = base * dd->rcv_entries.group_size;
rcd->rcvhdrq_cnt = rcvhdrcnt;
rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
/*
* Simple Eager buffer allocation: we have already pre-allocated
* the number of RcvArray entry groups. Each ctxtdata structure
* holds the number of groups for that context.
*
* To follow CSR requirements and maintain cacheline alignment,
* make sure all sizes and bases are multiples of group_size.
*
* The expected entry count is what is left after assigning
* eager.
*/
max_entries = rcd->rcv_array_groups *
dd->rcv_entries.group_size;
rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
rcd->egrbufs.count = round_down(rcvtids,
dd->rcv_entries.group_size);
if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
rcd->ctxt);
rcd->egrbufs.count = MAX_EAGER_ENTRIES;
}
hfi1_cdbg(PROC,
"ctxt%u: max Eager buffer RcvArray entries: %u\n",
rcd->ctxt, rcd->egrbufs.count);
/*
* Allocate array that will hold the eager buffer accounting
* data.
* This will allocate the maximum possible buffer count based
* on the value of the RcvArray split parameter.
* The resulting value will be rounded down to the closest
* multiple of dd->rcv_entries.group_size.
*/
rcd->egrbufs.buffers = kzalloc_node(
rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
GFP_KERNEL, numa);
if (!rcd->egrbufs.buffers)
goto bail;
rcd->egrbufs.rcvtids = kzalloc_node(
rcd->egrbufs.count *
sizeof(*rcd->egrbufs.rcvtids),
GFP_KERNEL, numa);
if (!rcd->egrbufs.rcvtids)
goto bail;
rcd->egrbufs.size = eager_buffer_size;
/*
* The size of the buffers programmed into the RcvArray
* entries needs to be big enough to handle the highest
* MTU supported.
*/
if (rcd->egrbufs.size < hfi1_max_mtu) {
rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
hfi1_cdbg(PROC,
"ctxt%u: eager bufs size too small. Adjusting to %zu\n",
rcd->ctxt, rcd->egrbufs.size);
}
rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
/* Applicable only for statically created kernel contexts */
if (ctxt < dd->first_dyn_alloc_ctxt) {
rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
GFP_KERNEL, numa);
if (!rcd->opstats)
goto bail;
}
}
return rcd;
bail:
dd->rcd[ctxt] = NULL;
kfree(rcd->egrbufs.rcvtids);
kfree(rcd->egrbufs.buffers);
kfree(rcd);
return NULL;
}
/*
* Convert a receive header entry size that to the encoding used in the CSR.
*
* Return a zero if the given size is invalid.
*/
static inline u64 encode_rcv_header_entry_size(u16 size)
{
/* there are only 3 valid receive header entry sizes */
if (size == 2)
return 1;
if (size == 16)
return 2;
else if (size == 32)
return 4;
return 0; /* invalid */
}
/*
* Select the largest ccti value over all SLs to determine the intra-
* packet gap for the link.
*
* called with cca_timer_lock held (to protect access to cca_timer
* array), and rcu_read_lock() (to protect access to cc_state).
*/
void set_link_ipg(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
struct cc_state *cc_state;
int i;
u16 cce, ccti_limit, max_ccti = 0;
u16 shift, mult;
u64 src;
u32 current_egress_rate; /* Mbits /sec */
u32 max_pkt_time;
/*
* max_pkt_time is the maximum packet egress time in units
* of the fabric clock period 1/(805 MHz).
*/
cc_state = get_cc_state(ppd);
if (!cc_state)
/*
* This should _never_ happen - rcu_read_lock() is held,
* and set_link_ipg() should not be called if cc_state
* is NULL.
*/
return;
for (i = 0; i < OPA_MAX_SLS; i++) {
u16 ccti = ppd->cca_timer[i].ccti;
if (ccti > max_ccti)
max_ccti = ccti;
}
ccti_limit = cc_state->cct.ccti_limit;
if (max_ccti > ccti_limit)
max_ccti = ccti_limit;
cce = cc_state->cct.entries[max_ccti].entry;
shift = (cce & 0xc000) >> 14;
mult = (cce & 0x3fff);
current_egress_rate = active_egress_rate(ppd);
max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
src = (max_pkt_time >> shift) * mult;
src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
}
static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
{
struct cca_timer *cca_timer;
struct hfi1_pportdata *ppd;
int sl;
u16 ccti_timer, ccti_min;
struct cc_state *cc_state;
unsigned long flags;
enum hrtimer_restart ret = HRTIMER_NORESTART;
cca_timer = container_of(t, struct cca_timer, hrtimer);
ppd = cca_timer->ppd;
sl = cca_timer->sl;
rcu_read_lock();
cc_state = get_cc_state(ppd);
if (!cc_state) {
rcu_read_unlock();
return HRTIMER_NORESTART;
}
/*
* 1) decrement ccti for SL
* 2) calculate IPG for link (set_link_ipg())
* 3) restart timer, unless ccti is at min value
*/
ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
spin_lock_irqsave(&ppd->cca_timer_lock, flags);
if (cca_timer->ccti > ccti_min) {
cca_timer->ccti--;
set_link_ipg(ppd);
}
if (cca_timer->ccti > ccti_min) {
unsigned long nsec = 1024 * ccti_timer;
/* ccti_timer is in units of 1.024 usec */
hrtimer_forward_now(t, ns_to_ktime(nsec));
ret = HRTIMER_RESTART;
}
spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
rcu_read_unlock();
return ret;
}
/*
* Common code for initializing the physical port structure.
*/
void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
{
int i;
uint default_pkey_idx;
struct cc_state *cc_state;
ppd->dd = dd;
ppd->hw_pidx = hw_pidx;
ppd->port = port; /* IB port number, not index */
default_pkey_idx = 1;
ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
if (loopback) {
hfi1_early_err(&pdev->dev,
"Faking data partition 0x8001 in idx %u\n",
!default_pkey_idx);
ppd->pkeys[!default_pkey_idx] = 0x8001;
}
INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
INIT_WORK(&ppd->link_up_work, handle_link_up);
INIT_WORK(&ppd->link_down_work, handle_link_down);
INIT_WORK(&ppd->freeze_work, handle_freeze);
INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
INIT_WORK(&ppd->sma_message_work, handle_sma_message);
INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
mutex_init(&ppd->hls_lock);
spin_lock_init(&ppd->qsfp_info.qsfp_lock);
ppd->qsfp_info.ppd = ppd;
ppd->sm_trap_qp = 0x0;
ppd->sa_qp = 0x1;
ppd->hfi1_wq = NULL;
spin_lock_init(&ppd->cca_timer_lock);
for (i = 0; i < OPA_MAX_SLS; i++) {
hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
ppd->cca_timer[i].ppd = ppd;
ppd->cca_timer[i].sl = i;
ppd->cca_timer[i].ccti = 0;
ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
}
ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
spin_lock_init(&ppd->cc_state_lock);
spin_lock_init(&ppd->cc_log_lock);
cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
RCU_INIT_POINTER(ppd->cc_state, cc_state);
if (!cc_state)
goto bail;
return;
bail:
hfi1_early_err(&pdev->dev,
"Congestion Control Agent disabled for port %d\n", port);
}
/*
* Do initialization for device that is only needed on
* first detect, not on resets.
*/
static int loadtime_init(struct hfi1_devdata *dd)
{
return 0;
}
/**
* init_after_reset - re-initialize after a reset
* @dd: the hfi1_ib device
*
* sanity check at least some of the values after reset, and
* ensure no receive or transmit (explicitly, in case reset
* failed
*/
static int init_after_reset(struct hfi1_devdata *dd)
{
int i;
/*
* Ensure chip does no sends or receives, tail updates, or
* pioavail updates while we re-initialize. This is mostly
* for the driver data structures, not chip registers.
*/
for (i = 0; i < dd->num_rcv_contexts; i++)
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
HFI1_RCVCTRL_INTRAVAIL_DIS |
HFI1_RCVCTRL_TAILUPD_DIS, i);
pio_send_control(dd, PSC_GLOBAL_DISABLE);
for (i = 0; i < dd->num_send_contexts; i++)
sc_disable(dd->send_contexts[i].sc);
return 0;
}
static void enable_chip(struct hfi1_devdata *dd)
{
u32 rcvmask;
u32 i;
/* enable PIO send */
pio_send_control(dd, PSC_GLOBAL_ENABLE);
/*
* Enable kernel ctxts' receive and receive interrupt.
* Other ctxts done as user opens and initializes them.
*/
for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
hfi1_rcvctrl(dd, rcvmask, i);
sc_enable(dd->rcd[i]->sc);
}
}
/**
* create_workqueues - create per port workqueues
* @dd: the hfi1_ib device
*/
static int create_workqueues(struct hfi1_devdata *dd)
{
int pidx;
struct hfi1_pportdata *ppd;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (!ppd->hfi1_wq) {
ppd->hfi1_wq =
alloc_workqueue(
"hfi%d_%d",
WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
dd->num_sdma,
dd->unit, pidx);
if (!ppd->hfi1_wq)
goto wq_error;
}
}
return 0;
wq_error:
pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->hfi1_wq) {
destroy_workqueue(ppd->hfi1_wq);
ppd->hfi1_wq = NULL;
}
}
return -ENOMEM;
}
/**
* hfi1_init - do the actual initialization sequence on the chip
* @dd: the hfi1_ib device
* @reinit: re-initializing, so don't allocate new memory
*
* Do the actual initialization sequence on the chip. This is done
* both from the init routine called from the PCI infrastructure, and
* when we reset the chip, or detect that it was reset internally,
* or it's administratively re-enabled.
*
* Memory allocation here and in called routines is only done in
* the first case (reinit == 0). We have to be careful, because even
* without memory allocation, we need to re-write all the chip registers
* TIDs, etc. after the reset or enable has completed.
*/
int hfi1_init(struct hfi1_devdata *dd, int reinit)
{
int ret = 0, pidx, lastfail = 0;
unsigned i, len;
struct hfi1_ctxtdata *rcd;
struct hfi1_pportdata *ppd;
/* Set up recv low level handlers */
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
kdeth_process_expected;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
kdeth_process_eager;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
process_receive_error;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
process_receive_bypass;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
process_receive_invalid;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
process_receive_invalid;
dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
process_receive_invalid;
dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
/* Set up send low level handlers */
dd->process_pio_send = hfi1_verbs_send_pio;
dd->process_dma_send = hfi1_verbs_send_dma;
dd->pio_inline_send = pio_copy;
dd->process_vnic_dma_send = hfi1_vnic_send_dma;
if (is_ax(dd)) {
atomic_set(&dd->drop_packet, DROP_PACKET_ON);
dd->do_drop = 1;
} else {
atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
dd->do_drop = 0;
}
/* make sure the link is not "up" */
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
ppd->linkup = 0;
}
if (reinit)
ret = init_after_reset(dd);
else
ret = loadtime_init(dd);
if (ret)
goto done;
/* allocate dummy tail memory for all receive contexts */
dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
&dd->pcidev->dev, sizeof(u64),
&dd->rcvhdrtail_dummy_dma,
GFP_KERNEL);
if (!dd->rcvhdrtail_dummy_kvaddr) {
dd_dev_err(dd, "cannot allocate dummy tail memory\n");
ret = -ENOMEM;
goto done;
}
/* dd->rcd can be NULL if early initialization failed */
for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
/*
* Set up the (kernel) rcvhdr queue and egr TIDs. If doing
* re-init, the simplest way to handle this is to free
* existing, and re-allocate.
* Need to re-create rest of ctxt 0 ctxtdata as well.
*/
rcd = dd->rcd[i];
if (!rcd)
continue;
rcd->do_interrupt = &handle_receive_interrupt;
lastfail = hfi1_create_rcvhdrq(dd, rcd);
if (!lastfail)
lastfail = hfi1_setup_eagerbufs(rcd);
if (lastfail) {
dd_dev_err(dd,
"failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
ret = lastfail;
}
}
/* Allocate enough memory for user event notification. */
len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
sizeof(*dd->events));
dd->events = vmalloc_user(len);
if (!dd->events)
dd_dev_err(dd, "Failed to allocate user events page\n");
/*
* Allocate a page for device and port status.
* Page will be shared amongst all user processes.
*/
dd->status = vmalloc_user(PAGE_SIZE);
if (!dd->status)
dd_dev_err(dd, "Failed to allocate dev status page\n");
else
dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
sizeof(dd->status->freezemsg));
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (dd->status)
/* Currently, we only have one port */
ppd->statusp = &dd->status->port;
set_mtu(ppd);
}
/* enable chip even if we have an error, so we can debug cause */
enable_chip(dd);
done:
/*
* Set status even if port serdes is not initialized
* so that diags will work.
*/
if (dd->status)
dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
HFI1_STATUS_INITTED;
if (!ret) {
/* enable all interrupts from the chip */
set_intr_state(dd, 1);
/* chip is OK for user apps; mark it as initialized */
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
/*
* start the serdes - must be after interrupts are
* enabled so we are notified when the link goes up
*/
lastfail = bringup_serdes(ppd);
if (lastfail)
dd_dev_info(dd,
"Failed to bring up port %u\n",
ppd->port);
/*
* Set status even if port serdes is not initialized
* so that diags will work.
*/
if (ppd->statusp)
*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
HFI1_STATUS_INITTED;
if (!ppd->link_speed_enabled)
continue;
}
}
/* if ret is non-zero, we probably should do some cleanup here... */
return ret;
}
static inline struct hfi1_devdata *__hfi1_lookup(int unit)
{
return idr_find(&hfi1_unit_table, unit);
}
struct hfi1_devdata *hfi1_lookup(int unit)
{
struct hfi1_devdata *dd;
unsigned long flags;
spin_lock_irqsave(&hfi1_devs_lock, flags);
dd = __hfi1_lookup(unit);
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
return dd;
}
/*
* Stop the timers during unit shutdown, or after an error late
* in initialization.
*/
static void stop_timers(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
int pidx;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->led_override_timer.data) {
del_timer_sync(&ppd->led_override_timer);
atomic_set(&ppd->led_override_timer_active, 0);
}
}
}
/**
* shutdown_device - shut down a device
* @dd: the hfi1_ib device
*
* This is called to make the device quiet when we are about to
* unload the driver, and also when the device is administratively
* disabled. It does not free any data structures.
* Everything it does has to be setup again by hfi1_init(dd, 1)
*/
static void shutdown_device(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
unsigned pidx;
int i;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
ppd->linkup = 0;
if (ppd->statusp)
*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
HFI1_STATUS_IB_READY);
}
dd->flags &= ~HFI1_INITTED;
/* mask interrupts, but not errors */
set_intr_state(dd, 0);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
for (i = 0; i < dd->num_rcv_contexts; i++)
hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
HFI1_RCVCTRL_CTXT_DIS |
HFI1_RCVCTRL_INTRAVAIL_DIS |
HFI1_RCVCTRL_PKEY_DIS |
HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
/*
* Gracefully stop all sends allowing any in progress to
* trickle out first.
*/
for (i = 0; i < dd->num_send_contexts; i++)
sc_flush(dd->send_contexts[i].sc);
}
/*
* Enough for anything that's going to trickle out to have actually
* done so.
*/
udelay(20);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
/* disable all contexts */
for (i = 0; i < dd->num_send_contexts; i++)
sc_disable(dd->send_contexts[i].sc);
/* disable the send device */
pio_send_control(dd, PSC_GLOBAL_DISABLE);
shutdown_led_override(ppd);
/*
* Clear SerdesEnable.
* We can't count on interrupts since we are stopping.
*/
hfi1_quiet_serdes(ppd);
if (ppd->hfi1_wq) {
destroy_workqueue(ppd->hfi1_wq);
ppd->hfi1_wq = NULL;
}
}
sdma_exit(dd);
}
/**
* hfi1_free_ctxtdata - free a context's allocated data
* @dd: the hfi1_ib device
* @rcd: the ctxtdata structure
*
* free up any allocated data for a context
* This should not touch anything that would affect a simultaneous
* re-allocation of context data, because it is called after hfi1_mutex
* is released (and can be called from reinit as well).
* It should never change any chip state, or global driver state.
*/
void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
{
unsigned e;
if (!rcd)
return;
if (rcd->rcvhdrq) {
dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
rcd->rcvhdrq, rcd->rcvhdrq_dma);
rcd->rcvhdrq = NULL;
if (rcd->rcvhdrtail_kvaddr) {
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
(void *)rcd->rcvhdrtail_kvaddr,
rcd->rcvhdrqtailaddr_dma);
rcd->rcvhdrtail_kvaddr = NULL;
}
}
/* all the RcvArray entries should have been cleared by now */
kfree(rcd->egrbufs.rcvtids);
for (e = 0; e < rcd->egrbufs.alloced; e++) {
if (rcd->egrbufs.buffers[e].dma)
dma_free_coherent(&dd->pcidev->dev,
rcd->egrbufs.buffers[e].len,
rcd->egrbufs.buffers[e].addr,
rcd->egrbufs.buffers[e].dma);
}
kfree(rcd->egrbufs.buffers);
sc_free(rcd->sc);
vfree(rcd->user_event_mask);
vfree(rcd->subctxt_uregbase);
vfree(rcd->subctxt_rcvegrbuf);
vfree(rcd->subctxt_rcvhdr_base);
kfree(rcd->opstats);
kfree(rcd);
}
/*
* Release our hold on the shared asic data. If we are the last one,
* return the structure to be finalized outside the lock. Must be
* holding hfi1_devs_lock.
*/
static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
{
struct hfi1_asic_data *ad;
int other;
if (!dd->asic_data)
return NULL;
dd->asic_data->dds[dd->hfi1_id] = NULL;
other = dd->hfi1_id ? 0 : 1;
ad = dd->asic_data;
dd->asic_data = NULL;
/* return NULL if the other dd still has a link */
return ad->dds[other] ? NULL : ad;
}
static void finalize_asic_data(struct hfi1_devdata *dd,
struct hfi1_asic_data *ad)
{
clean_up_i2c(dd, ad);
kfree(ad);
}
static void __hfi1_free_devdata(struct kobject *kobj)
{
struct hfi1_devdata *dd =
container_of(kobj, struct hfi1_devdata, kobj);
struct hfi1_asic_data *ad;
unsigned long flags;
spin_lock_irqsave(&hfi1_devs_lock, flags);
idr_remove(&hfi1_unit_table, dd->unit);
list_del(&dd->list);
ad = release_asic_data(dd);
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
if (ad)
finalize_asic_data(dd, ad);
free_platform_config(dd);
rcu_barrier(); /* wait for rcu callbacks to complete */
free_percpu(dd->int_counter);
free_percpu(dd->rcv_limit);
free_percpu(dd->send_schedule);
rvt_dealloc_device(&dd->verbs_dev.rdi);
}
static struct kobj_type hfi1_devdata_type = {
.release = __hfi1_free_devdata,
};
void hfi1_free_devdata(struct hfi1_devdata *dd)
{
kobject_put(&dd->kobj);
}
/*
* Allocate our primary per-unit data structure. Must be done via verbs
* allocator, because the verbs cleanup process both does cleanup and
* free of the data structure.
* "extra" is for chip-specific data.
*
* Use the idr mechanism to get a unit number for this unit.
*/
struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
{
unsigned long flags;
struct hfi1_devdata *dd;
int ret, nports;
/* extra is * number of ports */
nports = extra / sizeof(struct hfi1_pportdata);
dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
nports);
if (!dd)
return ERR_PTR(-ENOMEM);
dd->num_pports = nports;
dd->pport = (struct hfi1_pportdata *)(dd + 1);
INIT_LIST_HEAD(&dd->list);
idr_preload(GFP_KERNEL);
spin_lock_irqsave(&hfi1_devs_lock, flags);
ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
if (ret >= 0) {
dd->unit = ret;
list_add(&dd->list, &hfi1_dev_list);
}
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
idr_preload_end();
if (ret < 0) {
hfi1_early_err(&pdev->dev,
"Could not allocate unit ID: error %d\n", -ret);
goto bail;
}
/*
* Initialize all locks for the device. This needs to be as early as
* possible so locks are usable.
*/
spin_lock_init(&dd->sc_lock);
spin_lock_init(&dd->sendctrl_lock);
spin_lock_init(&dd->rcvctrl_lock);
spin_lock_init(&dd->uctxt_lock);
spin_lock_init(&dd->hfi1_diag_trans_lock);
spin_lock_init(&dd->sc_init_lock);
spin_lock_init(&dd->dc8051_lock);
spin_lock_init(&dd->dc8051_memlock);
seqlock_init(&dd->sc2vl_lock);
spin_lock_init(&dd->sde_map_lock);
spin_lock_init(&dd->pio_map_lock);
init_waitqueue_head(&dd->event_queue);
dd->int_counter = alloc_percpu(u64);
if (!dd->int_counter) {
ret = -ENOMEM;
hfi1_early_err(&pdev->dev,
"Could not allocate per-cpu int_counter\n");
goto bail;
}
dd->rcv_limit = alloc_percpu(u64);
if (!dd->rcv_limit) {
ret = -ENOMEM;
hfi1_early_err(&pdev->dev,
"Could not allocate per-cpu rcv_limit\n");
goto bail;
}
dd->send_schedule = alloc_percpu(u64);
if (!dd->send_schedule) {
ret = -ENOMEM;
hfi1_early_err(&pdev->dev,
"Could not allocate per-cpu int_counter\n");
goto bail;
}
if (!hfi1_cpulist_count) {
u32 count = num_online_cpus();
hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
GFP_KERNEL);
if (hfi1_cpulist)
hfi1_cpulist_count = count;
else
hfi1_early_err(
&pdev->dev,
"Could not alloc cpulist info, cpu affinity might be wrong\n");
}
kobject_init(&dd->kobj, &hfi1_devdata_type);
return dd;
bail:
if (!list_empty(&dd->list))
list_del_init(&dd->list);
rvt_dealloc_device(&dd->verbs_dev.rdi);
return ERR_PTR(ret);
}
/*
* Called from freeze mode handlers, and from PCI error
* reporting code. Should be paranoid about state of
* system and data structures.
*/
void hfi1_disable_after_error(struct hfi1_devdata *dd)
{
if (dd->flags & HFI1_INITTED) {
u32 pidx;
dd->flags &= ~HFI1_INITTED;
if (dd->pport)
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
struct hfi1_pportdata *ppd;
ppd = dd->pport + pidx;
if (dd->flags & HFI1_PRESENT)
set_link_state(ppd, HLS_DN_DISABLE);
if (ppd->statusp)
*ppd->statusp &= ~HFI1_STATUS_IB_READY;
}
}
/*
* Mark as having had an error for driver, and also
* for /sys and status word mapped to user programs.
* This marks unit as not usable, until reset.
*/
if (dd->status)
dd->status->dev |= HFI1_STATUS_HWERROR;
}
static void remove_one(struct pci_dev *);
static int init_one(struct pci_dev *, const struct pci_device_id *);
#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
#define PFX DRIVER_NAME ": "
const struct pci_device_id hfi1_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
static struct pci_driver hfi1_pci_driver = {
.name = DRIVER_NAME,
.probe = init_one,
.remove = remove_one,
.id_table = hfi1_pci_tbl,
.err_handler = &hfi1_pci_err_handler,
};
static void __init compute_krcvqs(void)
{
int i;
for (i = 0; i < krcvqsset; i++)
n_krcvqs += krcvqs[i];
}
/*
* Do all the generic driver unit- and chip-independent memory
* allocation and initialization.
*/
static int __init hfi1_mod_init(void)
{
int ret;
ret = dev_init();
if (ret)
goto bail;
ret = node_affinity_init();
if (ret)
goto bail;
/* validate max MTU before any devices start */
if (!valid_opa_max_mtu(hfi1_max_mtu)) {
pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
}
/* valid CUs run from 1-128 in powers of 2 */
if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
hfi1_cu = 1;
/* valid credit return threshold is 0-100, variable is unsigned */
if (user_credit_return_threshold > 100)
user_credit_return_threshold = 100;
compute_krcvqs();
/*
* sanitize receive interrupt count, time must wait until after
* the hardware type is known
*/
if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
/* reject invalid combinations */
if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
rcv_intr_count = 1;
}
if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
/*
* Avoid indefinite packet delivery by requiring a timeout
* if count is > 1.
*/
pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
rcv_intr_timeout = 1;
}
if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
/*
* The dynamic algorithm expects a non-zero timeout
* and a count > 1.
*/
pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
rcv_intr_dynamic = 0;
}
/* sanitize link CRC options */
link_crc_mask &= SUPPORTED_CRCS;
/*
* These must be called before the driver is registered with
* the PCI subsystem.
*/
idr_init(&hfi1_unit_table);
hfi1_dbg_init();
ret = hfi1_wss_init();
if (ret < 0)
goto bail_wss;
ret = pci_register_driver(&hfi1_pci_driver);
if (ret < 0) {
pr_err("Unable to register driver: error %d\n", -ret);
goto bail_dev;
}
goto bail; /* all OK */
bail_dev:
hfi1_wss_exit();
bail_wss:
hfi1_dbg_exit();
idr_destroy(&hfi1_unit_table);
dev_cleanup();
bail:
return ret;
}
module_init(hfi1_mod_init);
/*
* Do the non-unit driver cleanup, memory free, etc. at unload.
*/
static void __exit hfi1_mod_cleanup(void)
{
pci_unregister_driver(&hfi1_pci_driver);
node_affinity_destroy();
hfi1_wss_exit();
hfi1_dbg_exit();
hfi1_cpulist_count = 0;
kfree(hfi1_cpulist);
idr_destroy(&hfi1_unit_table);
dispose_firmware(); /* asymmetric with obtain_firmware() */
dev_cleanup();
}
module_exit(hfi1_mod_cleanup);
/* this can only be called after a successful initialization */
static void cleanup_device_data(struct hfi1_devdata *dd)
{
int ctxt;
int pidx;
struct hfi1_ctxtdata **tmp;
unsigned long flags;
/* users can't do anything more with chip */
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
struct hfi1_pportdata *ppd = &dd->pport[pidx];
struct cc_state *cc_state;
int i;
if (ppd->statusp)
*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
for (i = 0; i < OPA_MAX_SLS; i++)
hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
spin_lock(&ppd->cc_state_lock);
cc_state = get_cc_state_protected(ppd);
RCU_INIT_POINTER(ppd->cc_state, NULL);
spin_unlock(&ppd->cc_state_lock);
if (cc_state)
kfree_rcu(cc_state, rcu);
}
free_credit_return(dd);
/*
* Free any resources still in use (usually just kernel contexts)
* at unload; we do for ctxtcnt, because that's what we allocate.
* We acquire lock to be really paranoid that rcd isn't being
* accessed from some interrupt-related code (that should not happen,
* but best to be sure).
*/
spin_lock_irqsave(&dd->uctxt_lock, flags);
tmp = dd->rcd;
dd->rcd = NULL;
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
if (dd->rcvhdrtail_dummy_kvaddr) {
dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
(void *)dd->rcvhdrtail_dummy_kvaddr,
dd->rcvhdrtail_dummy_dma);
dd->rcvhdrtail_dummy_kvaddr = NULL;
}
for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
struct hfi1_ctxtdata *rcd = tmp[ctxt];
tmp[ctxt] = NULL; /* debugging paranoia */
if (rcd) {
hfi1_clear_tids(rcd);
hfi1_free_ctxtdata(dd, rcd);
}
}
kfree(tmp);
free_pio_map(dd);
/* must follow rcv context free - need to remove rcv's hooks */
for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
sc_free(dd->send_contexts[ctxt].sc);
dd->num_send_contexts = 0;
kfree(dd->send_contexts);
dd->send_contexts = NULL;
kfree(dd->hw_to_sw);
dd->hw_to_sw = NULL;
kfree(dd->boardname);
vfree(dd->events);
vfree(dd->status);
}
/*
* Clean up on unit shutdown, or error during unit load after
* successful initialization.
*/
static void postinit_cleanup(struct hfi1_devdata *dd)
{
hfi1_start_cleanup(dd);
hfi1_pcie_ddcleanup(dd);
hfi1_pcie_cleanup(dd->pcidev);
cleanup_device_data(dd);
hfi1_free_devdata(dd);
}
static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
{
if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
hfi1_early_err(dev, "Receive header queue count too small\n");
return -EINVAL;
}
if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
hfi1_early_err(dev,
"Receive header queue count cannot be greater than %u\n",
HFI1_MAX_HDRQ_EGRBUF_CNT);
return -EINVAL;
}
if (thecnt % HDRQ_INCREMENT) {
hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
thecnt, HDRQ_INCREMENT);
return -EINVAL;
}
return 0;
}
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret = 0, j, pidx, initfail;
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
/* First, lock the non-writable module parameters */
HFI1_CAP_LOCK();
/* Validate dev ids */
if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
ent->device == PCI_DEVICE_ID_INTEL1)) {
hfi1_early_err(&pdev->dev,
"Failing on unknown Intel deviceid 0x%x\n",
ent->device);
ret = -ENODEV;
goto bail;
}
/* Validate some global module parameters */
ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
if (ret)
goto bail;
/* use the encoding function as a sanitization check */
if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
hfi1_hdrq_entsize);
ret = -EINVAL;
goto bail;
}
/* The receive eager buffer size must be set before the receive
* contexts are created.
*
* Set the eager buffer size. Validate that it falls in a range
* allowed by the hardware - all powers of 2 between the min and
* max. The maximum valid MTU is within the eager buffer range
* so we do not need to cap the max_mtu by an eager buffer size
* setting.
*/
if (eager_buffer_size) {
if (!is_power_of_2(eager_buffer_size))
eager_buffer_size =
roundup_pow_of_two(eager_buffer_size);
eager_buffer_size =
clamp_val(eager_buffer_size,
MIN_EAGER_BUFFER * 8,
MAX_EAGER_BUFFER_TOTAL);
hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
eager_buffer_size);
} else {
hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
ret = -EINVAL;
goto bail;
}
/* restrict value of hfi1_rcvarr_split */
hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
ret = hfi1_pcie_init(pdev, ent);
if (ret)
goto bail;
/*
* Do device-specific initialization, function table setup, dd
* allocation, etc.
*/
dd = hfi1_init_dd(pdev, ent);
if (IS_ERR(dd)) {
ret = PTR_ERR(dd);
goto clean_bail; /* error already printed */
}
ret = create_workqueues(dd);
if (ret)
goto clean_bail;
/* do the generic initialization */
initfail = hfi1_init(dd, 0);
/* setup vnic */
hfi1_vnic_setup(dd);
ret = hfi1_register_ib_device(dd);
/*
* Now ready for use. this should be cleared whenever we
* detect a reset, or initiate one. If earlier failure,
* we still create devices, so diags, etc. can be used
* to determine cause of problem.
*/
if (!initfail && !ret) {
dd->flags |= HFI1_INITTED;
/* create debufs files after init and ib register */
hfi1_dbg_ibdev_init(&dd->verbs_dev);
}
j = hfi1_device_create(dd);
if (j)
dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
if (initfail || ret) {
stop_timers(dd);
flush_workqueue(ib_wq);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
hfi1_quiet_serdes(dd->pport + pidx);
ppd = dd->pport + pidx;
if (ppd->hfi1_wq) {
destroy_workqueue(ppd->hfi1_wq);
ppd->hfi1_wq = NULL;
}
}
if (!j)
hfi1_device_remove(dd);
if (!ret)
hfi1_unregister_ib_device(dd);
hfi1_vnic_cleanup(dd);
postinit_cleanup(dd);
if (initfail)
ret = initfail;
goto bail; /* everything already cleaned */
}
sdma_start(dd);
return 0;
clean_bail:
hfi1_pcie_cleanup(pdev);
bail:
return ret;
}
static void wait_for_clients(struct hfi1_devdata *dd)
{
/*
* Remove the device init value and complete the device if there is
* no clients or wait for active clients to finish.
*/
if (atomic_dec_and_test(&dd->user_refcount))
complete(&dd->user_comp);
wait_for_completion(&dd->user_comp);
}
static void remove_one(struct pci_dev *pdev)
{
struct hfi1_devdata *dd = pci_get_drvdata(pdev);
/* close debugfs files before ib unregister */
hfi1_dbg_ibdev_exit(&dd->verbs_dev);
/* remove the /dev hfi1 interface */
hfi1_device_remove(dd);
/* wait for existing user space clients to finish */
wait_for_clients(dd);
/* unregister from IB core */
hfi1_unregister_ib_device(dd);
/* cleanup vnic */
hfi1_vnic_cleanup(dd);
/*
* Disable the IB link, disable interrupts on the device,
* clear dma engines, etc.
*/
shutdown_device(dd);
stop_timers(dd);
/* wait until all of our (qsfp) queue_work() calls complete */
flush_workqueue(ib_wq);
postinit_cleanup(dd);
}
/**
* hfi1_create_rcvhdrq - create a receive header queue
* @dd: the hfi1_ib device
* @rcd: the context data
*
* This must be contiguous memory (from an i/o perspective), and must be
* DMA'able (which means for some systems, it will go through an IOMMU,
* or be forced into a low address range).
*/
int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
{
unsigned amt;
u64 reg;
if (!rcd->rcvhdrq) {
dma_addr_t dma_hdrqtail;
gfp_t gfp_flags;
/*
* rcvhdrqentsize is in DWs, so we have to convert to bytes
* (* sizeof(u32)).
*/
amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
sizeof(u32));
if ((rcd->ctxt < dd->first_dyn_alloc_ctxt) ||
(rcd->sc && (rcd->sc->type == SC_KERNEL)))
gfp_flags = GFP_KERNEL;
else
gfp_flags = GFP_USER;
rcd->rcvhdrq = dma_zalloc_coherent(
&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
gfp_flags | __GFP_COMP);
if (!rcd->rcvhdrq) {
dd_dev_err(dd,
"attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
amt, rcd->ctxt);
goto bail;
}
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
&dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
gfp_flags);
if (!rcd->rcvhdrtail_kvaddr)
goto bail_free;
rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
}
rcd->rcvhdrq_size = amt;
}
/*
* These values are per-context:
* RcvHdrCnt
* RcvHdrEntSize
* RcvHdrSize
*/
reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
& RCV_HDR_CNT_CNT_MASK)
<< RCV_HDR_CNT_CNT_SHIFT;
write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
/*
* Program dummy tail address for every receive context
* before enabling any receive context
*/
write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
dd->rcvhdrtail_dummy_dma);
return 0;
bail_free:
dd_dev_err(dd,
"attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
rcd->ctxt);
vfree(rcd->user_event_mask);
rcd->user_event_mask = NULL;
dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
rcd->rcvhdrq_dma);
rcd->rcvhdrq = NULL;
bail:
return -ENOMEM;
}
/**
* allocate eager buffers, both kernel and user contexts.
* @rcd: the context we are setting up.
*
* Allocate the eager TID buffers and program them into hip.
* They are no longer completely contiguous, we do multiple allocation
* calls. Otherwise we get the OOM code involved, by asking for too
* much per call, with disastrous results on some kernels.
*/
int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
{
struct hfi1_devdata *dd = rcd->dd;
u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
gfp_t gfp_flags;
u16 order;
int ret = 0;
u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
/*
* GFP_USER, but without GFP_FS, so buffer cache can be
* coalesced (we hope); otherwise, even at order 4,
* heavy filesystem activity makes these fail, and we can
* use compound pages.
*/
gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
/*
* The minimum size of the eager buffers is a groups of MTU-sized
* buffers.
* The global eager_buffer_size parameter is checked against the
* theoretical lower limit of the value. Here, we check against the
* MTU.
*/
if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
/*
* If using one-pkt-per-egr-buffer, lower the eager buffer
* size to the max MTU (page-aligned).
*/
if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
rcd->egrbufs.rcvtid_size = round_mtu;
/*
* Eager buffers sizes of 1MB or less require smaller TID sizes
* to satisfy the "multiple of 8 RcvArray entries" requirement.
*/
if (rcd->egrbufs.size <= (1 << 20))
rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
rounddown_pow_of_two(rcd->egrbufs.size / 8));
while (alloced_bytes < rcd->egrbufs.size &&
rcd->egrbufs.alloced < rcd->egrbufs.count) {
rcd->egrbufs.buffers[idx].addr =
dma_zalloc_coherent(&dd->pcidev->dev,
rcd->egrbufs.rcvtid_size,
&rcd->egrbufs.buffers[idx].dma,
gfp_flags);
if (rcd->egrbufs.buffers[idx].addr) {
rcd->egrbufs.buffers[idx].len =
rcd->egrbufs.rcvtid_size;
rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
rcd->egrbufs.buffers[idx].addr;
rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
rcd->egrbufs.buffers[idx].dma;
rcd->egrbufs.alloced++;
alloced_bytes += rcd->egrbufs.rcvtid_size;
idx++;
} else {
u32 new_size, i, j;
u64 offset = 0;
/*
* Fail the eager buffer allocation if:
* - we are already using the lowest acceptable size
* - we are using one-pkt-per-egr-buffer (this implies
* that we are accepting only one size)
*/
if (rcd->egrbufs.rcvtid_size == round_mtu ||
!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
rcd->ctxt);
goto bail_rcvegrbuf_phys;
}
new_size = rcd->egrbufs.rcvtid_size / 2;
/*
* If the first attempt to allocate memory failed, don't
* fail everything but continue with the next lower
* size.
*/
if (idx == 0) {
rcd->egrbufs.rcvtid_size = new_size;
continue;
}
/*
* Re-partition already allocated buffers to a smaller
* size.
*/
rcd->egrbufs.alloced = 0;
for (i = 0, j = 0, offset = 0; j < idx; i++) {
if (i >= rcd->egrbufs.count)
break;
rcd->egrbufs.rcvtids[i].dma =
rcd->egrbufs.buffers[j].dma + offset;
rcd->egrbufs.rcvtids[i].addr =
rcd->egrbufs.buffers[j].addr + offset;
rcd->egrbufs.alloced++;
if ((rcd->egrbufs.buffers[j].dma + offset +
new_size) ==
(rcd->egrbufs.buffers[j].dma +
rcd->egrbufs.buffers[j].len)) {
j++;
offset = 0;
} else {
offset += new_size;
}
}
rcd->egrbufs.rcvtid_size = new_size;
}
}
rcd->egrbufs.numbufs = idx;
rcd->egrbufs.size = alloced_bytes;
hfi1_cdbg(PROC,
"ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
rcd->ctxt, rcd->egrbufs.alloced,
rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
/*
* Set the contexts rcv array head update threshold to the closest
* power of 2 (so we can use a mask instead of modulo) below half
* the allocated entries.
*/
rcd->egrbufs.threshold =
rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
/*
* Compute the expected RcvArray entry base. This is done after
* allocating the eager buffers in order to maximize the
* expected RcvArray entries for the context.
*/
max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
rcd->expected_count = max_entries - egrtop;
if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
rcd->expected_base = rcd->eager_base + egrtop;
hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
rcd->eager_base, rcd->expected_base);
if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
hfi1_cdbg(PROC,
"ctxt%u: current Eager buffer size is invalid %u\n",
rcd->ctxt, rcd->egrbufs.rcvtid_size);
ret = -EINVAL;
goto bail;
}
for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
rcd->egrbufs.rcvtids[idx].dma, order);
cond_resched();
}
goto bail;
bail_rcvegrbuf_phys:
for (idx = 0; idx < rcd->egrbufs.alloced &&
rcd->egrbufs.buffers[idx].addr;
idx++) {
dma_free_coherent(&dd->pcidev->dev,
rcd->egrbufs.buffers[idx].len,
rcd->egrbufs.buffers[idx].addr,
rcd->egrbufs.buffers[idx].dma);
rcd->egrbufs.buffers[idx].addr = NULL;
rcd->egrbufs.buffers[idx].dma = 0;
rcd->egrbufs.buffers[idx].len = 0;
}
bail:
return ret;
}