2f2ff0ee5e
We can get into inconsistency between inodes and directory entries after fsyncing a directory. The issue is that while a directory gets the new dentries persisted in the fsync log and replayed at mount time, the link count of the inode that directory entries point to doesn't get updated, staying with an incorrect link count (smaller then the correct value). This later leads to stale file handle errors when accessing (including attempt to delete) some of the links if all the other ones are removed, which also implies impossibility to delete the parent directories, since the dentries can not be removed. Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2), when fsyncing a directory, new files aren't logged (their metadata and dentries) nor any child directories. So this patch fixes this issue too, since it has the same resolution as the incorrect inode link count issue mentioned before. This is very easy to reproduce, and the following excerpt from my test case for xfstests shows how: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our main test file and directory. $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io mkdir $SCRATCH_MNT/mydir # Make sure all metadata and data are durably persisted. sync # Add a hard link to 'foo' inside our test directory and fsync only the # directory. The btrfs fsync implementation had a bug that caused the new # directory entry to be visible after the fsync log replay but, the inode # of our file remained with a link count of 1. ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2 # Add a few more links and new files. # This is just to verify nothing breaks or gives incorrect results after the # fsync log is replayed. ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3 $XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2 # Add some subdirectories and new files and links to them. This is to verify # that after fsyncing our top level directory 'mydir', all the subdirectories # and their files/links are registered in the fsync log and exist after the # fsync log is replayed. mkdir -p $SCRATCH_MNT/mydir/x/y/z ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link touch $SCRATCH_MNT/mydir/x/y/z/qwerty # Now fsync only our top directory. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir # And fsync now our new file named 'hello', just to verify later that it has # the expected content and that the previous fsync on the directory 'mydir' had # no bad influence on this fsync. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Verify the content of our file 'foo' remains the same as before, 8192 bytes, # all with the value 0xaa. echo "File 'foo' content after log replay:" od -t x1 $SCRATCH_MNT/foo # Remove the first name of our inode. Because of the directory fsync bug, the # inode's link count was 1 instead of 5, so removing the 'foo' name ended up # deleting the inode and the other names became stale directory entries (still # visible to applications). Attempting to remove or access the remaining # dentries pointing to that inode resulted in stale file handle errors and # made it impossible to remove the parent directories since it was impossible # for them to become empty. echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)" rm -f $SCRATCH_MNT/foo # Now verify that all files, links and directories created before fsyncing our # directory exist after the fsync log was replayed. [ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing" [ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing" [ -f $SCRATCH_MNT/hello ] || echo "File hello is missing" [ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing" [ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \ echo "Link mydir/x/y/foo_y_link is missing" [ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \ echo "Link mydir/x/y/z/foo_z_link is missing" [ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \ echo "File mydir/x/y/z/qwerty is missing" # We expect our file here to have a size of 64Kb and all the bytes having the # value 0xff. echo "file 'hello' content after log replay:" od -t x1 $SCRATCH_MNT/hello # Now remove all files/links, under our test directory 'mydir', and verify we # can remove all the directories. rm -f $SCRATCH_MNT/mydir/x/y/z/* rmdir $SCRATCH_MNT/mydir/x/y/z rm -f $SCRATCH_MNT/mydir/x/y/* rmdir $SCRATCH_MNT/mydir/x/y rmdir $SCRATCH_MNT/mydir/x rm -f $SCRATCH_MNT/mydir/* rmdir $SCRATCH_MNT/mydir # An fsck, run by the fstests framework everytime a test finishes, also detected # the inconsistency and printed the following error message: # # root 5 inode 257 errors 2001, no inode item, link count wrong # unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref # unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref status=0 exit The expected golden output for the test is: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 65536/65536 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File 'foo' content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 file 'foo' link count after log replay: 5 file 'hello' content after log replay: 0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff * 0200000 Which is the output after this patch and when running the test against ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's output is: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 65536/65536 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File 'foo' content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 file 'foo' link count after log replay: 1 Link mydir/foo_2 is missing Link mydir/foo_3 is missing Link mydir/x/y/foo_y_link is missing Link mydir/x/y/z/foo_z_link is missing File mydir/x/y/z/qwerty is missing file 'hello' content after log replay: 0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff * 0200000 rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty Fsck, without this fix, also complains about the wrong link count: root 5 inode 257 errors 2001, no inode item, link count wrong unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref So fix this by logging the inodes that the dentries point to when fsyncing a directory. A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2877 lines
76 KiB
C
2877 lines
76 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/aio.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/btrfs.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "tree-log.h"
|
|
#include "locking.h"
|
|
#include "volumes.h"
|
|
#include "qgroup.h"
|
|
|
|
static struct kmem_cache *btrfs_inode_defrag_cachep;
|
|
/*
|
|
* when auto defrag is enabled we
|
|
* queue up these defrag structs to remember which
|
|
* inodes need defragging passes
|
|
*/
|
|
struct inode_defrag {
|
|
struct rb_node rb_node;
|
|
/* objectid */
|
|
u64 ino;
|
|
/*
|
|
* transid where the defrag was added, we search for
|
|
* extents newer than this
|
|
*/
|
|
u64 transid;
|
|
|
|
/* root objectid */
|
|
u64 root;
|
|
|
|
/* last offset we were able to defrag */
|
|
u64 last_offset;
|
|
|
|
/* if we've wrapped around back to zero once already */
|
|
int cycled;
|
|
};
|
|
|
|
static int __compare_inode_defrag(struct inode_defrag *defrag1,
|
|
struct inode_defrag *defrag2)
|
|
{
|
|
if (defrag1->root > defrag2->root)
|
|
return 1;
|
|
else if (defrag1->root < defrag2->root)
|
|
return -1;
|
|
else if (defrag1->ino > defrag2->ino)
|
|
return 1;
|
|
else if (defrag1->ino < defrag2->ino)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* pop a record for an inode into the defrag tree. The lock
|
|
* must be held already
|
|
*
|
|
* If you're inserting a record for an older transid than an
|
|
* existing record, the transid already in the tree is lowered
|
|
*
|
|
* If an existing record is found the defrag item you
|
|
* pass in is freed
|
|
*/
|
|
static int __btrfs_add_inode_defrag(struct inode *inode,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct inode_defrag *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
int ret;
|
|
|
|
p = &root->fs_info->defrag_inodes.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
ret = __compare_inode_defrag(defrag, entry);
|
|
if (ret < 0)
|
|
p = &parent->rb_left;
|
|
else if (ret > 0)
|
|
p = &parent->rb_right;
|
|
else {
|
|
/* if we're reinserting an entry for
|
|
* an old defrag run, make sure to
|
|
* lower the transid of our existing record
|
|
*/
|
|
if (defrag->transid < entry->transid)
|
|
entry->transid = defrag->transid;
|
|
if (defrag->last_offset > entry->last_offset)
|
|
entry->last_offset = defrag->last_offset;
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
|
|
rb_link_node(&defrag->rb_node, parent, p);
|
|
rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __need_auto_defrag(struct btrfs_root *root)
|
|
{
|
|
if (!btrfs_test_opt(root, AUTO_DEFRAG))
|
|
return 0;
|
|
|
|
if (btrfs_fs_closing(root->fs_info))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* insert a defrag record for this inode if auto defrag is
|
|
* enabled
|
|
*/
|
|
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct inode_defrag *defrag;
|
|
u64 transid;
|
|
int ret;
|
|
|
|
if (!__need_auto_defrag(root))
|
|
return 0;
|
|
|
|
if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
|
|
return 0;
|
|
|
|
if (trans)
|
|
transid = trans->transid;
|
|
else
|
|
transid = BTRFS_I(inode)->root->last_trans;
|
|
|
|
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
|
|
if (!defrag)
|
|
return -ENOMEM;
|
|
|
|
defrag->ino = btrfs_ino(inode);
|
|
defrag->transid = transid;
|
|
defrag->root = root->root_key.objectid;
|
|
|
|
spin_lock(&root->fs_info->defrag_inodes_lock);
|
|
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
|
|
/*
|
|
* If we set IN_DEFRAG flag and evict the inode from memory,
|
|
* and then re-read this inode, this new inode doesn't have
|
|
* IN_DEFRAG flag. At the case, we may find the existed defrag.
|
|
*/
|
|
ret = __btrfs_add_inode_defrag(inode, defrag);
|
|
if (ret)
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
} else {
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
}
|
|
spin_unlock(&root->fs_info->defrag_inodes_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Requeue the defrag object. If there is a defrag object that points to
|
|
* the same inode in the tree, we will merge them together (by
|
|
* __btrfs_add_inode_defrag()) and free the one that we want to requeue.
|
|
*/
|
|
static void btrfs_requeue_inode_defrag(struct inode *inode,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret;
|
|
|
|
if (!__need_auto_defrag(root))
|
|
goto out;
|
|
|
|
/*
|
|
* Here we don't check the IN_DEFRAG flag, because we need merge
|
|
* them together.
|
|
*/
|
|
spin_lock(&root->fs_info->defrag_inodes_lock);
|
|
ret = __btrfs_add_inode_defrag(inode, defrag);
|
|
spin_unlock(&root->fs_info->defrag_inodes_lock);
|
|
if (ret)
|
|
goto out;
|
|
return;
|
|
out:
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
}
|
|
|
|
/*
|
|
* pick the defragable inode that we want, if it doesn't exist, we will get
|
|
* the next one.
|
|
*/
|
|
static struct inode_defrag *
|
|
btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
|
|
{
|
|
struct inode_defrag *entry = NULL;
|
|
struct inode_defrag tmp;
|
|
struct rb_node *p;
|
|
struct rb_node *parent = NULL;
|
|
int ret;
|
|
|
|
tmp.ino = ino;
|
|
tmp.root = root;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
p = fs_info->defrag_inodes.rb_node;
|
|
while (p) {
|
|
parent = p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
ret = __compare_inode_defrag(&tmp, entry);
|
|
if (ret < 0)
|
|
p = parent->rb_left;
|
|
else if (ret > 0)
|
|
p = parent->rb_right;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
|
|
parent = rb_next(parent);
|
|
if (parent)
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
else
|
|
entry = NULL;
|
|
}
|
|
out:
|
|
if (entry)
|
|
rb_erase(parent, &fs_info->defrag_inodes);
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
return entry;
|
|
}
|
|
|
|
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
node = rb_first(&fs_info->defrag_inodes);
|
|
while (node) {
|
|
rb_erase(node, &fs_info->defrag_inodes);
|
|
defrag = rb_entry(node, struct inode_defrag, rb_node);
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
|
|
cond_resched_lock(&fs_info->defrag_inodes_lock);
|
|
|
|
node = rb_first(&fs_info->defrag_inodes);
|
|
}
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
}
|
|
|
|
#define BTRFS_DEFRAG_BATCH 1024
|
|
|
|
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_root *inode_root;
|
|
struct inode *inode;
|
|
struct btrfs_key key;
|
|
struct btrfs_ioctl_defrag_range_args range;
|
|
int num_defrag;
|
|
int index;
|
|
int ret;
|
|
|
|
/* get the inode */
|
|
key.objectid = defrag->root;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
index = srcu_read_lock(&fs_info->subvol_srcu);
|
|
|
|
inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(inode_root)) {
|
|
ret = PTR_ERR(inode_root);
|
|
goto cleanup;
|
|
}
|
|
|
|
key.objectid = defrag->ino;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
key.offset = 0;
|
|
inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto cleanup;
|
|
}
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
|
|
/* do a chunk of defrag */
|
|
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
|
|
memset(&range, 0, sizeof(range));
|
|
range.len = (u64)-1;
|
|
range.start = defrag->last_offset;
|
|
|
|
sb_start_write(fs_info->sb);
|
|
num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
|
|
BTRFS_DEFRAG_BATCH);
|
|
sb_end_write(fs_info->sb);
|
|
/*
|
|
* if we filled the whole defrag batch, there
|
|
* must be more work to do. Queue this defrag
|
|
* again
|
|
*/
|
|
if (num_defrag == BTRFS_DEFRAG_BATCH) {
|
|
defrag->last_offset = range.start;
|
|
btrfs_requeue_inode_defrag(inode, defrag);
|
|
} else if (defrag->last_offset && !defrag->cycled) {
|
|
/*
|
|
* we didn't fill our defrag batch, but
|
|
* we didn't start at zero. Make sure we loop
|
|
* around to the start of the file.
|
|
*/
|
|
defrag->last_offset = 0;
|
|
defrag->cycled = 1;
|
|
btrfs_requeue_inode_defrag(inode, defrag);
|
|
} else {
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
}
|
|
|
|
iput(inode);
|
|
return 0;
|
|
cleanup:
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* run through the list of inodes in the FS that need
|
|
* defragging
|
|
*/
|
|
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
u64 first_ino = 0;
|
|
u64 root_objectid = 0;
|
|
|
|
atomic_inc(&fs_info->defrag_running);
|
|
while (1) {
|
|
/* Pause the auto defragger. */
|
|
if (test_bit(BTRFS_FS_STATE_REMOUNTING,
|
|
&fs_info->fs_state))
|
|
break;
|
|
|
|
if (!__need_auto_defrag(fs_info->tree_root))
|
|
break;
|
|
|
|
/* find an inode to defrag */
|
|
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
|
|
first_ino);
|
|
if (!defrag) {
|
|
if (root_objectid || first_ino) {
|
|
root_objectid = 0;
|
|
first_ino = 0;
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
first_ino = defrag->ino + 1;
|
|
root_objectid = defrag->root;
|
|
|
|
__btrfs_run_defrag_inode(fs_info, defrag);
|
|
}
|
|
atomic_dec(&fs_info->defrag_running);
|
|
|
|
/*
|
|
* during unmount, we use the transaction_wait queue to
|
|
* wait for the defragger to stop
|
|
*/
|
|
wake_up(&fs_info->transaction_wait);
|
|
return 0;
|
|
}
|
|
|
|
/* simple helper to fault in pages and copy. This should go away
|
|
* and be replaced with calls into generic code.
|
|
*/
|
|
static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
|
|
size_t write_bytes,
|
|
struct page **prepared_pages,
|
|
struct iov_iter *i)
|
|
{
|
|
size_t copied = 0;
|
|
size_t total_copied = 0;
|
|
int pg = 0;
|
|
int offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
|
|
while (write_bytes > 0) {
|
|
size_t count = min_t(size_t,
|
|
PAGE_CACHE_SIZE - offset, write_bytes);
|
|
struct page *page = prepared_pages[pg];
|
|
/*
|
|
* Copy data from userspace to the current page
|
|
*/
|
|
copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
|
|
|
|
/* Flush processor's dcache for this page */
|
|
flush_dcache_page(page);
|
|
|
|
/*
|
|
* if we get a partial write, we can end up with
|
|
* partially up to date pages. These add
|
|
* a lot of complexity, so make sure they don't
|
|
* happen by forcing this copy to be retried.
|
|
*
|
|
* The rest of the btrfs_file_write code will fall
|
|
* back to page at a time copies after we return 0.
|
|
*/
|
|
if (!PageUptodate(page) && copied < count)
|
|
copied = 0;
|
|
|
|
iov_iter_advance(i, copied);
|
|
write_bytes -= copied;
|
|
total_copied += copied;
|
|
|
|
/* Return to btrfs_file_write_iter to fault page */
|
|
if (unlikely(copied == 0))
|
|
break;
|
|
|
|
if (copied < PAGE_CACHE_SIZE - offset) {
|
|
offset += copied;
|
|
} else {
|
|
pg++;
|
|
offset = 0;
|
|
}
|
|
}
|
|
return total_copied;
|
|
}
|
|
|
|
/*
|
|
* unlocks pages after btrfs_file_write is done with them
|
|
*/
|
|
static void btrfs_drop_pages(struct page **pages, size_t num_pages)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < num_pages; i++) {
|
|
/* page checked is some magic around finding pages that
|
|
* have been modified without going through btrfs_set_page_dirty
|
|
* clear it here. There should be no need to mark the pages
|
|
* accessed as prepare_pages should have marked them accessed
|
|
* in prepare_pages via find_or_create_page()
|
|
*/
|
|
ClearPageChecked(pages[i]);
|
|
unlock_page(pages[i]);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* after copy_from_user, pages need to be dirtied and we need to make
|
|
* sure holes are created between the current EOF and the start of
|
|
* any next extents (if required).
|
|
*
|
|
* this also makes the decision about creating an inline extent vs
|
|
* doing real data extents, marking pages dirty and delalloc as required.
|
|
*/
|
|
int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
|
|
struct page **pages, size_t num_pages,
|
|
loff_t pos, size_t write_bytes,
|
|
struct extent_state **cached)
|
|
{
|
|
int err = 0;
|
|
int i;
|
|
u64 num_bytes;
|
|
u64 start_pos;
|
|
u64 end_of_last_block;
|
|
u64 end_pos = pos + write_bytes;
|
|
loff_t isize = i_size_read(inode);
|
|
|
|
start_pos = pos & ~((u64)root->sectorsize - 1);
|
|
num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
|
|
|
|
end_of_last_block = start_pos + num_bytes - 1;
|
|
err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
|
|
cached);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
struct page *p = pages[i];
|
|
SetPageUptodate(p);
|
|
ClearPageChecked(p);
|
|
set_page_dirty(p);
|
|
}
|
|
|
|
/*
|
|
* we've only changed i_size in ram, and we haven't updated
|
|
* the disk i_size. There is no need to log the inode
|
|
* at this time.
|
|
*/
|
|
if (end_pos > isize)
|
|
i_size_write(inode, end_pos);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this drops all the extents in the cache that intersect the range
|
|
* [start, end]. Existing extents are split as required.
|
|
*/
|
|
void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
|
|
int skip_pinned)
|
|
{
|
|
struct extent_map *em;
|
|
struct extent_map *split = NULL;
|
|
struct extent_map *split2 = NULL;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
u64 len = end - start + 1;
|
|
u64 gen;
|
|
int ret;
|
|
int testend = 1;
|
|
unsigned long flags;
|
|
int compressed = 0;
|
|
bool modified;
|
|
|
|
WARN_ON(end < start);
|
|
if (end == (u64)-1) {
|
|
len = (u64)-1;
|
|
testend = 0;
|
|
}
|
|
while (1) {
|
|
int no_splits = 0;
|
|
|
|
modified = false;
|
|
if (!split)
|
|
split = alloc_extent_map();
|
|
if (!split2)
|
|
split2 = alloc_extent_map();
|
|
if (!split || !split2)
|
|
no_splits = 1;
|
|
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em) {
|
|
write_unlock(&em_tree->lock);
|
|
break;
|
|
}
|
|
flags = em->flags;
|
|
gen = em->generation;
|
|
if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
|
|
if (testend && em->start + em->len >= start + len) {
|
|
free_extent_map(em);
|
|
write_unlock(&em_tree->lock);
|
|
break;
|
|
}
|
|
start = em->start + em->len;
|
|
if (testend)
|
|
len = start + len - (em->start + em->len);
|
|
free_extent_map(em);
|
|
write_unlock(&em_tree->lock);
|
|
continue;
|
|
}
|
|
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
clear_bit(EXTENT_FLAG_LOGGING, &flags);
|
|
modified = !list_empty(&em->list);
|
|
if (no_splits)
|
|
goto next;
|
|
|
|
if (em->start < start) {
|
|
split->start = em->start;
|
|
split->len = start - em->start;
|
|
|
|
if (em->block_start < EXTENT_MAP_LAST_BYTE) {
|
|
split->orig_start = em->orig_start;
|
|
split->block_start = em->block_start;
|
|
|
|
if (compressed)
|
|
split->block_len = em->block_len;
|
|
else
|
|
split->block_len = split->len;
|
|
split->orig_block_len = max(split->block_len,
|
|
em->orig_block_len);
|
|
split->ram_bytes = em->ram_bytes;
|
|
} else {
|
|
split->orig_start = split->start;
|
|
split->block_len = 0;
|
|
split->block_start = em->block_start;
|
|
split->orig_block_len = 0;
|
|
split->ram_bytes = split->len;
|
|
}
|
|
|
|
split->generation = gen;
|
|
split->bdev = em->bdev;
|
|
split->flags = flags;
|
|
split->compress_type = em->compress_type;
|
|
replace_extent_mapping(em_tree, em, split, modified);
|
|
free_extent_map(split);
|
|
split = split2;
|
|
split2 = NULL;
|
|
}
|
|
if (testend && em->start + em->len > start + len) {
|
|
u64 diff = start + len - em->start;
|
|
|
|
split->start = start + len;
|
|
split->len = em->start + em->len - (start + len);
|
|
split->bdev = em->bdev;
|
|
split->flags = flags;
|
|
split->compress_type = em->compress_type;
|
|
split->generation = gen;
|
|
|
|
if (em->block_start < EXTENT_MAP_LAST_BYTE) {
|
|
split->orig_block_len = max(em->block_len,
|
|
em->orig_block_len);
|
|
|
|
split->ram_bytes = em->ram_bytes;
|
|
if (compressed) {
|
|
split->block_len = em->block_len;
|
|
split->block_start = em->block_start;
|
|
split->orig_start = em->orig_start;
|
|
} else {
|
|
split->block_len = split->len;
|
|
split->block_start = em->block_start
|
|
+ diff;
|
|
split->orig_start = em->orig_start;
|
|
}
|
|
} else {
|
|
split->ram_bytes = split->len;
|
|
split->orig_start = split->start;
|
|
split->block_len = 0;
|
|
split->block_start = em->block_start;
|
|
split->orig_block_len = 0;
|
|
}
|
|
|
|
if (extent_map_in_tree(em)) {
|
|
replace_extent_mapping(em_tree, em, split,
|
|
modified);
|
|
} else {
|
|
ret = add_extent_mapping(em_tree, split,
|
|
modified);
|
|
ASSERT(ret == 0); /* Logic error */
|
|
}
|
|
free_extent_map(split);
|
|
split = NULL;
|
|
}
|
|
next:
|
|
if (extent_map_in_tree(em))
|
|
remove_extent_mapping(em_tree, em);
|
|
write_unlock(&em_tree->lock);
|
|
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
/* once for the tree*/
|
|
free_extent_map(em);
|
|
}
|
|
if (split)
|
|
free_extent_map(split);
|
|
if (split2)
|
|
free_extent_map(split2);
|
|
}
|
|
|
|
/*
|
|
* this is very complex, but the basic idea is to drop all extents
|
|
* in the range start - end. hint_block is filled in with a block number
|
|
* that would be a good hint to the block allocator for this file.
|
|
*
|
|
* If an extent intersects the range but is not entirely inside the range
|
|
* it is either truncated or split. Anything entirely inside the range
|
|
* is deleted from the tree.
|
|
*/
|
|
int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode,
|
|
struct btrfs_path *path, u64 start, u64 end,
|
|
u64 *drop_end, int drop_cache,
|
|
int replace_extent,
|
|
u32 extent_item_size,
|
|
int *key_inserted)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
struct btrfs_key new_key;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 search_start = start;
|
|
u64 disk_bytenr = 0;
|
|
u64 num_bytes = 0;
|
|
u64 extent_offset = 0;
|
|
u64 extent_end = 0;
|
|
int del_nr = 0;
|
|
int del_slot = 0;
|
|
int extent_type;
|
|
int recow;
|
|
int ret;
|
|
int modify_tree = -1;
|
|
int update_refs;
|
|
int found = 0;
|
|
int leafs_visited = 0;
|
|
|
|
if (drop_cache)
|
|
btrfs_drop_extent_cache(inode, start, end - 1, 0);
|
|
|
|
if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
|
|
modify_tree = 0;
|
|
|
|
update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
|
|
root == root->fs_info->tree_root);
|
|
while (1) {
|
|
recow = 0;
|
|
ret = btrfs_lookup_file_extent(trans, root, path, ino,
|
|
search_start, modify_tree);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret > 0 && path->slots[0] > 0 && search_start == start) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
|
|
if (key.objectid == ino &&
|
|
key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
ret = 0;
|
|
leafs_visited++;
|
|
next_slot:
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
BUG_ON(del_nr > 0);
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
leafs_visited++;
|
|
leaf = path->nodes[0];
|
|
recow = 1;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid > ino ||
|
|
key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
|
|
break;
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
extent_offset = btrfs_file_extent_offset(leaf, fi);
|
|
extent_end = key.offset +
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
extent_end = key.offset +
|
|
btrfs_file_extent_inline_len(leaf,
|
|
path->slots[0], fi);
|
|
} else {
|
|
WARN_ON(1);
|
|
extent_end = search_start;
|
|
}
|
|
|
|
/*
|
|
* Don't skip extent items representing 0 byte lengths. They
|
|
* used to be created (bug) if while punching holes we hit
|
|
* -ENOSPC condition. So if we find one here, just ensure we
|
|
* delete it, otherwise we would insert a new file extent item
|
|
* with the same key (offset) as that 0 bytes length file
|
|
* extent item in the call to setup_items_for_insert() later
|
|
* in this function.
|
|
*/
|
|
if (extent_end == key.offset && extent_end >= search_start)
|
|
goto delete_extent_item;
|
|
|
|
if (extent_end <= search_start) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
found = 1;
|
|
search_start = max(key.offset, start);
|
|
if (recow || !modify_tree) {
|
|
modify_tree = -1;
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* | - range to drop - |
|
|
* | -------- extent -------- |
|
|
*/
|
|
if (start > key.offset && end < extent_end) {
|
|
BUG_ON(del_nr > 0);
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
new_key.offset = start;
|
|
ret = btrfs_duplicate_item(trans, root, path,
|
|
&new_key);
|
|
if (ret == -EAGAIN) {
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
if (ret < 0)
|
|
break;
|
|
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
start - key.offset);
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
extent_offset += start - key.offset;
|
|
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - start);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
if (update_refs && disk_bytenr > 0) {
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
disk_bytenr, num_bytes, 0,
|
|
root->root_key.objectid,
|
|
new_key.objectid,
|
|
start - extent_offset, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
key.offset = start;
|
|
}
|
|
/*
|
|
* | ---- range to drop ----- |
|
|
* | -------- extent -------- |
|
|
*/
|
|
if (start <= key.offset && end < extent_end) {
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
new_key.offset = end;
|
|
btrfs_set_item_key_safe(root->fs_info, path, &new_key);
|
|
|
|
extent_offset += end - key.offset;
|
|
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - end);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
if (update_refs && disk_bytenr > 0)
|
|
inode_sub_bytes(inode, end - key.offset);
|
|
break;
|
|
}
|
|
|
|
search_start = extent_end;
|
|
/*
|
|
* | ---- range to drop ----- |
|
|
* | -------- extent -------- |
|
|
*/
|
|
if (start > key.offset && end >= extent_end) {
|
|
BUG_ON(del_nr > 0);
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
start - key.offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
if (update_refs && disk_bytenr > 0)
|
|
inode_sub_bytes(inode, extent_end - start);
|
|
if (end == extent_end)
|
|
break;
|
|
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
/*
|
|
* | ---- range to drop ----- |
|
|
* | ------ extent ------ |
|
|
*/
|
|
if (start <= key.offset && end >= extent_end) {
|
|
delete_extent_item:
|
|
if (del_nr == 0) {
|
|
del_slot = path->slots[0];
|
|
del_nr = 1;
|
|
} else {
|
|
BUG_ON(del_slot + del_nr != path->slots[0]);
|
|
del_nr++;
|
|
}
|
|
|
|
if (update_refs &&
|
|
extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
inode_sub_bytes(inode,
|
|
extent_end - key.offset);
|
|
extent_end = ALIGN(extent_end,
|
|
root->sectorsize);
|
|
} else if (update_refs && disk_bytenr > 0) {
|
|
ret = btrfs_free_extent(trans, root,
|
|
disk_bytenr, num_bytes, 0,
|
|
root->root_key.objectid,
|
|
key.objectid, key.offset -
|
|
extent_offset, 0);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
inode_sub_bytes(inode,
|
|
extent_end - key.offset);
|
|
}
|
|
|
|
if (end == extent_end)
|
|
break;
|
|
|
|
if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
ret = btrfs_del_items(trans, root, path, del_slot,
|
|
del_nr);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
break;
|
|
}
|
|
|
|
del_nr = 0;
|
|
del_slot = 0;
|
|
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(1);
|
|
}
|
|
|
|
if (!ret && del_nr > 0) {
|
|
/*
|
|
* Set path->slots[0] to first slot, so that after the delete
|
|
* if items are move off from our leaf to its immediate left or
|
|
* right neighbor leafs, we end up with a correct and adjusted
|
|
* path->slots[0] for our insertion (if replace_extent != 0).
|
|
*/
|
|
path->slots[0] = del_slot;
|
|
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
/*
|
|
* If btrfs_del_items() was called, it might have deleted a leaf, in
|
|
* which case it unlocked our path, so check path->locks[0] matches a
|
|
* write lock.
|
|
*/
|
|
if (!ret && replace_extent && leafs_visited == 1 &&
|
|
(path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
|
|
path->locks[0] == BTRFS_WRITE_LOCK) &&
|
|
btrfs_leaf_free_space(root, leaf) >=
|
|
sizeof(struct btrfs_item) + extent_item_size) {
|
|
|
|
key.objectid = ino;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = start;
|
|
if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
|
|
struct btrfs_key slot_key;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
|
|
if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
|
|
path->slots[0]++;
|
|
}
|
|
setup_items_for_insert(root, path, &key,
|
|
&extent_item_size,
|
|
extent_item_size,
|
|
sizeof(struct btrfs_item) +
|
|
extent_item_size, 1);
|
|
*key_inserted = 1;
|
|
}
|
|
|
|
if (!replace_extent || !(*key_inserted))
|
|
btrfs_release_path(path);
|
|
if (drop_end)
|
|
*drop_end = found ? min(end, extent_end) : end;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_drop_extents(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode, u64 start,
|
|
u64 end, int drop_cache)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
|
|
drop_cache, 0, 0, NULL);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int extent_mergeable(struct extent_buffer *leaf, int slot,
|
|
u64 objectid, u64 bytenr, u64 orig_offset,
|
|
u64 *start, u64 *end)
|
|
{
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 extent_end;
|
|
|
|
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
|
|
return 0;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
|
|
return 0;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
|
|
btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
|
|
btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
|
|
btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
return 0;
|
|
|
|
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
if ((*start && *start != key.offset) || (*end && *end != extent_end))
|
|
return 0;
|
|
|
|
*start = key.offset;
|
|
*end = extent_end;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Mark extent in the range start - end as written.
|
|
*
|
|
* This changes extent type from 'pre-allocated' to 'regular'. If only
|
|
* part of extent is marked as written, the extent will be split into
|
|
* two or three.
|
|
*/
|
|
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, u64 start, u64 end)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_path *path;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
struct btrfs_key new_key;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 extent_end;
|
|
u64 orig_offset;
|
|
u64 other_start;
|
|
u64 other_end;
|
|
u64 split;
|
|
int del_nr = 0;
|
|
int del_slot = 0;
|
|
int recow;
|
|
int ret;
|
|
u64 ino = btrfs_ino(inode);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
again:
|
|
recow = 0;
|
|
split = start;
|
|
key.objectid = ino;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = split;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0 && path->slots[0] > 0)
|
|
path->slots[0]--;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
BUG_ON(btrfs_file_extent_type(leaf, fi) !=
|
|
BTRFS_FILE_EXTENT_PREALLOC);
|
|
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
BUG_ON(key.offset > start || extent_end < end);
|
|
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
|
|
if (start == key.offset && end < extent_end) {
|
|
other_start = 0;
|
|
other_end = start;
|
|
if (extent_mergeable(leaf, path->slots[0] - 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
new_key.offset = end;
|
|
btrfs_set_item_key_safe(root->fs_info, path, &new_key);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi,
|
|
trans->transid);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - end);
|
|
btrfs_set_file_extent_offset(leaf, fi,
|
|
end - orig_offset);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi,
|
|
trans->transid);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
end - other_start);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (start > key.offset && end == extent_end) {
|
|
other_start = end;
|
|
other_end = 0;
|
|
if (extent_mergeable(leaf, path->slots[0] + 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
start - key.offset);
|
|
btrfs_set_file_extent_generation(leaf, fi,
|
|
trans->transid);
|
|
path->slots[0]++;
|
|
new_key.offset = start;
|
|
btrfs_set_item_key_safe(root->fs_info, path, &new_key);
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi,
|
|
trans->transid);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
other_end - start);
|
|
btrfs_set_file_extent_offset(leaf, fi,
|
|
start - orig_offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
while (start > key.offset || end < extent_end) {
|
|
if (key.offset == start)
|
|
split = end;
|
|
|
|
new_key.offset = split;
|
|
ret = btrfs_duplicate_item(trans, root, path, &new_key);
|
|
if (ret == -EAGAIN) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
split - key.offset);
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
|
|
btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - split);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
|
|
root->root_key.objectid,
|
|
ino, orig_offset, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
if (split == start) {
|
|
key.offset = start;
|
|
} else {
|
|
BUG_ON(start != key.offset);
|
|
path->slots[0]--;
|
|
extent_end = end;
|
|
}
|
|
recow = 1;
|
|
}
|
|
|
|
other_start = end;
|
|
other_end = 0;
|
|
if (extent_mergeable(leaf, path->slots[0] + 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
extent_end = other_end;
|
|
del_slot = path->slots[0] + 1;
|
|
del_nr++;
|
|
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
|
|
0, root->root_key.objectid,
|
|
ino, orig_offset, 0);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
other_start = 0;
|
|
other_end = start;
|
|
if (extent_mergeable(leaf, path->slots[0] - 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
key.offset = other_start;
|
|
del_slot = path->slots[0];
|
|
del_nr++;
|
|
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
|
|
0, root->root_key.objectid,
|
|
ino, orig_offset, 0);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
if (del_nr == 0) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_type(leaf, fi,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
} else {
|
|
fi = btrfs_item_ptr(leaf, del_slot - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_type(leaf, fi,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - key.offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* on error we return an unlocked page and the error value
|
|
* on success we return a locked page and 0
|
|
*/
|
|
static int prepare_uptodate_page(struct page *page, u64 pos,
|
|
bool force_uptodate)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
|
|
!PageUptodate(page)) {
|
|
ret = btrfs_readpage(NULL, page);
|
|
if (ret)
|
|
return ret;
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this just gets pages into the page cache and locks them down.
|
|
*/
|
|
static noinline int prepare_pages(struct inode *inode, struct page **pages,
|
|
size_t num_pages, loff_t pos,
|
|
size_t write_bytes, bool force_uptodate)
|
|
{
|
|
int i;
|
|
unsigned long index = pos >> PAGE_CACHE_SHIFT;
|
|
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
|
|
int err = 0;
|
|
int faili;
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
pages[i] = find_or_create_page(inode->i_mapping, index + i,
|
|
mask | __GFP_WRITE);
|
|
if (!pages[i]) {
|
|
faili = i - 1;
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (i == 0)
|
|
err = prepare_uptodate_page(pages[i], pos,
|
|
force_uptodate);
|
|
if (i == num_pages - 1)
|
|
err = prepare_uptodate_page(pages[i],
|
|
pos + write_bytes, false);
|
|
if (err) {
|
|
page_cache_release(pages[i]);
|
|
faili = i - 1;
|
|
goto fail;
|
|
}
|
|
wait_on_page_writeback(pages[i]);
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
while (faili >= 0) {
|
|
unlock_page(pages[faili]);
|
|
page_cache_release(pages[faili]);
|
|
faili--;
|
|
}
|
|
return err;
|
|
|
|
}
|
|
|
|
/*
|
|
* This function locks the extent and properly waits for data=ordered extents
|
|
* to finish before allowing the pages to be modified if need.
|
|
*
|
|
* The return value:
|
|
* 1 - the extent is locked
|
|
* 0 - the extent is not locked, and everything is OK
|
|
* -EAGAIN - need re-prepare the pages
|
|
* the other < 0 number - Something wrong happens
|
|
*/
|
|
static noinline int
|
|
lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
|
|
size_t num_pages, loff_t pos,
|
|
u64 *lockstart, u64 *lockend,
|
|
struct extent_state **cached_state)
|
|
{
|
|
u64 start_pos;
|
|
u64 last_pos;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
|
|
last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
|
|
|
|
if (start_pos < inode->i_size) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree,
|
|
start_pos, last_pos, 0, cached_state);
|
|
ordered = btrfs_lookup_ordered_range(inode, start_pos,
|
|
last_pos - start_pos + 1);
|
|
if (ordered &&
|
|
ordered->file_offset + ordered->len > start_pos &&
|
|
ordered->file_offset <= last_pos) {
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
start_pos, last_pos,
|
|
cached_state, GFP_NOFS);
|
|
for (i = 0; i < num_pages; i++) {
|
|
unlock_page(pages[i]);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
return -EAGAIN;
|
|
}
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
|
|
last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
|
|
0, 0, cached_state, GFP_NOFS);
|
|
*lockstart = start_pos;
|
|
*lockend = last_pos;
|
|
ret = 1;
|
|
}
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
if (clear_page_dirty_for_io(pages[i]))
|
|
account_page_redirty(pages[i]);
|
|
set_page_extent_mapped(pages[i]);
|
|
WARN_ON(!PageLocked(pages[i]));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_can_nocow(struct inode *inode, loff_t pos,
|
|
size_t *write_bytes)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ordered_extent *ordered;
|
|
u64 lockstart, lockend;
|
|
u64 num_bytes;
|
|
int ret;
|
|
|
|
ret = btrfs_start_write_no_snapshoting(root);
|
|
if (!ret)
|
|
return -ENOSPC;
|
|
|
|
lockstart = round_down(pos, root->sectorsize);
|
|
lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
|
|
|
|
while (1) {
|
|
lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
|
|
ordered = btrfs_lookup_ordered_range(inode, lockstart,
|
|
lockend - lockstart + 1);
|
|
if (!ordered) {
|
|
break;
|
|
}
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
|
|
num_bytes = lockend - lockstart + 1;
|
|
ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
|
|
if (ret <= 0) {
|
|
ret = 0;
|
|
btrfs_end_write_no_snapshoting(root);
|
|
} else {
|
|
*write_bytes = min_t(size_t, *write_bytes ,
|
|
num_bytes - pos + lockstart);
|
|
}
|
|
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline ssize_t __btrfs_buffered_write(struct file *file,
|
|
struct iov_iter *i,
|
|
loff_t pos)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct page **pages = NULL;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 release_bytes = 0;
|
|
u64 lockstart;
|
|
u64 lockend;
|
|
unsigned long first_index;
|
|
size_t num_written = 0;
|
|
int nrptrs;
|
|
int ret = 0;
|
|
bool only_release_metadata = false;
|
|
bool force_page_uptodate = false;
|
|
bool need_unlock;
|
|
|
|
nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
|
|
PAGE_CACHE_SIZE / (sizeof(struct page *)));
|
|
nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
|
|
nrptrs = max(nrptrs, 8);
|
|
pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
first_index = pos >> PAGE_CACHE_SHIFT;
|
|
|
|
while (iov_iter_count(i) > 0) {
|
|
size_t offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
size_t write_bytes = min(iov_iter_count(i),
|
|
nrptrs * (size_t)PAGE_CACHE_SIZE -
|
|
offset);
|
|
size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
|
|
PAGE_CACHE_SIZE);
|
|
size_t reserve_bytes;
|
|
size_t dirty_pages;
|
|
size_t copied;
|
|
|
|
WARN_ON(num_pages > nrptrs);
|
|
|
|
/*
|
|
* Fault pages before locking them in prepare_pages
|
|
* to avoid recursive lock
|
|
*/
|
|
if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
|
|
ret = btrfs_check_data_free_space(inode, reserve_bytes);
|
|
if (ret == -ENOSPC &&
|
|
(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_PREALLOC))) {
|
|
ret = check_can_nocow(inode, pos, &write_bytes);
|
|
if (ret > 0) {
|
|
only_release_metadata = true;
|
|
/*
|
|
* our prealloc extent may be smaller than
|
|
* write_bytes, so scale down.
|
|
*/
|
|
num_pages = DIV_ROUND_UP(write_bytes + offset,
|
|
PAGE_CACHE_SIZE);
|
|
reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
|
|
ret = 0;
|
|
} else {
|
|
ret = -ENOSPC;
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
|
|
if (ret) {
|
|
if (!only_release_metadata)
|
|
btrfs_free_reserved_data_space(inode,
|
|
reserve_bytes);
|
|
else
|
|
btrfs_end_write_no_snapshoting(root);
|
|
break;
|
|
}
|
|
|
|
release_bytes = reserve_bytes;
|
|
need_unlock = false;
|
|
again:
|
|
/*
|
|
* This is going to setup the pages array with the number of
|
|
* pages we want, so we don't really need to worry about the
|
|
* contents of pages from loop to loop
|
|
*/
|
|
ret = prepare_pages(inode, pages, num_pages,
|
|
pos, write_bytes,
|
|
force_page_uptodate);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
|
|
pos, &lockstart, &lockend,
|
|
&cached_state);
|
|
if (ret < 0) {
|
|
if (ret == -EAGAIN)
|
|
goto again;
|
|
break;
|
|
} else if (ret > 0) {
|
|
need_unlock = true;
|
|
ret = 0;
|
|
}
|
|
|
|
copied = btrfs_copy_from_user(pos, num_pages,
|
|
write_bytes, pages, i);
|
|
|
|
/*
|
|
* if we have trouble faulting in the pages, fall
|
|
* back to one page at a time
|
|
*/
|
|
if (copied < write_bytes)
|
|
nrptrs = 1;
|
|
|
|
if (copied == 0) {
|
|
force_page_uptodate = true;
|
|
dirty_pages = 0;
|
|
} else {
|
|
force_page_uptodate = false;
|
|
dirty_pages = DIV_ROUND_UP(copied + offset,
|
|
PAGE_CACHE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If we had a short copy we need to release the excess delaloc
|
|
* bytes we reserved. We need to increment outstanding_extents
|
|
* because btrfs_delalloc_release_space will decrement it, but
|
|
* we still have an outstanding extent for the chunk we actually
|
|
* managed to copy.
|
|
*/
|
|
if (num_pages > dirty_pages) {
|
|
release_bytes = (num_pages - dirty_pages) <<
|
|
PAGE_CACHE_SHIFT;
|
|
if (copied > 0) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->outstanding_extents++;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
if (only_release_metadata)
|
|
btrfs_delalloc_release_metadata(inode,
|
|
release_bytes);
|
|
else
|
|
btrfs_delalloc_release_space(inode,
|
|
release_bytes);
|
|
}
|
|
|
|
release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
|
|
|
|
if (copied > 0)
|
|
ret = btrfs_dirty_pages(root, inode, pages,
|
|
dirty_pages, pos, copied,
|
|
NULL);
|
|
if (need_unlock)
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
lockstart, lockend, &cached_state,
|
|
GFP_NOFS);
|
|
if (ret) {
|
|
btrfs_drop_pages(pages, num_pages);
|
|
break;
|
|
}
|
|
|
|
release_bytes = 0;
|
|
if (only_release_metadata)
|
|
btrfs_end_write_no_snapshoting(root);
|
|
|
|
if (only_release_metadata && copied > 0) {
|
|
lockstart = round_down(pos, root->sectorsize);
|
|
lockend = lockstart +
|
|
(dirty_pages << PAGE_CACHE_SHIFT) - 1;
|
|
|
|
set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
|
|
lockend, EXTENT_NORESERVE, NULL,
|
|
NULL, GFP_NOFS);
|
|
only_release_metadata = false;
|
|
}
|
|
|
|
btrfs_drop_pages(pages, num_pages);
|
|
|
|
cond_resched();
|
|
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
|
|
btrfs_btree_balance_dirty(root);
|
|
|
|
pos += copied;
|
|
num_written += copied;
|
|
}
|
|
|
|
kfree(pages);
|
|
|
|
if (release_bytes) {
|
|
if (only_release_metadata) {
|
|
btrfs_end_write_no_snapshoting(root);
|
|
btrfs_delalloc_release_metadata(inode, release_bytes);
|
|
} else {
|
|
btrfs_delalloc_release_space(inode, release_bytes);
|
|
}
|
|
}
|
|
|
|
return num_written ? num_written : ret;
|
|
}
|
|
|
|
static ssize_t __btrfs_direct_write(struct kiocb *iocb,
|
|
struct iov_iter *from,
|
|
loff_t pos)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
ssize_t written;
|
|
ssize_t written_buffered;
|
|
loff_t endbyte;
|
|
int err;
|
|
|
|
written = generic_file_direct_write(iocb, from, pos);
|
|
|
|
if (written < 0 || !iov_iter_count(from))
|
|
return written;
|
|
|
|
pos += written;
|
|
written_buffered = __btrfs_buffered_write(file, from, pos);
|
|
if (written_buffered < 0) {
|
|
err = written_buffered;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Ensure all data is persisted. We want the next direct IO read to be
|
|
* able to read what was just written.
|
|
*/
|
|
endbyte = pos + written_buffered - 1;
|
|
err = btrfs_fdatawrite_range(inode, pos, endbyte);
|
|
if (err)
|
|
goto out;
|
|
err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
|
|
if (err)
|
|
goto out;
|
|
written += written_buffered;
|
|
iocb->ki_pos = pos + written_buffered;
|
|
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
|
|
endbyte >> PAGE_CACHE_SHIFT);
|
|
out:
|
|
return written ? written : err;
|
|
}
|
|
|
|
static void update_time_for_write(struct inode *inode)
|
|
{
|
|
struct timespec now;
|
|
|
|
if (IS_NOCMTIME(inode))
|
|
return;
|
|
|
|
now = current_fs_time(inode->i_sb);
|
|
if (!timespec_equal(&inode->i_mtime, &now))
|
|
inode->i_mtime = now;
|
|
|
|
if (!timespec_equal(&inode->i_ctime, &now))
|
|
inode->i_ctime = now;
|
|
|
|
if (IS_I_VERSION(inode))
|
|
inode_inc_iversion(inode);
|
|
}
|
|
|
|
static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
|
|
struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 start_pos;
|
|
u64 end_pos;
|
|
ssize_t num_written = 0;
|
|
ssize_t err = 0;
|
|
size_t count = iov_iter_count(from);
|
|
bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
|
|
loff_t pos = iocb->ki_pos;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
current->backing_dev_info = inode_to_bdi(inode);
|
|
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
if (count == 0) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
iov_iter_truncate(from, count);
|
|
|
|
err = file_remove_suid(file);
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If BTRFS flips readonly due to some impossible error
|
|
* (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
|
|
* although we have opened a file as writable, we have
|
|
* to stop this write operation to ensure FS consistency.
|
|
*/
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
err = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We reserve space for updating the inode when we reserve space for the
|
|
* extent we are going to write, so we will enospc out there. We don't
|
|
* need to start yet another transaction to update the inode as we will
|
|
* update the inode when we finish writing whatever data we write.
|
|
*/
|
|
update_time_for_write(inode);
|
|
|
|
start_pos = round_down(pos, root->sectorsize);
|
|
if (start_pos > i_size_read(inode)) {
|
|
/* Expand hole size to cover write data, preventing empty gap */
|
|
end_pos = round_up(pos + count, root->sectorsize);
|
|
err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (sync)
|
|
atomic_inc(&BTRFS_I(inode)->sync_writers);
|
|
|
|
if (file->f_flags & O_DIRECT) {
|
|
num_written = __btrfs_direct_write(iocb, from, pos);
|
|
} else {
|
|
num_written = __btrfs_buffered_write(file, from, pos);
|
|
if (num_written > 0)
|
|
iocb->ki_pos = pos + num_written;
|
|
}
|
|
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
/*
|
|
* We also have to set last_sub_trans to the current log transid,
|
|
* otherwise subsequent syncs to a file that's been synced in this
|
|
* transaction will appear to have already occured.
|
|
*/
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->last_sub_trans = root->log_transid;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
if (num_written > 0) {
|
|
err = generic_write_sync(file, pos, num_written);
|
|
if (err < 0)
|
|
num_written = err;
|
|
}
|
|
|
|
if (sync)
|
|
atomic_dec(&BTRFS_I(inode)->sync_writers);
|
|
out:
|
|
current->backing_dev_info = NULL;
|
|
return num_written ? num_written : err;
|
|
}
|
|
|
|
int btrfs_release_file(struct inode *inode, struct file *filp)
|
|
{
|
|
if (filp->private_data)
|
|
btrfs_ioctl_trans_end(filp);
|
|
/*
|
|
* ordered_data_close is set by settattr when we are about to truncate
|
|
* a file from a non-zero size to a zero size. This tries to
|
|
* flush down new bytes that may have been written if the
|
|
* application were using truncate to replace a file in place.
|
|
*/
|
|
if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
return 0;
|
|
}
|
|
|
|
static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
|
|
{
|
|
int ret;
|
|
|
|
atomic_inc(&BTRFS_I(inode)->sync_writers);
|
|
ret = btrfs_fdatawrite_range(inode, start, end);
|
|
atomic_dec(&BTRFS_I(inode)->sync_writers);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fsync call for both files and directories. This logs the inode into
|
|
* the tree log instead of forcing full commits whenever possible.
|
|
*
|
|
* It needs to call filemap_fdatawait so that all ordered extent updates are
|
|
* in the metadata btree are up to date for copying to the log.
|
|
*
|
|
* It drops the inode mutex before doing the tree log commit. This is an
|
|
* important optimization for directories because holding the mutex prevents
|
|
* new operations on the dir while we write to disk.
|
|
*/
|
|
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
struct inode *inode = dentry->d_inode;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_log_ctx ctx;
|
|
int ret = 0;
|
|
bool full_sync = 0;
|
|
|
|
trace_btrfs_sync_file(file, datasync);
|
|
|
|
/*
|
|
* We write the dirty pages in the range and wait until they complete
|
|
* out of the ->i_mutex. If so, we can flush the dirty pages by
|
|
* multi-task, and make the performance up. See
|
|
* btrfs_wait_ordered_range for an explanation of the ASYNC check.
|
|
*/
|
|
ret = start_ordered_ops(inode, start, end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
atomic_inc(&root->log_batch);
|
|
full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
/*
|
|
* We might have have had more pages made dirty after calling
|
|
* start_ordered_ops and before acquiring the inode's i_mutex.
|
|
*/
|
|
if (full_sync) {
|
|
/*
|
|
* For a full sync, we need to make sure any ordered operations
|
|
* start and finish before we start logging the inode, so that
|
|
* all extents are persisted and the respective file extent
|
|
* items are in the fs/subvol btree.
|
|
*/
|
|
ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
|
|
} else {
|
|
/*
|
|
* Start any new ordered operations before starting to log the
|
|
* inode. We will wait for them to finish in btrfs_sync_log().
|
|
*
|
|
* Right before acquiring the inode's mutex, we might have new
|
|
* writes dirtying pages, which won't immediately start the
|
|
* respective ordered operations - that is done through the
|
|
* fill_delalloc callbacks invoked from the writepage and
|
|
* writepages address space operations. So make sure we start
|
|
* all ordered operations before starting to log our inode. Not
|
|
* doing this means that while logging the inode, writeback
|
|
* could start and invoke writepage/writepages, which would call
|
|
* the fill_delalloc callbacks (cow_file_range,
|
|
* submit_compressed_extents). These callbacks add first an
|
|
* extent map to the modified list of extents and then create
|
|
* the respective ordered operation, which means in
|
|
* tree-log.c:btrfs_log_inode() we might capture all existing
|
|
* ordered operations (with btrfs_get_logged_extents()) before
|
|
* the fill_delalloc callback adds its ordered operation, and by
|
|
* the time we visit the modified list of extent maps (with
|
|
* btrfs_log_changed_extents()), we see and process the extent
|
|
* map they created. We then use the extent map to construct a
|
|
* file extent item for logging without waiting for the
|
|
* respective ordered operation to finish - this file extent
|
|
* item points to a disk location that might not have yet been
|
|
* written to, containing random data - so after a crash a log
|
|
* replay will make our inode have file extent items that point
|
|
* to disk locations containing invalid data, as we returned
|
|
* success to userspace without waiting for the respective
|
|
* ordered operation to finish, because it wasn't captured by
|
|
* btrfs_get_logged_extents().
|
|
*/
|
|
ret = start_ordered_ops(inode, start, end);
|
|
}
|
|
if (ret) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
atomic_inc(&root->log_batch);
|
|
|
|
/*
|
|
* If the last transaction that changed this file was before the current
|
|
* transaction and we have the full sync flag set in our inode, we can
|
|
* bail out now without any syncing.
|
|
*
|
|
* Note that we can't bail out if the full sync flag isn't set. This is
|
|
* because when the full sync flag is set we start all ordered extents
|
|
* and wait for them to fully complete - when they complete they update
|
|
* the inode's last_trans field through:
|
|
*
|
|
* btrfs_finish_ordered_io() ->
|
|
* btrfs_update_inode_fallback() ->
|
|
* btrfs_update_inode() ->
|
|
* btrfs_set_inode_last_trans()
|
|
*
|
|
* So we are sure that last_trans is up to date and can do this check to
|
|
* bail out safely. For the fast path, when the full sync flag is not
|
|
* set in our inode, we can not do it because we start only our ordered
|
|
* extents and don't wait for them to complete (that is when
|
|
* btrfs_finish_ordered_io runs), so here at this point their last_trans
|
|
* value might be less than or equals to fs_info->last_trans_committed,
|
|
* and setting a speculative last_trans for an inode when a buffered
|
|
* write is made (such as fs_info->generation + 1 for example) would not
|
|
* be reliable since after setting the value and before fsync is called
|
|
* any number of transactions can start and commit (transaction kthread
|
|
* commits the current transaction periodically), and a transaction
|
|
* commit does not start nor waits for ordered extents to complete.
|
|
*/
|
|
smp_mb();
|
|
if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
|
|
(full_sync && BTRFS_I(inode)->last_trans <=
|
|
root->fs_info->last_trans_committed)) {
|
|
/*
|
|
* We'v had everything committed since the last time we were
|
|
* modified so clear this flag in case it was set for whatever
|
|
* reason, it's no longer relevant.
|
|
*/
|
|
clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* ok we haven't committed the transaction yet, lets do a commit
|
|
*/
|
|
if (file->private_data)
|
|
btrfs_ioctl_trans_end(file);
|
|
|
|
/*
|
|
* We use start here because we will need to wait on the IO to complete
|
|
* in btrfs_sync_log, which could require joining a transaction (for
|
|
* example checking cross references in the nocow path). If we use join
|
|
* here we could get into a situation where we're waiting on IO to
|
|
* happen that is blocked on a transaction trying to commit. With start
|
|
* we inc the extwriter counter, so we wait for all extwriters to exit
|
|
* before we start blocking join'ers. This comment is to keep somebody
|
|
* from thinking they are super smart and changing this to
|
|
* btrfs_join_transaction *cough*Josef*cough*.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
trans->sync = true;
|
|
|
|
btrfs_init_log_ctx(&ctx);
|
|
|
|
ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
|
|
if (ret < 0) {
|
|
/* Fallthrough and commit/free transaction. */
|
|
ret = 1;
|
|
}
|
|
|
|
/* we've logged all the items and now have a consistent
|
|
* version of the file in the log. It is possible that
|
|
* someone will come in and modify the file, but that's
|
|
* fine because the log is consistent on disk, and we
|
|
* have references to all of the file's extents
|
|
*
|
|
* It is possible that someone will come in and log the
|
|
* file again, but that will end up using the synchronization
|
|
* inside btrfs_sync_log to keep things safe.
|
|
*/
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
/*
|
|
* If any of the ordered extents had an error, just return it to user
|
|
* space, so that the application knows some writes didn't succeed and
|
|
* can take proper action (retry for e.g.). Blindly committing the
|
|
* transaction in this case, would fool userspace that everything was
|
|
* successful. And we also want to make sure our log doesn't contain
|
|
* file extent items pointing to extents that weren't fully written to -
|
|
* just like in the non fast fsync path, where we check for the ordered
|
|
* operation's error flag before writing to the log tree and return -EIO
|
|
* if any of them had this flag set (btrfs_wait_ordered_range) -
|
|
* therefore we need to check for errors in the ordered operations,
|
|
* which are indicated by ctx.io_err.
|
|
*/
|
|
if (ctx.io_err) {
|
|
btrfs_end_transaction(trans, root);
|
|
ret = ctx.io_err;
|
|
goto out;
|
|
}
|
|
|
|
if (ret != BTRFS_NO_LOG_SYNC) {
|
|
if (!ret) {
|
|
ret = btrfs_sync_log(trans, root, &ctx);
|
|
if (!ret) {
|
|
ret = btrfs_end_transaction(trans, root);
|
|
goto out;
|
|
}
|
|
}
|
|
if (!full_sync) {
|
|
ret = btrfs_wait_ordered_range(inode, start,
|
|
end - start + 1);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans, root);
|
|
goto out;
|
|
}
|
|
}
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
} else {
|
|
ret = btrfs_end_transaction(trans, root);
|
|
}
|
|
out:
|
|
return ret > 0 ? -EIO : ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct btrfs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = btrfs_page_mkwrite,
|
|
};
|
|
|
|
static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct address_space *mapping = filp->f_mapping;
|
|
|
|
if (!mapping->a_ops->readpage)
|
|
return -ENOEXEC;
|
|
|
|
file_accessed(filp);
|
|
vma->vm_ops = &btrfs_file_vm_ops;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
|
|
int slot, u64 start, u64 end)
|
|
{
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
|
|
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
|
|
return 0;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != btrfs_ino(inode) ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY)
|
|
return 0;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
|
|
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
|
|
return 0;
|
|
|
|
if (btrfs_file_extent_disk_bytenr(leaf, fi))
|
|
return 0;
|
|
|
|
if (key.offset == end)
|
|
return 1;
|
|
if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
|
|
struct btrfs_path *path, u64 offset, u64 end)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_map *hole_em;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
|
|
goto out;
|
|
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = offset;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
BUG_ON(!ret);
|
|
|
|
leaf = path->nodes[0];
|
|
if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
|
|
u64 num_bytes;
|
|
|
|
path->slots[0]--;
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
|
|
end - offset;
|
|
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
|
|
btrfs_set_file_extent_offset(leaf, fi, 0);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
goto out;
|
|
}
|
|
|
|
if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
|
|
u64 num_bytes;
|
|
|
|
key.offset = offset;
|
|
btrfs_set_item_key_safe(root->fs_info, path, &key);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
|
|
offset;
|
|
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
|
|
btrfs_set_file_extent_offset(leaf, fi, 0);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
|
|
0, 0, end - offset, 0, end - offset,
|
|
0, 0, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
out:
|
|
btrfs_release_path(path);
|
|
|
|
hole_em = alloc_extent_map();
|
|
if (!hole_em) {
|
|
btrfs_drop_extent_cache(inode, offset, end - 1, 0);
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
} else {
|
|
hole_em->start = offset;
|
|
hole_em->len = end - offset;
|
|
hole_em->ram_bytes = hole_em->len;
|
|
hole_em->orig_start = offset;
|
|
|
|
hole_em->block_start = EXTENT_MAP_HOLE;
|
|
hole_em->block_len = 0;
|
|
hole_em->orig_block_len = 0;
|
|
hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
|
|
hole_em->compress_type = BTRFS_COMPRESS_NONE;
|
|
hole_em->generation = trans->transid;
|
|
|
|
do {
|
|
btrfs_drop_extent_cache(inode, offset, end - 1, 0);
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, hole_em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
} while (ret == -EEXIST);
|
|
free_extent_map(hole_em);
|
|
if (ret)
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a hole extent on given inode and change start/len to the end of hole
|
|
* extent.(hole/vacuum extent whose em->start <= start &&
|
|
* em->start + em->len > start)
|
|
* When a hole extent is found, return 1 and modify start/len.
|
|
*/
|
|
static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
|
|
{
|
|
struct extent_map *em;
|
|
int ret = 0;
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
|
|
if (IS_ERR_OR_NULL(em)) {
|
|
if (!em)
|
|
ret = -ENOMEM;
|
|
else
|
|
ret = PTR_ERR(em);
|
|
return ret;
|
|
}
|
|
|
|
/* Hole or vacuum extent(only exists in no-hole mode) */
|
|
if (em->block_start == EXTENT_MAP_HOLE) {
|
|
ret = 1;
|
|
*len = em->start + em->len > *start + *len ?
|
|
0 : *start + *len - em->start - em->len;
|
|
*start = em->start + em->len;
|
|
}
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_state *cached_state = NULL;
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_rsv *rsv;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 lockstart;
|
|
u64 lockend;
|
|
u64 tail_start;
|
|
u64 tail_len;
|
|
u64 orig_start = offset;
|
|
u64 cur_offset;
|
|
u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
|
|
u64 drop_end;
|
|
int ret = 0;
|
|
int err = 0;
|
|
int rsv_count;
|
|
bool same_page;
|
|
bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
|
|
u64 ino_size;
|
|
bool truncated_page = false;
|
|
bool updated_inode = false;
|
|
|
|
ret = btrfs_wait_ordered_range(inode, offset, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
|
|
ret = find_first_non_hole(inode, &offset, &len);
|
|
if (ret < 0)
|
|
goto out_only_mutex;
|
|
if (ret && !len) {
|
|
/* Already in a large hole */
|
|
ret = 0;
|
|
goto out_only_mutex;
|
|
}
|
|
|
|
lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
|
|
lockend = round_down(offset + len,
|
|
BTRFS_I(inode)->root->sectorsize) - 1;
|
|
same_page = ((offset >> PAGE_CACHE_SHIFT) ==
|
|
((offset + len - 1) >> PAGE_CACHE_SHIFT));
|
|
|
|
/*
|
|
* We needn't truncate any page which is beyond the end of the file
|
|
* because we are sure there is no data there.
|
|
*/
|
|
/*
|
|
* Only do this if we are in the same page and we aren't doing the
|
|
* entire page.
|
|
*/
|
|
if (same_page && len < PAGE_CACHE_SIZE) {
|
|
if (offset < ino_size) {
|
|
truncated_page = true;
|
|
ret = btrfs_truncate_page(inode, offset, len, 0);
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
goto out_only_mutex;
|
|
}
|
|
|
|
/* zero back part of the first page */
|
|
if (offset < ino_size) {
|
|
truncated_page = true;
|
|
ret = btrfs_truncate_page(inode, offset, 0, 0);
|
|
if (ret) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Check the aligned pages after the first unaligned page,
|
|
* if offset != orig_start, which means the first unaligned page
|
|
* including serveral following pages are already in holes,
|
|
* the extra check can be skipped */
|
|
if (offset == orig_start) {
|
|
/* after truncate page, check hole again */
|
|
len = offset + len - lockstart;
|
|
offset = lockstart;
|
|
ret = find_first_non_hole(inode, &offset, &len);
|
|
if (ret < 0)
|
|
goto out_only_mutex;
|
|
if (ret && !len) {
|
|
ret = 0;
|
|
goto out_only_mutex;
|
|
}
|
|
lockstart = offset;
|
|
}
|
|
|
|
/* Check the tail unaligned part is in a hole */
|
|
tail_start = lockend + 1;
|
|
tail_len = offset + len - tail_start;
|
|
if (tail_len) {
|
|
ret = find_first_non_hole(inode, &tail_start, &tail_len);
|
|
if (unlikely(ret < 0))
|
|
goto out_only_mutex;
|
|
if (!ret) {
|
|
/* zero the front end of the last page */
|
|
if (tail_start + tail_len < ino_size) {
|
|
truncated_page = true;
|
|
ret = btrfs_truncate_page(inode,
|
|
tail_start + tail_len, 0, 1);
|
|
if (ret)
|
|
goto out_only_mutex;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (lockend < lockstart) {
|
|
ret = 0;
|
|
goto out_only_mutex;
|
|
}
|
|
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
truncate_pagecache_range(inode, lockstart, lockend);
|
|
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
0, &cached_state);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
|
|
|
|
/*
|
|
* We need to make sure we have no ordered extents in this range
|
|
* and nobody raced in and read a page in this range, if we did
|
|
* we need to try again.
|
|
*/
|
|
if ((!ordered ||
|
|
(ordered->file_offset + ordered->len <= lockstart ||
|
|
ordered->file_offset > lockend)) &&
|
|
!btrfs_page_exists_in_range(inode, lockstart, lockend)) {
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
|
|
lockend, &cached_state, GFP_NOFS);
|
|
ret = btrfs_wait_ordered_range(inode, lockstart,
|
|
lockend - lockstart + 1);
|
|
if (ret) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
|
|
if (!rsv) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
|
|
rsv->failfast = 1;
|
|
|
|
/*
|
|
* 1 - update the inode
|
|
* 1 - removing the extents in the range
|
|
* 1 - adding the hole extent if no_holes isn't set
|
|
*/
|
|
rsv_count = no_holes ? 2 : 3;
|
|
trans = btrfs_start_transaction(root, rsv_count);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
|
|
ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
|
|
min_size);
|
|
BUG_ON(ret);
|
|
trans->block_rsv = rsv;
|
|
|
|
cur_offset = lockstart;
|
|
len = lockend - cur_offset;
|
|
while (cur_offset < lockend) {
|
|
ret = __btrfs_drop_extents(trans, root, inode, path,
|
|
cur_offset, lockend + 1,
|
|
&drop_end, 1, 0, 0, NULL);
|
|
if (ret != -ENOSPC)
|
|
break;
|
|
|
|
trans->block_rsv = &root->fs_info->trans_block_rsv;
|
|
|
|
if (cur_offset < ino_size) {
|
|
ret = fill_holes(trans, inode, path, cur_offset,
|
|
drop_end);
|
|
if (ret) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cur_offset = drop_end;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
btrfs_btree_balance_dirty(root);
|
|
|
|
trans = btrfs_start_transaction(root, rsv_count);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
|
|
rsv, min_size);
|
|
BUG_ON(ret); /* shouldn't happen */
|
|
trans->block_rsv = rsv;
|
|
|
|
ret = find_first_non_hole(inode, &cur_offset, &len);
|
|
if (unlikely(ret < 0))
|
|
break;
|
|
if (ret && !len) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_trans;
|
|
}
|
|
|
|
trans->block_rsv = &root->fs_info->trans_block_rsv;
|
|
/*
|
|
* Don't insert file hole extent item if it's for a range beyond eof
|
|
* (because it's useless) or if it represents a 0 bytes range (when
|
|
* cur_offset == drop_end).
|
|
*/
|
|
if (cur_offset < ino_size && cur_offset < drop_end) {
|
|
ret = fill_holes(trans, inode, path, cur_offset, drop_end);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out_trans;
|
|
}
|
|
}
|
|
|
|
out_trans:
|
|
if (!trans)
|
|
goto out_free;
|
|
|
|
inode_inc_iversion(inode);
|
|
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
|
|
|
trans->block_rsv = &root->fs_info->trans_block_rsv;
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
updated_inode = true;
|
|
btrfs_end_transaction(trans, root);
|
|
btrfs_btree_balance_dirty(root);
|
|
out_free:
|
|
btrfs_free_path(path);
|
|
btrfs_free_block_rsv(root, rsv);
|
|
out:
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
&cached_state, GFP_NOFS);
|
|
out_only_mutex:
|
|
if (!updated_inode && truncated_page && !ret && !err) {
|
|
/*
|
|
* If we only end up zeroing part of a page, we still need to
|
|
* update the inode item, so that all the time fields are
|
|
* updated as well as the necessary btrfs inode in memory fields
|
|
* for detecting, at fsync time, if the inode isn't yet in the
|
|
* log tree or it's there but not up to date.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
} else {
|
|
err = btrfs_update_inode(trans, root, inode);
|
|
ret = btrfs_end_transaction(trans, root);
|
|
}
|
|
}
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (ret && !err)
|
|
err = ret;
|
|
return err;
|
|
}
|
|
|
|
static long btrfs_fallocate(struct file *file, int mode,
|
|
loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct extent_state *cached_state = NULL;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 cur_offset;
|
|
u64 last_byte;
|
|
u64 alloc_start;
|
|
u64 alloc_end;
|
|
u64 alloc_hint = 0;
|
|
u64 locked_end;
|
|
struct extent_map *em;
|
|
int blocksize = BTRFS_I(inode)->root->sectorsize;
|
|
int ret;
|
|
|
|
alloc_start = round_down(offset, blocksize);
|
|
alloc_end = round_up(offset + len, blocksize);
|
|
|
|
/* Make sure we aren't being give some crap mode */
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE)
|
|
return btrfs_punch_hole(inode, offset, len);
|
|
|
|
/*
|
|
* Make sure we have enough space before we do the
|
|
* allocation.
|
|
*/
|
|
ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
|
|
if (ret)
|
|
return ret;
|
|
if (root->fs_info->quota_enabled) {
|
|
ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
|
|
if (ret)
|
|
goto out_reserve_fail;
|
|
}
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
ret = inode_newsize_ok(inode, alloc_end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (alloc_start > inode->i_size) {
|
|
ret = btrfs_cont_expand(inode, i_size_read(inode),
|
|
alloc_start);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* If we are fallocating from the end of the file onward we
|
|
* need to zero out the end of the page if i_size lands in the
|
|
* middle of a page.
|
|
*/
|
|
ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* wait for ordered IO before we have any locks. We'll loop again
|
|
* below with the locks held.
|
|
*/
|
|
ret = btrfs_wait_ordered_range(inode, alloc_start,
|
|
alloc_end - alloc_start);
|
|
if (ret)
|
|
goto out;
|
|
|
|
locked_end = alloc_end - 1;
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
/* the extent lock is ordered inside the running
|
|
* transaction
|
|
*/
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
|
|
locked_end, 0, &cached_state);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
alloc_end - 1);
|
|
if (ordered &&
|
|
ordered->file_offset + ordered->len > alloc_start &&
|
|
ordered->file_offset < alloc_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
alloc_start, locked_end,
|
|
&cached_state, GFP_NOFS);
|
|
/*
|
|
* we can't wait on the range with the transaction
|
|
* running or with the extent lock held
|
|
*/
|
|
ret = btrfs_wait_ordered_range(inode, alloc_start,
|
|
alloc_end - alloc_start);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cur_offset = alloc_start;
|
|
while (1) {
|
|
u64 actual_end;
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
|
|
alloc_end - cur_offset, 0);
|
|
if (IS_ERR_OR_NULL(em)) {
|
|
if (!em)
|
|
ret = -ENOMEM;
|
|
else
|
|
ret = PTR_ERR(em);
|
|
break;
|
|
}
|
|
last_byte = min(extent_map_end(em), alloc_end);
|
|
actual_end = min_t(u64, extent_map_end(em), offset + len);
|
|
last_byte = ALIGN(last_byte, blocksize);
|
|
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
(cur_offset >= inode->i_size &&
|
|
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
|
|
ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
|
|
last_byte - cur_offset,
|
|
1 << inode->i_blkbits,
|
|
offset + len,
|
|
&alloc_hint);
|
|
} else if (actual_end > inode->i_size &&
|
|
!(mode & FALLOC_FL_KEEP_SIZE)) {
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
/*
|
|
* We didn't need to allocate any more space, but we
|
|
* still extended the size of the file so we need to
|
|
* update i_size and the inode item.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
} else {
|
|
inode->i_ctime = CURRENT_TIME;
|
|
i_size_write(inode, actual_end);
|
|
btrfs_ordered_update_i_size(inode, actual_end,
|
|
NULL);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret)
|
|
btrfs_end_transaction(trans, root);
|
|
else
|
|
ret = btrfs_end_transaction(trans,
|
|
root);
|
|
}
|
|
}
|
|
free_extent_map(em);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
cur_offset = last_byte;
|
|
if (cur_offset >= alloc_end) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
|
|
&cached_state, GFP_NOFS);
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (root->fs_info->quota_enabled)
|
|
btrfs_qgroup_free(root, alloc_end - alloc_start);
|
|
out_reserve_fail:
|
|
/* Let go of our reservation. */
|
|
btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
|
|
return ret;
|
|
}
|
|
|
|
static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_map *em = NULL;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 lockstart;
|
|
u64 lockend;
|
|
u64 start;
|
|
u64 len;
|
|
int ret = 0;
|
|
|
|
if (inode->i_size == 0)
|
|
return -ENXIO;
|
|
|
|
/*
|
|
* *offset can be negative, in this case we start finding DATA/HOLE from
|
|
* the very start of the file.
|
|
*/
|
|
start = max_t(loff_t, 0, *offset);
|
|
|
|
lockstart = round_down(start, root->sectorsize);
|
|
lockend = round_up(i_size_read(inode), root->sectorsize);
|
|
if (lockend <= lockstart)
|
|
lockend = lockstart + root->sectorsize;
|
|
lockend--;
|
|
len = lockend - lockstart + 1;
|
|
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
|
|
&cached_state);
|
|
|
|
while (start < inode->i_size) {
|
|
em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
em = NULL;
|
|
break;
|
|
}
|
|
|
|
if (whence == SEEK_HOLE &&
|
|
(em->block_start == EXTENT_MAP_HOLE ||
|
|
test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
|
|
break;
|
|
else if (whence == SEEK_DATA &&
|
|
(em->block_start != EXTENT_MAP_HOLE &&
|
|
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
|
|
break;
|
|
|
|
start = em->start + em->len;
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
cond_resched();
|
|
}
|
|
free_extent_map(em);
|
|
if (!ret) {
|
|
if (whence == SEEK_DATA && start >= inode->i_size)
|
|
ret = -ENXIO;
|
|
else
|
|
*offset = min_t(loff_t, start, inode->i_size);
|
|
}
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
&cached_state, GFP_NOFS);
|
|
return ret;
|
|
}
|
|
|
|
static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
int ret;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
switch (whence) {
|
|
case SEEK_END:
|
|
case SEEK_CUR:
|
|
offset = generic_file_llseek(file, offset, whence);
|
|
goto out;
|
|
case SEEK_DATA:
|
|
case SEEK_HOLE:
|
|
if (offset >= i_size_read(inode)) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
ret = find_desired_extent(inode, &offset, whence);
|
|
if (ret) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return offset;
|
|
}
|
|
|
|
const struct file_operations btrfs_file_operations = {
|
|
.llseek = btrfs_file_llseek,
|
|
.read = new_sync_read,
|
|
.write = new_sync_write,
|
|
.read_iter = generic_file_read_iter,
|
|
.splice_read = generic_file_splice_read,
|
|
.write_iter = btrfs_file_write_iter,
|
|
.mmap = btrfs_file_mmap,
|
|
.open = generic_file_open,
|
|
.release = btrfs_release_file,
|
|
.fsync = btrfs_sync_file,
|
|
.fallocate = btrfs_fallocate,
|
|
.unlocked_ioctl = btrfs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = btrfs_ioctl,
|
|
#endif
|
|
};
|
|
|
|
void btrfs_auto_defrag_exit(void)
|
|
{
|
|
if (btrfs_inode_defrag_cachep)
|
|
kmem_cache_destroy(btrfs_inode_defrag_cachep);
|
|
}
|
|
|
|
int btrfs_auto_defrag_init(void)
|
|
{
|
|
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
|
|
sizeof(struct inode_defrag), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_inode_defrag_cachep)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* So with compression we will find and lock a dirty page and clear the
|
|
* first one as dirty, setup an async extent, and immediately return
|
|
* with the entire range locked but with nobody actually marked with
|
|
* writeback. So we can't just filemap_write_and_wait_range() and
|
|
* expect it to work since it will just kick off a thread to do the
|
|
* actual work. So we need to call filemap_fdatawrite_range _again_
|
|
* since it will wait on the page lock, which won't be unlocked until
|
|
* after the pages have been marked as writeback and so we're good to go
|
|
* from there. We have to do this otherwise we'll miss the ordered
|
|
* extents and that results in badness. Please Josef, do not think you
|
|
* know better and pull this out at some point in the future, it is
|
|
* right and you are wrong.
|
|
*/
|
|
ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
|
|
if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
|
|
|
|
return ret;
|
|
}
|