forked from Minki/linux
e8a89cebdb
* git://git.infradead.org/mtd-2.6: (79 commits) mtd: Remove obsolete <mtd/compatmac.h> include mtd: Update copyright notices jffs2: Update copyright notices mtd-physmap: add support users can assign the probe type in board files mtd: remove redwood map driver mxc_nand: Add v3 (i.MX51) Support mxc_nand: support 8bit ecc mxc_nand: fix correct_data function mxc_nand: add V1_V2 namespace to registers mxc_nand: factor out a check_int function mxc_nand: make some internally used functions overwriteable mxc_nand: rework get_dev_status mxc_nand: remove 0xe00 offset from registers mtd: denali: Add multi connected NAND support mtd: denali: Remove set_ecc_config function mtd: denali: Remove unuseful code in get_xx_nand_para functions mtd: denali: Remove device_info_tag structure mtd: m25p80: add support for the Winbond W25Q32 SPI flash chip mtd: m25p80: add support for the Intel/Numonyx {16,32,64}0S33B SPI flash chips mtd: m25p80: add support for the EON EN25P{32, 64} SPI flash chips ... Fix up trivial conflicts in drivers/mtd/maps/{Kconfig,redwood.c} due to redwood driver removal.
1845 lines
54 KiB
C
1845 lines
54 KiB
C
/*
|
|
* NAND Flash Controller Device Driver
|
|
* Copyright © 2009-2010, Intel Corporation and its suppliers.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "denali.h"
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* We define a module parameter that allows the user to override
|
|
* the hardware and decide what timing mode should be used.
|
|
*/
|
|
#define NAND_DEFAULT_TIMINGS -1
|
|
|
|
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
|
|
module_param(onfi_timing_mode, int, S_IRUGO);
|
|
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
|
|
" -1 indicates use default timings");
|
|
|
|
#define DENALI_NAND_NAME "denali-nand"
|
|
|
|
/* We define a macro here that combines all interrupts this driver uses into
|
|
* a single constant value, for convenience. */
|
|
#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
|
|
INTR_STATUS0__ECC_TRANSACTION_DONE | \
|
|
INTR_STATUS0__ECC_ERR | \
|
|
INTR_STATUS0__PROGRAM_FAIL | \
|
|
INTR_STATUS0__LOAD_COMP | \
|
|
INTR_STATUS0__PROGRAM_COMP | \
|
|
INTR_STATUS0__TIME_OUT | \
|
|
INTR_STATUS0__ERASE_FAIL | \
|
|
INTR_STATUS0__RST_COMP | \
|
|
INTR_STATUS0__ERASE_COMP)
|
|
|
|
/* indicates whether or not the internal value for the flash bank is
|
|
valid or not */
|
|
#define CHIP_SELECT_INVALID -1
|
|
|
|
#define SUPPORT_8BITECC 1
|
|
|
|
/* This macro divides two integers and rounds fractional values up
|
|
* to the nearest integer value. */
|
|
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
|
|
|
|
/* this macro allows us to convert from an MTD structure to our own
|
|
* device context (denali) structure.
|
|
*/
|
|
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
|
|
|
|
/* These constants are defined by the driver to enable common driver
|
|
configuration options. */
|
|
#define SPARE_ACCESS 0x41
|
|
#define MAIN_ACCESS 0x42
|
|
#define MAIN_SPARE_ACCESS 0x43
|
|
|
|
#define DENALI_READ 0
|
|
#define DENALI_WRITE 0x100
|
|
|
|
/* types of device accesses. We can issue commands and get status */
|
|
#define COMMAND_CYCLE 0
|
|
#define ADDR_CYCLE 1
|
|
#define STATUS_CYCLE 2
|
|
|
|
/* this is a helper macro that allows us to
|
|
* format the bank into the proper bits for the controller */
|
|
#define BANK(x) ((x) << 24)
|
|
|
|
/* List of platforms this NAND controller has be integrated into */
|
|
static const struct pci_device_id denali_pci_ids[] = {
|
|
{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
|
|
{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
|
|
{ /* end: all zeroes */ }
|
|
};
|
|
|
|
|
|
/* these are static lookup tables that give us easy access to
|
|
registers in the NAND controller.
|
|
*/
|
|
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
|
|
INTR_STATUS1,
|
|
INTR_STATUS2,
|
|
INTR_STATUS3};
|
|
|
|
static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
|
|
DEVICE_RESET__BANK1,
|
|
DEVICE_RESET__BANK2,
|
|
DEVICE_RESET__BANK3};
|
|
|
|
static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
|
|
INTR_STATUS1__TIME_OUT,
|
|
INTR_STATUS2__TIME_OUT,
|
|
INTR_STATUS3__TIME_OUT};
|
|
|
|
static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
|
|
INTR_STATUS1__RST_COMP,
|
|
INTR_STATUS2__RST_COMP,
|
|
INTR_STATUS3__RST_COMP};
|
|
|
|
/* specifies the debug level of the driver */
|
|
static int nand_debug_level;
|
|
|
|
/* forward declarations */
|
|
static void clear_interrupts(struct denali_nand_info *denali);
|
|
static uint32_t wait_for_irq(struct denali_nand_info *denali,
|
|
uint32_t irq_mask);
|
|
static void denali_irq_enable(struct denali_nand_info *denali,
|
|
uint32_t int_mask);
|
|
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
|
|
|
|
#define DEBUG_DENALI 0
|
|
|
|
/* This is a wrapper for writing to the denali registers.
|
|
* this allows us to create debug information so we can
|
|
* observe how the driver is programming the device.
|
|
* it uses standard linux convention for (val, addr) */
|
|
static void denali_write32(uint32_t value, void *addr)
|
|
{
|
|
iowrite32(value, addr);
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
|
|
(uint32_t)((uint32_t)addr & 0x1fff));
|
|
#endif
|
|
}
|
|
|
|
/* Certain operations for the denali NAND controller use
|
|
* an indexed mode to read/write data. The operation is
|
|
* performed by writing the address value of the command
|
|
* to the device memory followed by the data. This function
|
|
* abstracts this common operation.
|
|
*/
|
|
static void index_addr(struct denali_nand_info *denali,
|
|
uint32_t address, uint32_t data)
|
|
{
|
|
denali_write32(address, denali->flash_mem);
|
|
denali_write32(data, denali->flash_mem + 0x10);
|
|
}
|
|
|
|
/* Perform an indexed read of the device */
|
|
static void index_addr_read_data(struct denali_nand_info *denali,
|
|
uint32_t address, uint32_t *pdata)
|
|
{
|
|
denali_write32(address, denali->flash_mem);
|
|
*pdata = ioread32(denali->flash_mem + 0x10);
|
|
}
|
|
|
|
/* We need to buffer some data for some of the NAND core routines.
|
|
* The operations manage buffering that data. */
|
|
static void reset_buf(struct denali_nand_info *denali)
|
|
{
|
|
denali->buf.head = denali->buf.tail = 0;
|
|
}
|
|
|
|
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
|
|
{
|
|
BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
|
|
denali->buf.buf[denali->buf.tail++] = byte;
|
|
}
|
|
|
|
/* reads the status of the device */
|
|
static void read_status(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t cmd = 0x0;
|
|
|
|
/* initialize the data buffer to store status */
|
|
reset_buf(denali);
|
|
|
|
/* initiate a device status read */
|
|
cmd = MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
|
|
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
|
|
|
|
/* update buffer with status value */
|
|
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "device reporting status value of 0x%2x\n",
|
|
denali->buf.buf[0]);
|
|
#endif
|
|
}
|
|
|
|
/* resets a specific device connected to the core */
|
|
static void reset_bank(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t irq_status = 0;
|
|
uint32_t irq_mask = reset_complete[denali->flash_bank] |
|
|
operation_timeout[denali->flash_bank];
|
|
int bank = 0;
|
|
|
|
clear_interrupts(denali);
|
|
|
|
bank = device_reset_banks[denali->flash_bank];
|
|
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
|
|
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status & operation_timeout[denali->flash_bank])
|
|
printk(KERN_ERR "reset bank failed.\n");
|
|
}
|
|
|
|
/* Reset the flash controller */
|
|
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t i;
|
|
|
|
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
|
|
__FILE__, __LINE__, __func__);
|
|
|
|
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
|
|
denali_write32(reset_complete[i] | operation_timeout[i],
|
|
denali->flash_reg + intr_status_addresses[i]);
|
|
|
|
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
|
|
denali_write32(device_reset_banks[i],
|
|
denali->flash_reg + DEVICE_RESET);
|
|
while (!(ioread32(denali->flash_reg +
|
|
intr_status_addresses[i]) &
|
|
(reset_complete[i] | operation_timeout[i])))
|
|
;
|
|
if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
|
|
operation_timeout[i])
|
|
nand_dbg_print(NAND_DBG_WARN,
|
|
"NAND Reset operation timed out on bank %d\n", i);
|
|
}
|
|
|
|
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
|
|
denali_write32(reset_complete[i] | operation_timeout[i],
|
|
denali->flash_reg + intr_status_addresses[i]);
|
|
|
|
return PASS;
|
|
}
|
|
|
|
/* this routine calculates the ONFI timing values for a given mode and
|
|
* programs the clocking register accordingly. The mode is determined by
|
|
* the get_onfi_nand_para routine.
|
|
*/
|
|
static void nand_onfi_timing_set(struct denali_nand_info *denali,
|
|
uint16_t mode)
|
|
{
|
|
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
|
|
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
|
|
uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
|
|
uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
|
|
uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
|
|
uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
|
|
uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
|
|
uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
|
|
uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
|
|
uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
|
|
uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
|
|
uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
|
|
|
|
uint16_t TclsRising = 1;
|
|
uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
|
|
uint16_t dv_window = 0;
|
|
uint16_t en_lo, en_hi;
|
|
uint16_t acc_clks;
|
|
uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
|
|
|
|
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
|
|
__FILE__, __LINE__, __func__);
|
|
|
|
en_lo = CEIL_DIV(Trp[mode], CLK_X);
|
|
en_hi = CEIL_DIV(Treh[mode], CLK_X);
|
|
#if ONFI_BLOOM_TIME
|
|
if ((en_hi * CLK_X) < (Treh[mode] + 2))
|
|
en_hi++;
|
|
#endif
|
|
|
|
if ((en_lo + en_hi) * CLK_X < Trc[mode])
|
|
en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
|
|
|
|
if ((en_lo + en_hi) < CLK_MULTI)
|
|
en_lo += CLK_MULTI - en_lo - en_hi;
|
|
|
|
while (dv_window < 8) {
|
|
data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
|
|
|
|
data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
|
|
|
|
data_invalid =
|
|
data_invalid_rhoh <
|
|
data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
|
|
|
|
dv_window = data_invalid - Trea[mode];
|
|
|
|
if (dv_window < 8)
|
|
en_lo++;
|
|
}
|
|
|
|
acc_clks = CEIL_DIV(Trea[mode], CLK_X);
|
|
|
|
while (((acc_clks * CLK_X) - Trea[mode]) < 3)
|
|
acc_clks++;
|
|
|
|
if ((data_invalid - acc_clks * CLK_X) < 2)
|
|
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
|
|
re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
|
|
re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
|
|
we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
|
|
cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
|
|
if (!TclsRising)
|
|
cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
|
|
if (cs_cnt == 0)
|
|
cs_cnt = 1;
|
|
|
|
if (Tcea[mode]) {
|
|
while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
|
|
cs_cnt++;
|
|
}
|
|
|
|
#if MODE5_WORKAROUND
|
|
if (mode == 5)
|
|
acc_clks = 5;
|
|
#endif
|
|
|
|
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
|
|
if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
|
|
(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
|
|
acc_clks = 6;
|
|
|
|
denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
|
|
denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
|
|
denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
|
|
denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
|
|
denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
|
|
denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
|
|
denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
|
|
denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
|
|
}
|
|
|
|
/* queries the NAND device to see what ONFI modes it supports. */
|
|
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
/* we needn't to do a reset here because driver has already
|
|
* reset all the banks before
|
|
* */
|
|
if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
|
|
ONFI_TIMING_MODE__VALUE))
|
|
return FAIL;
|
|
|
|
for (i = 5; i > 0; i--) {
|
|
if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
|
|
(0x01 << i))
|
|
break;
|
|
}
|
|
|
|
nand_onfi_timing_set(denali, i);
|
|
|
|
/* By now, all the ONFI devices we know support the page cache */
|
|
/* rw feature. So here we enable the pipeline_rw_ahead feature */
|
|
/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
|
|
/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
|
|
|
|
return PASS;
|
|
}
|
|
|
|
static void get_samsung_nand_para(struct denali_nand_info *denali,
|
|
uint8_t device_id)
|
|
{
|
|
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
|
|
/* Set timing register values according to datasheet */
|
|
denali_write32(5, denali->flash_reg + ACC_CLKS);
|
|
denali_write32(20, denali->flash_reg + RE_2_WE);
|
|
denali_write32(12, denali->flash_reg + WE_2_RE);
|
|
denali_write32(14, denali->flash_reg + ADDR_2_DATA);
|
|
denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
|
|
denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
|
|
denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
|
|
}
|
|
}
|
|
|
|
static void get_toshiba_nand_para(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
/* Workaround to fix a controller bug which reports a wrong */
|
|
/* spare area size for some kind of Toshiba NAND device */
|
|
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
|
|
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
|
|
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
|
|
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
denali_write32(tmp,
|
|
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
|
|
#if SUPPORT_15BITECC
|
|
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
|
|
#elif SUPPORT_8BITECC
|
|
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void get_hynix_nand_para(struct denali_nand_info *denali,
|
|
uint8_t device_id)
|
|
{
|
|
uint32_t main_size, spare_size;
|
|
|
|
switch (device_id) {
|
|
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
|
|
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
|
|
denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
|
|
denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
|
|
denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
main_size = 4096 *
|
|
ioread32(denali->flash_reg + DEVICES_CONNECTED);
|
|
spare_size = 224 *
|
|
ioread32(denali->flash_reg + DEVICES_CONNECTED);
|
|
denali_write32(main_size,
|
|
denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
|
|
denali_write32(spare_size,
|
|
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
|
|
denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
|
|
#if SUPPORT_15BITECC
|
|
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
|
|
#elif SUPPORT_8BITECC
|
|
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
|
|
#endif
|
|
break;
|
|
default:
|
|
nand_dbg_print(NAND_DBG_WARN,
|
|
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
|
|
"Will use default parameter values instead.\n",
|
|
device_id);
|
|
}
|
|
}
|
|
|
|
/* determines how many NAND chips are connected to the controller. Note for
|
|
Intel CE4100 devices we don't support more than one device.
|
|
*/
|
|
static void find_valid_banks(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t id[LLD_MAX_FLASH_BANKS];
|
|
int i;
|
|
|
|
denali->total_used_banks = 1;
|
|
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
|
|
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
|
|
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
|
|
index_addr_read_data(denali,
|
|
(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
|
|
|
|
nand_dbg_print(NAND_DBG_DEBUG,
|
|
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
|
|
|
|
if (i == 0) {
|
|
if (!(id[i] & 0x0ff))
|
|
break; /* WTF? */
|
|
} else {
|
|
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
|
|
denali->total_used_banks++;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (denali->platform == INTEL_CE4100) {
|
|
/* Platform limitations of the CE4100 device limit
|
|
* users to a single chip solution for NAND.
|
|
* Multichip support is not enabled.
|
|
*/
|
|
if (denali->total_used_banks != 1) {
|
|
printk(KERN_ERR "Sorry, Intel CE4100 only supports "
|
|
"a single NAND device.\n");
|
|
BUG();
|
|
}
|
|
}
|
|
nand_dbg_print(NAND_DBG_DEBUG,
|
|
"denali->total_used_banks: %d\n", denali->total_used_banks);
|
|
}
|
|
|
|
static void detect_partition_feature(struct denali_nand_info *denali)
|
|
{
|
|
/* For MRST platform, denali->fwblks represent the
|
|
* number of blocks firmware is taken,
|
|
* FW is in protect partition and MTD driver has no
|
|
* permission to access it. So let driver know how many
|
|
* blocks it can't touch.
|
|
* */
|
|
if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
|
|
if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
|
|
PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
|
|
denali->fwblks =
|
|
((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
|
|
MIN_MAX_BANK_1__MIN_VALUE) *
|
|
denali->blksperchip)
|
|
+
|
|
(ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
|
|
MIN_BLK_ADDR_1__VALUE);
|
|
} else
|
|
denali->fwblks = SPECTRA_START_BLOCK;
|
|
} else
|
|
denali->fwblks = SPECTRA_START_BLOCK;
|
|
}
|
|
|
|
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
|
|
{
|
|
uint16_t status = PASS;
|
|
uint32_t id_bytes[5], addr;
|
|
uint8_t i, maf_id, device_id;
|
|
|
|
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
|
|
__FILE__, __LINE__, __func__);
|
|
|
|
/* Use read id method to get device ID and other
|
|
* params. For some NAND chips, controller can't
|
|
* report the correct device ID by reading from
|
|
* DEVICE_ID register
|
|
* */
|
|
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, (uint32_t)addr | 0, 0x90);
|
|
index_addr(denali, (uint32_t)addr | 1, 0);
|
|
for (i = 0; i < 5; i++)
|
|
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
|
|
maf_id = id_bytes[0];
|
|
device_id = id_bytes[1];
|
|
|
|
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
|
|
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
|
|
if (FAIL == get_onfi_nand_para(denali))
|
|
return FAIL;
|
|
} else if (maf_id == 0xEC) { /* Samsung NAND */
|
|
get_samsung_nand_para(denali, device_id);
|
|
} else if (maf_id == 0x98) { /* Toshiba NAND */
|
|
get_toshiba_nand_para(denali);
|
|
} else if (maf_id == 0xAD) { /* Hynix NAND */
|
|
get_hynix_nand_para(denali, device_id);
|
|
}
|
|
|
|
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
|
|
"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
|
|
"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
|
|
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
|
|
ioread32(denali->flash_reg + ACC_CLKS),
|
|
ioread32(denali->flash_reg + RE_2_WE),
|
|
ioread32(denali->flash_reg + WE_2_RE),
|
|
ioread32(denali->flash_reg + ADDR_2_DATA),
|
|
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
|
|
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
|
|
ioread32(denali->flash_reg + CS_SETUP_CNT));
|
|
|
|
find_valid_banks(denali);
|
|
|
|
detect_partition_feature(denali);
|
|
|
|
/* If the user specified to override the default timings
|
|
* with a specific ONFI mode, we apply those changes here.
|
|
*/
|
|
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
|
|
nand_onfi_timing_set(denali, onfi_timing_mode);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void denali_set_intr_modes(struct denali_nand_info *denali,
|
|
uint16_t INT_ENABLE)
|
|
{
|
|
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
|
|
__FILE__, __LINE__, __func__);
|
|
|
|
if (INT_ENABLE)
|
|
denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
|
|
else
|
|
denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
|
|
}
|
|
|
|
/* validation function to verify that the controlling software is making
|
|
a valid request
|
|
*/
|
|
static inline bool is_flash_bank_valid(int flash_bank)
|
|
{
|
|
return (flash_bank >= 0 && flash_bank < 4);
|
|
}
|
|
|
|
static void denali_irq_init(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t int_mask = 0;
|
|
|
|
/* Disable global interrupts */
|
|
denali_set_intr_modes(denali, false);
|
|
|
|
int_mask = DENALI_IRQ_ALL;
|
|
|
|
/* Clear all status bits */
|
|
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
|
|
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
|
|
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
|
|
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
|
|
|
|
denali_irq_enable(denali, int_mask);
|
|
}
|
|
|
|
static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
|
|
{
|
|
denali_set_intr_modes(denali, false);
|
|
free_irq(irqnum, denali);
|
|
}
|
|
|
|
static void denali_irq_enable(struct denali_nand_info *denali,
|
|
uint32_t int_mask)
|
|
{
|
|
denali_write32(int_mask, denali->flash_reg + INTR_EN0);
|
|
denali_write32(int_mask, denali->flash_reg + INTR_EN1);
|
|
denali_write32(int_mask, denali->flash_reg + INTR_EN2);
|
|
denali_write32(int_mask, denali->flash_reg + INTR_EN3);
|
|
}
|
|
|
|
/* This function only returns when an interrupt that this driver cares about
|
|
* occurs. This is to reduce the overhead of servicing interrupts
|
|
*/
|
|
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
|
|
{
|
|
return read_interrupt_status(denali) & DENALI_IRQ_ALL;
|
|
}
|
|
|
|
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
|
|
static inline void clear_interrupt(struct denali_nand_info *denali,
|
|
uint32_t irq_mask)
|
|
{
|
|
uint32_t intr_status_reg = 0;
|
|
|
|
intr_status_reg = intr_status_addresses[denali->flash_bank];
|
|
|
|
denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
|
|
}
|
|
|
|
static void clear_interrupts(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t status = 0x0;
|
|
spin_lock_irq(&denali->irq_lock);
|
|
|
|
status = read_interrupt_status(denali);
|
|
|
|
#if DEBUG_DENALI
|
|
denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
|
|
denali->idx %= 32;
|
|
#endif
|
|
|
|
denali->irq_status = 0x0;
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
}
|
|
|
|
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t intr_status_reg = 0;
|
|
|
|
intr_status_reg = intr_status_addresses[denali->flash_bank];
|
|
|
|
return ioread32(denali->flash_reg + intr_status_reg);
|
|
}
|
|
|
|
#if DEBUG_DENALI
|
|
static void print_irq_log(struct denali_nand_info *denali)
|
|
{
|
|
int i = 0;
|
|
|
|
printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
|
|
for (i = 0; i < 32; i++)
|
|
printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
|
|
}
|
|
#endif
|
|
|
|
/* This is the interrupt service routine. It handles all interrupts
|
|
* sent to this device. Note that on CE4100, this is a shared
|
|
* interrupt.
|
|
*/
|
|
static irqreturn_t denali_isr(int irq, void *dev_id)
|
|
{
|
|
struct denali_nand_info *denali = dev_id;
|
|
uint32_t irq_status = 0x0;
|
|
irqreturn_t result = IRQ_NONE;
|
|
|
|
spin_lock(&denali->irq_lock);
|
|
|
|
/* check to see if a valid NAND chip has
|
|
* been selected.
|
|
*/
|
|
if (is_flash_bank_valid(denali->flash_bank)) {
|
|
/* check to see if controller generated
|
|
* the interrupt, since this is a shared interrupt */
|
|
irq_status = denali_irq_detected(denali);
|
|
if (irq_status != 0) {
|
|
#if DEBUG_DENALI
|
|
denali->irq_debug_array[denali->idx++] =
|
|
0x10000000 | irq_status;
|
|
denali->idx %= 32;
|
|
|
|
printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
|
|
#endif
|
|
/* handle interrupt */
|
|
/* first acknowledge it */
|
|
clear_interrupt(denali, irq_status);
|
|
/* store the status in the device context for someone
|
|
to read */
|
|
denali->irq_status |= irq_status;
|
|
/* notify anyone who cares that it happened */
|
|
complete(&denali->complete);
|
|
/* tell the OS that we've handled this */
|
|
result = IRQ_HANDLED;
|
|
}
|
|
}
|
|
spin_unlock(&denali->irq_lock);
|
|
return result;
|
|
}
|
|
#define BANK(x) ((x) << 24)
|
|
|
|
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
|
|
{
|
|
unsigned long comp_res = 0;
|
|
uint32_t intr_status = 0;
|
|
bool retry = false;
|
|
unsigned long timeout = msecs_to_jiffies(1000);
|
|
|
|
do {
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
|
|
#endif
|
|
comp_res =
|
|
wait_for_completion_timeout(&denali->complete, timeout);
|
|
spin_lock_irq(&denali->irq_lock);
|
|
intr_status = denali->irq_status;
|
|
|
|
#if DEBUG_DENALI
|
|
denali->irq_debug_array[denali->idx++] =
|
|
0x20000000 | (irq_mask << 16) | intr_status;
|
|
denali->idx %= 32;
|
|
#endif
|
|
|
|
if (intr_status & irq_mask) {
|
|
denali->irq_status &= ~irq_mask;
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
#if DEBUG_DENALI
|
|
if (retry)
|
|
printk(KERN_INFO "status on retry = 0x%x\n",
|
|
intr_status);
|
|
#endif
|
|
/* our interrupt was detected */
|
|
break;
|
|
} else {
|
|
/* these are not the interrupts you are looking for -
|
|
* need to wait again */
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
#if DEBUG_DENALI
|
|
print_irq_log(denali);
|
|
printk(KERN_INFO "received irq nobody cared:"
|
|
" irq_status = 0x%x, irq_mask = 0x%x,"
|
|
" timeout = %ld\n", intr_status,
|
|
irq_mask, comp_res);
|
|
#endif
|
|
retry = true;
|
|
}
|
|
} while (comp_res != 0);
|
|
|
|
if (comp_res == 0) {
|
|
/* timeout */
|
|
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
|
|
intr_status, irq_mask);
|
|
|
|
intr_status = 0;
|
|
}
|
|
return intr_status;
|
|
}
|
|
|
|
/* This helper function setups the registers for ECC and whether or not
|
|
the spare area will be transfered. */
|
|
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
|
bool transfer_spare)
|
|
{
|
|
int ecc_en_flag = 0, transfer_spare_flag = 0;
|
|
|
|
/* set ECC, transfer spare bits if needed */
|
|
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
|
|
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
|
|
|
|
/* Enable spare area/ECC per user's request. */
|
|
denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
|
|
denali_write32(transfer_spare_flag,
|
|
denali->flash_reg + TRANSFER_SPARE_REG);
|
|
}
|
|
|
|
/* sends a pipeline command operation to the controller. See the Denali NAND
|
|
controller's user guide for more information (section 4.2.3.6).
|
|
*/
|
|
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
|
|
bool ecc_en,
|
|
bool transfer_spare,
|
|
int access_type,
|
|
int op)
|
|
{
|
|
int status = PASS;
|
|
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
|
|
irq_mask = 0;
|
|
|
|
if (op == DENALI_READ)
|
|
irq_mask = INTR_STATUS0__LOAD_COMP;
|
|
else if (op == DENALI_WRITE)
|
|
irq_mask = 0;
|
|
else
|
|
BUG();
|
|
|
|
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
|
|
|
|
#if DEBUG_DENALI
|
|
spin_lock_irq(&denali->irq_lock);
|
|
denali->irq_debug_array[denali->idx++] =
|
|
0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
|
|
(access_type << 4);
|
|
denali->idx %= 32;
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
#endif
|
|
|
|
|
|
/* clear interrupts */
|
|
clear_interrupts(denali);
|
|
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
|
|
if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
|
|
cmd = MODE_01 | addr;
|
|
denali_write32(cmd, denali->flash_mem);
|
|
} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
|
|
/* read spare area */
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, (uint32_t)cmd, access_type);
|
|
|
|
cmd = MODE_01 | addr;
|
|
denali_write32(cmd, denali->flash_mem);
|
|
} else if (op == DENALI_READ) {
|
|
/* setup page read request for access type */
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, (uint32_t)cmd, access_type);
|
|
|
|
/* page 33 of the NAND controller spec indicates we should not
|
|
use the pipeline commands in Spare area only mode. So we
|
|
don't.
|
|
*/
|
|
if (access_type == SPARE_ACCESS) {
|
|
cmd = MODE_01 | addr;
|
|
denali_write32(cmd, denali->flash_mem);
|
|
} else {
|
|
index_addr(denali, (uint32_t)cmd,
|
|
0x2000 | op | page_count);
|
|
|
|
/* wait for command to be accepted
|
|
* can always use status0 bit as the
|
|
* mask is identical for each
|
|
* bank. */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status == 0) {
|
|
printk(KERN_ERR "cmd, page, addr on timeout "
|
|
"(0x%x, 0x%x, 0x%x)\n", cmd,
|
|
denali->page, addr);
|
|
status = FAIL;
|
|
} else {
|
|
cmd = MODE_01 | addr;
|
|
denali_write32(cmd, denali->flash_mem);
|
|
}
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* helper function that simply writes a buffer to the flash */
|
|
static int write_data_to_flash_mem(struct denali_nand_info *denali,
|
|
const uint8_t *buf,
|
|
int len)
|
|
{
|
|
uint32_t i = 0, *buf32;
|
|
|
|
/* verify that the len is a multiple of 4. see comment in
|
|
* read_data_from_flash_mem() */
|
|
BUG_ON((len % 4) != 0);
|
|
|
|
/* write the data to the flash memory */
|
|
buf32 = (uint32_t *)buf;
|
|
for (i = 0; i < len / 4; i++)
|
|
denali_write32(*buf32++, denali->flash_mem + 0x10);
|
|
return i*4; /* intent is to return the number of bytes read */
|
|
}
|
|
|
|
/* helper function that simply reads a buffer from the flash */
|
|
static int read_data_from_flash_mem(struct denali_nand_info *denali,
|
|
uint8_t *buf,
|
|
int len)
|
|
{
|
|
uint32_t i = 0, *buf32;
|
|
|
|
/* we assume that len will be a multiple of 4, if not
|
|
* it would be nice to know about it ASAP rather than
|
|
* have random failures...
|
|
* This assumption is based on the fact that this
|
|
* function is designed to be used to read flash pages,
|
|
* which are typically multiples of 4...
|
|
*/
|
|
|
|
BUG_ON((len % 4) != 0);
|
|
|
|
/* transfer the data from the flash */
|
|
buf32 = (uint32_t *)buf;
|
|
for (i = 0; i < len / 4; i++)
|
|
*buf32++ = ioread32(denali->flash_mem + 0x10);
|
|
return i*4; /* intent is to return the number of bytes read */
|
|
}
|
|
|
|
/* writes OOB data to the device */
|
|
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status = 0;
|
|
uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
|
|
INTR_STATUS0__PROGRAM_FAIL;
|
|
int status = 0;
|
|
|
|
denali->page = page;
|
|
|
|
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
|
|
DENALI_WRITE) == PASS) {
|
|
write_data_to_flash_mem(denali, buf, mtd->oobsize);
|
|
|
|
#if DEBUG_DENALI
|
|
spin_lock_irq(&denali->irq_lock);
|
|
denali->irq_debug_array[denali->idx++] =
|
|
0x80000000 | mtd->oobsize;
|
|
denali->idx %= 32;
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
#endif
|
|
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status == 0) {
|
|
printk(KERN_ERR "OOB write failed\n");
|
|
status = -EIO;
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "unable to send pipeline command\n");
|
|
status = -EIO;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* reads OOB data from the device */
|
|
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
|
|
irq_status = 0, addr = 0x0, cmd = 0x0;
|
|
|
|
denali->page = page;
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "read_oob %d\n", page);
|
|
#endif
|
|
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
|
|
DENALI_READ) == PASS) {
|
|
read_data_from_flash_mem(denali, buf, mtd->oobsize);
|
|
|
|
/* wait for command to be accepted
|
|
* can always use status0 bit as the mask is identical for each
|
|
* bank. */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status == 0)
|
|
printk(KERN_ERR "page on OOB timeout %d\n",
|
|
denali->page);
|
|
|
|
/* We set the device back to MAIN_ACCESS here as I observed
|
|
* instability with the controller if you do a block erase
|
|
* and the last transaction was a SPARE_ACCESS. Block erase
|
|
* is reliable (according to the MTD test infrastructure)
|
|
* if you are in MAIN_ACCESS.
|
|
*/
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
|
|
|
|
#if DEBUG_DENALI
|
|
spin_lock_irq(&denali->irq_lock);
|
|
denali->irq_debug_array[denali->idx++] =
|
|
0x60000000 | mtd->oobsize;
|
|
denali->idx %= 32;
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* this function examines buffers to see if they contain data that
|
|
* indicate that the buffer is part of an erased region of flash.
|
|
*/
|
|
bool is_erased(uint8_t *buf, int len)
|
|
{
|
|
int i = 0;
|
|
for (i = 0; i < len; i++)
|
|
if (buf[i] != 0xFF)
|
|
return false;
|
|
return true;
|
|
}
|
|
#define ECC_SECTOR_SIZE 512
|
|
|
|
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
|
|
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
|
|
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
|
|
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
|
|
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
|
|
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
|
|
|
|
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
|
|
uint8_t *oobbuf, uint32_t irq_status)
|
|
{
|
|
bool check_erased_page = false;
|
|
|
|
if (irq_status & INTR_STATUS0__ECC_ERR) {
|
|
/* read the ECC errors. we'll ignore them for now */
|
|
uint32_t err_address = 0, err_correction_info = 0;
|
|
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
|
|
uint32_t err_correction_value = 0;
|
|
|
|
do {
|
|
err_address = ioread32(denali->flash_reg +
|
|
ECC_ERROR_ADDRESS);
|
|
err_sector = ECC_SECTOR(err_address);
|
|
err_byte = ECC_BYTE(err_address);
|
|
|
|
|
|
err_correction_info = ioread32(denali->flash_reg +
|
|
ERR_CORRECTION_INFO);
|
|
err_correction_value =
|
|
ECC_CORRECTION_VALUE(err_correction_info);
|
|
err_device = ECC_ERR_DEVICE(err_correction_info);
|
|
|
|
if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
|
|
/* offset in our buffer is computed as:
|
|
sector number * sector size + offset in
|
|
sector
|
|
*/
|
|
int offset = err_sector * ECC_SECTOR_SIZE +
|
|
err_byte;
|
|
if (offset < denali->mtd.writesize) {
|
|
/* correct the ECC error */
|
|
buf[offset] ^= err_correction_value;
|
|
denali->mtd.ecc_stats.corrected++;
|
|
} else {
|
|
/* bummer, couldn't correct the error */
|
|
printk(KERN_ERR "ECC offset invalid\n");
|
|
denali->mtd.ecc_stats.failed++;
|
|
}
|
|
} else {
|
|
/* if the error is not correctable, need to
|
|
* look at the page to see if it is an erased
|
|
* page. if so, then it's not a real ECC error
|
|
* */
|
|
check_erased_page = true;
|
|
}
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "Detected ECC error in page %d:"
|
|
" err_addr = 0x%08x, info to fix is"
|
|
" 0x%08x\n", denali->page, err_address,
|
|
err_correction_info);
|
|
#endif
|
|
} while (!ECC_LAST_ERR(err_correction_info));
|
|
}
|
|
return check_erased_page;
|
|
}
|
|
|
|
/* programs the controller to either enable/disable DMA transfers */
|
|
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
|
|
{
|
|
uint32_t reg_val = 0x0;
|
|
|
|
if (en)
|
|
reg_val = DMA_ENABLE__FLAG;
|
|
|
|
denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
|
|
ioread32(denali->flash_reg + DMA_ENABLE);
|
|
}
|
|
|
|
/* setups the HW to perform the data DMA */
|
|
static void denali_setup_dma(struct denali_nand_info *denali, int op)
|
|
{
|
|
uint32_t mode = 0x0;
|
|
const int page_count = 1;
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
|
|
mode = MODE_10 | BANK(denali->flash_bank);
|
|
|
|
/* DMA is a four step process */
|
|
|
|
/* 1. setup transfer type and # of pages */
|
|
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
|
|
|
|
/* 2. set memory high address bits 23:8 */
|
|
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
|
|
|
|
/* 3. set memory low address bits 23:8 */
|
|
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
|
|
|
|
/* 4. interrupt when complete, burst len = 64 bytes*/
|
|
index_addr(denali, mode | 0x14000, 0x2400);
|
|
}
|
|
|
|
/* writes a page. user specifies type, and this function handles the
|
|
configuration details. */
|
|
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, bool raw_xfer)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct pci_dev *pci_dev = denali->dev;
|
|
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
|
|
|
|
uint32_t irq_status = 0;
|
|
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
|
|
INTR_STATUS0__PROGRAM_FAIL;
|
|
|
|
/* if it is a raw xfer, we want to disable ecc, and send
|
|
* the spare area.
|
|
* !raw_xfer - enable ecc
|
|
* raw_xfer - transfer spare
|
|
*/
|
|
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
|
|
|
|
/* copy buffer into DMA buffer */
|
|
memcpy(denali->buf.buf, buf, mtd->writesize);
|
|
|
|
if (raw_xfer) {
|
|
/* transfer the data to the spare area */
|
|
memcpy(denali->buf.buf + mtd->writesize,
|
|
chip->oob_poi,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
|
|
|
|
clear_interrupts(denali);
|
|
denali_enable_dma(denali, true);
|
|
|
|
denali_setup_dma(denali, DENALI_WRITE);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status == 0) {
|
|
printk(KERN_ERR "timeout on write_page"
|
|
" (type = %d)\n", raw_xfer);
|
|
denali->status =
|
|
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
|
|
NAND_STATUS_FAIL : PASS;
|
|
}
|
|
|
|
denali_enable_dma(denali, false);
|
|
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
/* NAND core entry points */
|
|
|
|
/* this is the callback that the NAND core calls to write a page. Since
|
|
writing a page with ECC or without is similar, all the work is done
|
|
by write_page above. */
|
|
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf)
|
|
{
|
|
/* for regular page writes, we let HW handle all the ECC
|
|
* data written to the device. */
|
|
write_page(mtd, chip, buf, false);
|
|
}
|
|
|
|
/* This is the callback that the NAND core calls to write a page without ECC.
|
|
raw access is similiar to ECC page writes, so all the work is done in the
|
|
write_page() function above.
|
|
*/
|
|
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf)
|
|
{
|
|
/* for raw page writes, we want to disable ECC and simply write
|
|
whatever data is in the buffer. */
|
|
write_page(mtd, chip, buf, true);
|
|
}
|
|
|
|
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return write_oob_data(mtd, chip->oob_poi, page);
|
|
}
|
|
|
|
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page, int sndcmd)
|
|
{
|
|
read_oob_data(mtd, chip->oob_poi, page);
|
|
|
|
return 0; /* notify NAND core to send command to
|
|
NAND device. */
|
|
}
|
|
|
|
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct pci_dev *pci_dev = denali->dev;
|
|
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
|
|
|
|
uint32_t irq_status = 0;
|
|
uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
|
|
INTR_STATUS0__ECC_ERR;
|
|
bool check_erased_page = false;
|
|
|
|
setup_ecc_for_xfer(denali, true, false);
|
|
|
|
denali_enable_dma(denali, true);
|
|
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
|
|
|
|
clear_interrupts(denali);
|
|
denali_setup_dma(denali, DENALI_READ);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
|
|
|
|
memcpy(buf, denali->buf.buf, mtd->writesize);
|
|
|
|
check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
|
|
denali_enable_dma(denali, false);
|
|
|
|
if (check_erased_page) {
|
|
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
|
|
|
|
/* check ECC failures that may have occurred on erased pages */
|
|
if (check_erased_page) {
|
|
if (!is_erased(buf, denali->mtd.writesize))
|
|
denali->mtd.ecc_stats.failed++;
|
|
if (!is_erased(buf, denali->mtd.oobsize))
|
|
denali->mtd.ecc_stats.failed++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
struct pci_dev *pci_dev = denali->dev;
|
|
|
|
dma_addr_t addr = denali->buf.dma_buf;
|
|
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
|
|
|
|
uint32_t irq_status = 0;
|
|
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
|
|
|
|
setup_ecc_for_xfer(denali, false, true);
|
|
denali_enable_dma(denali, true);
|
|
|
|
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
|
|
|
|
clear_interrupts(denali);
|
|
denali_setup_dma(denali, DENALI_READ);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
|
|
|
|
denali_enable_dma(denali, false);
|
|
|
|
memcpy(buf, denali->buf.buf, mtd->writesize);
|
|
memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t denali_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint8_t result = 0xff;
|
|
|
|
if (denali->buf.head < denali->buf.tail)
|
|
result = denali->buf.buf[denali->buf.head++];
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "read byte -> 0x%02x\n", result);
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
static void denali_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "denali select chip %d\n", chip);
|
|
#endif
|
|
spin_lock_irq(&denali->irq_lock);
|
|
denali->flash_bank = chip;
|
|
spin_unlock_irq(&denali->irq_lock);
|
|
}
|
|
|
|
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int status = denali->status;
|
|
denali->status = 0;
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "waitfunc %d\n", status);
|
|
#endif
|
|
return status;
|
|
}
|
|
|
|
static void denali_erase(struct mtd_info *mtd, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
uint32_t cmd = 0x0, irq_status = 0;
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "erase page: %d\n", page);
|
|
#endif
|
|
/* clear interrupts */
|
|
clear_interrupts(denali);
|
|
|
|
/* setup page read request for access type */
|
|
cmd = MODE_10 | BANK(denali->flash_bank) | page;
|
|
index_addr(denali, (uint32_t)cmd, 0x1);
|
|
|
|
/* wait for erase to complete or failure to occur */
|
|
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
|
|
INTR_STATUS0__ERASE_FAIL);
|
|
|
|
denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
|
|
NAND_STATUS_FAIL : PASS;
|
|
}
|
|
|
|
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
|
int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t addr, id;
|
|
int i;
|
|
|
|
#if DEBUG_DENALI
|
|
printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
|
|
#endif
|
|
switch (cmd) {
|
|
case NAND_CMD_PAGEPROG:
|
|
break;
|
|
case NAND_CMD_STATUS:
|
|
read_status(denali);
|
|
break;
|
|
case NAND_CMD_READID:
|
|
reset_buf(denali);
|
|
/*sometimes ManufactureId read from register is not right
|
|
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
|
|
* So here we send READID cmd to NAND insteand
|
|
* */
|
|
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, (uint32_t)addr | 0, 0x90);
|
|
index_addr(denali, (uint32_t)addr | 1, 0);
|
|
for (i = 0; i < 5; i++) {
|
|
index_addr_read_data(denali,
|
|
(uint32_t)addr | 2,
|
|
&id);
|
|
write_byte_to_buf(denali, id);
|
|
}
|
|
break;
|
|
case NAND_CMD_READ0:
|
|
case NAND_CMD_SEQIN:
|
|
denali->page = page;
|
|
break;
|
|
case NAND_CMD_RESET:
|
|
reset_bank(denali);
|
|
break;
|
|
case NAND_CMD_READOOB:
|
|
/* TODO: Read OOB data */
|
|
break;
|
|
default:
|
|
printk(KERN_ERR ": unsupported command"
|
|
" received 0x%x\n", cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* stubs for ECC functions not used by the NAND core */
|
|
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
|
|
uint8_t *ecc_code)
|
|
{
|
|
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
|
|
BUG();
|
|
return -EIO;
|
|
}
|
|
|
|
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
|
|
BUG();
|
|
return -EIO;
|
|
}
|
|
|
|
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
|
|
{
|
|
printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
|
|
BUG();
|
|
}
|
|
/* end NAND core entry points */
|
|
|
|
/* Initialization code to bring the device up to a known good state */
|
|
static void denali_hw_init(struct denali_nand_info *denali)
|
|
{
|
|
/* tell driver how many bit controller will skip before
|
|
* writing ECC code in OOB, this register may be already
|
|
* set by firmware. So we read this value out.
|
|
* if this value is 0, just let it be.
|
|
* */
|
|
denali->bbtskipbytes = ioread32(denali->flash_reg +
|
|
SPARE_AREA_SKIP_BYTES);
|
|
denali_irq_init(denali);
|
|
denali_nand_reset(denali);
|
|
denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
|
|
denali_write32(CHIP_EN_DONT_CARE__FLAG,
|
|
denali->flash_reg + CHIP_ENABLE_DONT_CARE);
|
|
|
|
denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
|
|
denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
|
|
|
|
/* Should set value for these registers when init */
|
|
denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
|
|
denali_write32(1, denali->flash_reg + ECC_ENABLE);
|
|
}
|
|
|
|
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
|
|
* but denali controller in MRST only support 15bit and 8bit ECC
|
|
* correction
|
|
* */
|
|
#define ECC_8BITS 14
|
|
static struct nand_ecclayout nand_8bit_oob = {
|
|
.eccbytes = 14,
|
|
};
|
|
|
|
#define ECC_15BITS 26
|
|
static struct nand_ecclayout nand_15bit_oob = {
|
|
.eccbytes = 26,
|
|
};
|
|
|
|
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 8,
|
|
.len = 4,
|
|
.veroffs = 12,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 8,
|
|
.len = 4,
|
|
.veroffs = 12,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
/* initialize driver data structures */
|
|
void denali_drv_init(struct denali_nand_info *denali)
|
|
{
|
|
denali->idx = 0;
|
|
|
|
/* setup interrupt handler */
|
|
/* the completion object will be used to notify
|
|
* the callee that the interrupt is done */
|
|
init_completion(&denali->complete);
|
|
|
|
/* the spinlock will be used to synchronize the ISR
|
|
* with any element that might be access shared
|
|
* data (interrupt status) */
|
|
spin_lock_init(&denali->irq_lock);
|
|
|
|
/* indicate that MTD has not selected a valid bank yet */
|
|
denali->flash_bank = CHIP_SELECT_INVALID;
|
|
|
|
/* initialize our irq_status variable to indicate no interrupts */
|
|
denali->irq_status = 0;
|
|
}
|
|
|
|
/* driver entry point */
|
|
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|
{
|
|
int ret = -ENODEV;
|
|
resource_size_t csr_base, mem_base;
|
|
unsigned long csr_len, mem_len;
|
|
struct denali_nand_info *denali;
|
|
|
|
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
|
|
__FILE__, __LINE__, __func__);
|
|
|
|
denali = kzalloc(sizeof(*denali), GFP_KERNEL);
|
|
if (!denali)
|
|
return -ENOMEM;
|
|
|
|
ret = pci_enable_device(dev);
|
|
if (ret) {
|
|
printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
|
|
goto failed_enable;
|
|
}
|
|
|
|
if (id->driver_data == INTEL_CE4100) {
|
|
/* Due to a silicon limitation, we can only support
|
|
* ONFI timing mode 1 and below.
|
|
*/
|
|
if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
|
|
printk(KERN_ERR "Intel CE4100 only supports"
|
|
" ONFI timing mode 1 or below\n");
|
|
ret = -EINVAL;
|
|
goto failed_enable;
|
|
}
|
|
denali->platform = INTEL_CE4100;
|
|
mem_base = pci_resource_start(dev, 0);
|
|
mem_len = pci_resource_len(dev, 1);
|
|
csr_base = pci_resource_start(dev, 1);
|
|
csr_len = pci_resource_len(dev, 1);
|
|
} else {
|
|
denali->platform = INTEL_MRST;
|
|
csr_base = pci_resource_start(dev, 0);
|
|
csr_len = pci_resource_start(dev, 0);
|
|
mem_base = pci_resource_start(dev, 1);
|
|
mem_len = pci_resource_len(dev, 1);
|
|
if (!mem_len) {
|
|
mem_base = csr_base + csr_len;
|
|
mem_len = csr_len;
|
|
nand_dbg_print(NAND_DBG_WARN,
|
|
"Spectra: No second"
|
|
" BAR for PCI device;"
|
|
" assuming %08Lx\n",
|
|
(uint64_t)csr_base);
|
|
}
|
|
}
|
|
|
|
/* Is 32-bit DMA supported? */
|
|
ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
|
|
goto failed_enable;
|
|
}
|
|
denali->buf.dma_buf =
|
|
pci_map_single(dev, denali->buf.buf,
|
|
DENALI_BUF_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
|
|
printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
|
|
goto failed_enable;
|
|
}
|
|
|
|
pci_set_master(dev);
|
|
denali->dev = dev;
|
|
|
|
ret = pci_request_regions(dev, DENALI_NAND_NAME);
|
|
if (ret) {
|
|
printk(KERN_ERR "Spectra: Unable to request memory regions\n");
|
|
goto failed_req_csr;
|
|
}
|
|
|
|
denali->flash_reg = ioremap_nocache(csr_base, csr_len);
|
|
if (!denali->flash_reg) {
|
|
printk(KERN_ERR "Spectra: Unable to remap memory region\n");
|
|
ret = -ENOMEM;
|
|
goto failed_remap_csr;
|
|
}
|
|
nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
|
|
(uint64_t)csr_base, denali->flash_reg, csr_len);
|
|
|
|
denali->flash_mem = ioremap_nocache(mem_base, mem_len);
|
|
if (!denali->flash_mem) {
|
|
printk(KERN_ERR "Spectra: ioremap_nocache failed!");
|
|
iounmap(denali->flash_reg);
|
|
ret = -ENOMEM;
|
|
goto failed_remap_csr;
|
|
}
|
|
|
|
nand_dbg_print(NAND_DBG_WARN,
|
|
"Spectra: Remapped flash base address: "
|
|
"0x%p, len: %ld\n",
|
|
denali->flash_mem, csr_len);
|
|
|
|
denali_hw_init(denali);
|
|
denali_drv_init(denali);
|
|
|
|
nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
|
|
if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
|
|
DENALI_NAND_NAME, denali)) {
|
|
printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
|
|
ret = -ENODEV;
|
|
goto failed_request_irq;
|
|
}
|
|
|
|
/* now that our ISR is registered, we can enable interrupts */
|
|
denali_set_intr_modes(denali, true);
|
|
|
|
pci_set_drvdata(dev, denali);
|
|
|
|
denali_nand_timing_set(denali);
|
|
|
|
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
|
|
"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
|
|
"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
|
|
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
|
|
ioread32(denali->flash_reg + ACC_CLKS),
|
|
ioread32(denali->flash_reg + RE_2_WE),
|
|
ioread32(denali->flash_reg + WE_2_RE),
|
|
ioread32(denali->flash_reg + ADDR_2_DATA),
|
|
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
|
|
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
|
|
ioread32(denali->flash_reg + CS_SETUP_CNT));
|
|
|
|
denali->mtd.name = "Denali NAND";
|
|
denali->mtd.owner = THIS_MODULE;
|
|
denali->mtd.priv = &denali->nand;
|
|
|
|
/* register the driver with the NAND core subsystem */
|
|
denali->nand.select_chip = denali_select_chip;
|
|
denali->nand.cmdfunc = denali_cmdfunc;
|
|
denali->nand.read_byte = denali_read_byte;
|
|
denali->nand.waitfunc = denali_waitfunc;
|
|
|
|
/* scan for NAND devices attached to the controller
|
|
* this is the first stage in a two step process to register
|
|
* with the nand subsystem */
|
|
if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
|
|
ret = -ENXIO;
|
|
goto failed_nand;
|
|
}
|
|
|
|
/* MTD supported page sizes vary by kernel. We validate our
|
|
* kernel supports the device here.
|
|
*/
|
|
if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
|
|
ret = -ENODEV;
|
|
printk(KERN_ERR "Spectra: device size not supported by this "
|
|
"version of MTD.");
|
|
goto failed_nand;
|
|
}
|
|
|
|
/* support for multi nand
|
|
* MTD known nothing about multi nand,
|
|
* so we should tell it the real pagesize
|
|
* and anything necessery
|
|
*/
|
|
denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
|
|
denali->nand.chipsize <<= (denali->devnum - 1);
|
|
denali->nand.page_shift += (denali->devnum - 1);
|
|
denali->nand.pagemask = (denali->nand.chipsize >>
|
|
denali->nand.page_shift) - 1;
|
|
denali->nand.bbt_erase_shift += (denali->devnum - 1);
|
|
denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
|
|
denali->nand.chip_shift += (denali->devnum - 1);
|
|
denali->mtd.writesize <<= (denali->devnum - 1);
|
|
denali->mtd.oobsize <<= (denali->devnum - 1);
|
|
denali->mtd.erasesize <<= (denali->devnum - 1);
|
|
denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
|
|
denali->bbtskipbytes *= denali->devnum;
|
|
|
|
/* second stage of the NAND scan
|
|
* this stage requires information regarding ECC and
|
|
* bad block management. */
|
|
|
|
/* Bad block management */
|
|
denali->nand.bbt_td = &bbt_main_descr;
|
|
denali->nand.bbt_md = &bbt_mirror_descr;
|
|
|
|
/* skip the scan for now until we have OOB read and write support */
|
|
denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
|
|
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
|
|
/* Denali Controller only support 15bit and 8bit ECC in MRST,
|
|
* so just let controller do 15bit ECC for MLC and 8bit ECC for
|
|
* SLC if possible.
|
|
* */
|
|
if (denali->nand.cellinfo & 0xc &&
|
|
(denali->mtd.oobsize > (denali->bbtskipbytes +
|
|
ECC_15BITS * (denali->mtd.writesize /
|
|
ECC_SECTOR_SIZE)))) {
|
|
/* if MLC OOB size is large enough, use 15bit ECC*/
|
|
denali->nand.ecc.layout = &nand_15bit_oob;
|
|
denali->nand.ecc.bytes = ECC_15BITS;
|
|
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
|
|
} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
|
|
ECC_8BITS * (denali->mtd.writesize /
|
|
ECC_SECTOR_SIZE))) {
|
|
printk(KERN_ERR "Your NAND chip OOB is not large enough to"
|
|
" contain 8bit ECC correction codes");
|
|
goto failed_nand;
|
|
} else {
|
|
denali->nand.ecc.layout = &nand_8bit_oob;
|
|
denali->nand.ecc.bytes = ECC_8BITS;
|
|
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
|
|
}
|
|
|
|
denali->nand.ecc.bytes *= denali->devnum;
|
|
denali->nand.ecc.layout->eccbytes *=
|
|
denali->mtd.writesize / ECC_SECTOR_SIZE;
|
|
denali->nand.ecc.layout->oobfree[0].offset =
|
|
denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
|
|
denali->nand.ecc.layout->oobfree[0].length =
|
|
denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
|
|
denali->bbtskipbytes;
|
|
|
|
/* Let driver know the total blocks number and
|
|
* how many blocks contained by each nand chip.
|
|
* blksperchip will help driver to know how many
|
|
* blocks is taken by FW.
|
|
* */
|
|
denali->totalblks = denali->mtd.size >>
|
|
denali->nand.phys_erase_shift;
|
|
denali->blksperchip = denali->totalblks / denali->nand.numchips;
|
|
|
|
/* These functions are required by the NAND core framework, otherwise,
|
|
* the NAND core will assert. However, we don't need them, so we'll stub
|
|
* them out. */
|
|
denali->nand.ecc.calculate = denali_ecc_calculate;
|
|
denali->nand.ecc.correct = denali_ecc_correct;
|
|
denali->nand.ecc.hwctl = denali_ecc_hwctl;
|
|
|
|
/* override the default read operations */
|
|
denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
|
|
denali->nand.ecc.read_page = denali_read_page;
|
|
denali->nand.ecc.read_page_raw = denali_read_page_raw;
|
|
denali->nand.ecc.write_page = denali_write_page;
|
|
denali->nand.ecc.write_page_raw = denali_write_page_raw;
|
|
denali->nand.ecc.read_oob = denali_read_oob;
|
|
denali->nand.ecc.write_oob = denali_write_oob;
|
|
denali->nand.erase_cmd = denali_erase;
|
|
|
|
if (nand_scan_tail(&denali->mtd)) {
|
|
ret = -ENXIO;
|
|
goto failed_nand;
|
|
}
|
|
|
|
ret = add_mtd_device(&denali->mtd);
|
|
if (ret) {
|
|
printk(KERN_ERR "Spectra: Failed to register"
|
|
" MTD device: %d\n", ret);
|
|
goto failed_nand;
|
|
}
|
|
return 0;
|
|
|
|
failed_nand:
|
|
denali_irq_cleanup(dev->irq, denali);
|
|
failed_request_irq:
|
|
iounmap(denali->flash_reg);
|
|
iounmap(denali->flash_mem);
|
|
failed_remap_csr:
|
|
pci_release_regions(dev);
|
|
failed_req_csr:
|
|
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
failed_enable:
|
|
kfree(denali);
|
|
return ret;
|
|
}
|
|
|
|
/* driver exit point */
|
|
static void denali_pci_remove(struct pci_dev *dev)
|
|
{
|
|
struct denali_nand_info *denali = pci_get_drvdata(dev);
|
|
|
|
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
|
|
__FILE__, __LINE__, __func__);
|
|
|
|
nand_release(&denali->mtd);
|
|
del_mtd_device(&denali->mtd);
|
|
|
|
denali_irq_cleanup(dev->irq, denali);
|
|
|
|
iounmap(denali->flash_reg);
|
|
iounmap(denali->flash_mem);
|
|
pci_release_regions(dev);
|
|
pci_disable_device(dev);
|
|
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
pci_set_drvdata(dev, NULL);
|
|
kfree(denali);
|
|
}
|
|
|
|
MODULE_DEVICE_TABLE(pci, denali_pci_ids);
|
|
|
|
static struct pci_driver denali_pci_driver = {
|
|
.name = DENALI_NAND_NAME,
|
|
.id_table = denali_pci_ids,
|
|
.probe = denali_pci_probe,
|
|
.remove = denali_pci_remove,
|
|
};
|
|
|
|
static int __devinit denali_init(void)
|
|
{
|
|
printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
|
|
__DATE__, __TIME__);
|
|
return pci_register_driver(&denali_pci_driver);
|
|
}
|
|
|
|
/* Free memory */
|
|
static void __devexit denali_exit(void)
|
|
{
|
|
pci_unregister_driver(&denali_pci_driver);
|
|
}
|
|
|
|
module_init(denali_init);
|
|
module_exit(denali_exit);
|