linux/arch/ia64/include/asm/tlb.h
Linus Torvalds 2b047252d0 Fix TLB gather virtual address range invalidation corner cases
Ben Tebulin reported:

 "Since v3.7.2 on two independent machines a very specific Git
  repository fails in 9/10 cases on git-fsck due to an SHA1/memory
  failures.  This only occurs on a very specific repository and can be
  reproduced stably on two independent laptops.  Git mailing list ran
  out of ideas and for me this looks like some very exotic kernel issue"

and bisected the failure to the backport of commit 53a59fc67f ("mm:
limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT").

That commit itself is not actually buggy, but what it does is to make it
much more likely to hit the partial TLB invalidation case, since it
introduces a new case in tlb_next_batch() that previously only ever
happened when running out of memory.

The real bug is that the TLB gather virtual memory range setup is subtly
buggered.  It was introduced in commit 597e1c3580 ("mm/mmu_gather:
enable tlb flush range in generic mmu_gather"), and the range handling
was already fixed at least once in commit e6c495a96c ("mm: fix the TLB
range flushed when __tlb_remove_page() runs out of slots"), but that fix
was not complete.

The problem with the TLB gather virtual address range is that it isn't
set up by the initial tlb_gather_mmu() initialization (which didn't get
the TLB range information), but it is set up ad-hoc later by the
functions that actually flush the TLB.  And so any such case that forgot
to update the TLB range entries would potentially miss TLB invalidates.

Rather than try to figure out exactly which particular ad-hoc range
setup was missing (I personally suspect it's the hugetlb case in
zap_huge_pmd(), which didn't have the same logic as zap_pte_range()
did), this patch just gets rid of the problem at the source: make the
TLB range information available to tlb_gather_mmu(), and initialize it
when initializing all the other tlb gather fields.

This makes the patch larger, but conceptually much simpler.  And the end
result is much more understandable; even if you want to play games with
partial ranges when invalidating the TLB contents in chunks, now the
range information is always there, and anybody who doesn't want to
bother with it won't introduce subtle bugs.

Ben verified that this fixes his problem.

Reported-bisected-and-tested-by: Ben Tebulin <tebulin@googlemail.com>
Build-testing-by: Stephen Rothwell <sfr@canb.auug.org.au>
Build-testing-by: Richard Weinberger <richard.weinberger@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-16 08:52:46 -07:00

262 lines
7.0 KiB
C

#ifndef _ASM_IA64_TLB_H
#define _ASM_IA64_TLB_H
/*
* Based on <asm-generic/tlb.h>.
*
* Copyright (C) 2002-2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*/
/*
* Removing a translation from a page table (including TLB-shootdown) is a four-step
* procedure:
*
* (1) Flush (virtual) caches --- ensures virtual memory is coherent with kernel memory
* (this is a no-op on ia64).
* (2) Clear the relevant portions of the page-table
* (3) Flush the TLBs --- ensures that stale content is gone from CPU TLBs
* (4) Release the pages that were freed up in step (2).
*
* Note that the ordering of these steps is crucial to avoid races on MP machines.
*
* The Linux kernel defines several platform-specific hooks for TLB-shootdown. When
* unmapping a portion of the virtual address space, these hooks are called according to
* the following template:
*
* tlb <- tlb_gather_mmu(mm, start, end); // start unmap for address space MM
* {
* for each vma that needs a shootdown do {
* tlb_start_vma(tlb, vma);
* for each page-table-entry PTE that needs to be removed do {
* tlb_remove_tlb_entry(tlb, pte, address);
* if (pte refers to a normal page) {
* tlb_remove_page(tlb, page);
* }
* }
* tlb_end_vma(tlb, vma);
* }
* }
* tlb_finish_mmu(tlb, start, end); // finish unmap for address space MM
*/
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/machvec.h>
/*
* If we can't allocate a page to make a big batch of page pointers
* to work on, then just handle a few from the on-stack structure.
*/
#define IA64_GATHER_BUNDLE 8
struct mmu_gather {
struct mm_struct *mm;
unsigned int nr;
unsigned int max;
unsigned char fullmm; /* non-zero means full mm flush */
unsigned char need_flush; /* really unmapped some PTEs? */
unsigned long start, end;
unsigned long start_addr;
unsigned long end_addr;
struct page **pages;
struct page *local[IA64_GATHER_BUNDLE];
};
struct ia64_tr_entry {
u64 ifa;
u64 itir;
u64 pte;
u64 rr;
}; /*Record for tr entry!*/
extern int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size);
extern void ia64_ptr_entry(u64 target_mask, int slot);
extern struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
/*
region register macros
*/
#define RR_TO_VE(val) (((val) >> 0) & 0x0000000000000001)
#define RR_VE(val) (((val) & 0x0000000000000001) << 0)
#define RR_VE_MASK 0x0000000000000001L
#define RR_VE_SHIFT 0
#define RR_TO_PS(val) (((val) >> 2) & 0x000000000000003f)
#define RR_PS(val) (((val) & 0x000000000000003f) << 2)
#define RR_PS_MASK 0x00000000000000fcL
#define RR_PS_SHIFT 2
#define RR_RID_MASK 0x00000000ffffff00L
#define RR_TO_RID(val) ((val >> 8) & 0xffffff)
/*
* Flush the TLB for address range START to END and, if not in fast mode, release the
* freed pages that where gathered up to this point.
*/
static inline void
ia64_tlb_flush_mmu (struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
unsigned long i;
unsigned int nr;
if (!tlb->need_flush)
return;
tlb->need_flush = 0;
if (tlb->fullmm) {
/*
* Tearing down the entire address space. This happens both as a result
* of exit() and execve(). The latter case necessitates the call to
* flush_tlb_mm() here.
*/
flush_tlb_mm(tlb->mm);
} else if (unlikely (end - start >= 1024*1024*1024*1024UL
|| REGION_NUMBER(start) != REGION_NUMBER(end - 1)))
{
/*
* If we flush more than a tera-byte or across regions, we're probably
* better off just flushing the entire TLB(s). This should be very rare
* and is not worth optimizing for.
*/
flush_tlb_all();
} else {
/*
* XXX fix me: flush_tlb_range() should take an mm pointer instead of a
* vma pointer.
*/
struct vm_area_struct vma;
vma.vm_mm = tlb->mm;
/* flush the address range from the tlb: */
flush_tlb_range(&vma, start, end);
/* now flush the virt. page-table area mapping the address range: */
flush_tlb_range(&vma, ia64_thash(start), ia64_thash(end));
}
/* lastly, release the freed pages */
nr = tlb->nr;
tlb->nr = 0;
tlb->start_addr = ~0UL;
for (i = 0; i < nr; ++i)
free_page_and_swap_cache(tlb->pages[i]);
}
static inline void __tlb_alloc_page(struct mmu_gather *tlb)
{
unsigned long addr = __get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
if (addr) {
tlb->pages = (void *)addr;
tlb->max = PAGE_SIZE / sizeof(void *);
}
}
static inline void
tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
{
tlb->mm = mm;
tlb->max = ARRAY_SIZE(tlb->local);
tlb->pages = tlb->local;
tlb->nr = 0;
tlb->fullmm = !(start | (end+1));
tlb->start = start;
tlb->end = end;
tlb->start_addr = ~0UL;
}
/*
* Called at the end of the shootdown operation to free up any resources that were
* collected.
*/
static inline void
tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
/*
* Note: tlb->nr may be 0 at this point, so we can't rely on tlb->start_addr and
* tlb->end_addr.
*/
ia64_tlb_flush_mmu(tlb, start, end);
/* keep the page table cache within bounds */
check_pgt_cache();
if (tlb->pages != tlb->local)
free_pages((unsigned long)tlb->pages, 0);
}
/*
* Logically, this routine frees PAGE. On MP machines, the actual freeing of the page
* must be delayed until after the TLB has been flushed (see comments at the beginning of
* this file).
*/
static inline int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
tlb->need_flush = 1;
if (!tlb->nr && tlb->pages == tlb->local)
__tlb_alloc_page(tlb);
tlb->pages[tlb->nr++] = page;
VM_BUG_ON(tlb->nr > tlb->max);
return tlb->max - tlb->nr;
}
static inline void tlb_flush_mmu(struct mmu_gather *tlb)
{
ia64_tlb_flush_mmu(tlb, tlb->start_addr, tlb->end_addr);
}
static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
if (!__tlb_remove_page(tlb, page))
tlb_flush_mmu(tlb);
}
/*
* Remove TLB entry for PTE mapped at virtual address ADDRESS. This is called for any
* PTE, not just those pointing to (normal) physical memory.
*/
static inline void
__tlb_remove_tlb_entry (struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
{
if (tlb->start_addr == ~0UL)
tlb->start_addr = address;
tlb->end_addr = address + PAGE_SIZE;
}
#define tlb_migrate_finish(mm) platform_tlb_migrate_finish(mm)
#define tlb_start_vma(tlb, vma) do { } while (0)
#define tlb_end_vma(tlb, vma) do { } while (0)
#define tlb_remove_tlb_entry(tlb, ptep, addr) \
do { \
tlb->need_flush = 1; \
__tlb_remove_tlb_entry(tlb, ptep, addr); \
} while (0)
#define pte_free_tlb(tlb, ptep, address) \
do { \
tlb->need_flush = 1; \
__pte_free_tlb(tlb, ptep, address); \
} while (0)
#define pmd_free_tlb(tlb, ptep, address) \
do { \
tlb->need_flush = 1; \
__pmd_free_tlb(tlb, ptep, address); \
} while (0)
#define pud_free_tlb(tlb, pudp, address) \
do { \
tlb->need_flush = 1; \
__pud_free_tlb(tlb, pudp, address); \
} while (0)
#endif /* _ASM_IA64_TLB_H */