mainlining shenanigans
Go to file
Eric Benard e5a5d92d9d mxc_nand: fix copy_spare
it was broken by 35d5d20efa
"mtd: mxc_nand: cleanup copy_spare function"

else we get the following error :
[   22.709507] ubi0: attaching mtd3
[   23.613470] ubi0: scanning is finished
[   23.617278] ubi0: empty MTD device detected
[   23.623219] Unhandled fault: imprecise external abort (0x1c06) at 0x9e62f0ec
[   23.630291] pgd = 9df80000
[   23.633005] [9e62f0ec] *pgd=8e60041e(bad)
[   23.637064] Internal error: : 1c06 [#1] SMP ARM
[   23.641605] Modules linked in:
[   23.644687] CPU: 0 PID: 99 Comm: ubiattach Not tainted 4.2.0-dirty #22
[   23.651222] Hardware name: Freescale i.MX53 (Device Tree Support)
[   23.657322] task: 9e687300 ti: 9dcfc000 task.ti: 9dcfc000
[   23.662744] PC is at memcpy16_toio+0x4c/0x74
[   23.667026] LR is at mxc_nand_command+0x484/0x640
[   23.671739] pc : [<803f9c08>]    lr : [<803faeb0>]    psr: 60000013
[   23.671739] sp : 9dcfdb10  ip : 9e62f0ea  fp : 9dcfdb1c
[   23.683222] r10: a09c1000  r9 : 0000001a  r8 : ffffffff
[   23.688453] r7 : ffffffff  r6 : 9e674810  r5 : 9e674810  r4 : 000000b6
[   23.694985] r3 : a09c16a4  r2 : a09c16a4  r1 : a09c16a4  r0 : 0000ffff
[   23.701521] Flags: nZCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment user
[   23.708662] Control: 10c5387d  Table: 8df80019  DAC: 00000015
[   23.714413] Process ubiattach (pid: 99, stack limit = 0x9dcfc210)
[   23.720514] Stack: (0x9dcfdb10 to 0x9dcfe000)
[   23.724881] db00:                                     9dcfdb6c 9dcfdb20 803faeb0 803f9bc8
[   23.733069] db20: 803f227c 803f9b74 ffffffff 9e674810 9e674810 9e674810 00000040 9e62f010
[   23.741255] db40: 803faa2c 9e674b40 9e674810 803faa2c 00000400 803faa2c 00000000 9df42800
[   23.749441] db60: 9dcfdb9c 9dcfdb70 803f2024 803faa38 9e4201cc 00000000 803f0a78 9e674b40
[   23.757627] db80: 803f1f80 9e674810 00000400 00000400 9dcfdc14 9dcfdba0 803f3bd8 803f1f8c
[   23.765814] dba0: 9e4201cc 00000000 00000580 00000000 00000000 800718c0 0000007f 00001000
[   23.774000] dbc0: 9df42800 000000e0 00000000 00000000 9e4201cc 00000000 00000000 00000000
[   23.782186] dbe0: 00000580 00000580 00000000 9e674810 9dcfdc20 9dcfdce8 9df42800 00580000
[   23.790372] dc00: 00000000 00000400 9dcfdc6c 9dcfdc18 803f3f94 803f39a4 9dcfdc20 00000000
[   23.798558] dc20: 00000000 00000400 00000000 00000000 00000000 00000000 9df42800 00000000
[   23.806744] dc40: 9dcfdd0c 00580000 00000000 00000400 00000000 9df42800 9dee1000 9d802000
[   23.814930] dc60: 9dcfdc94 9dcfdc70 803eb63c 803f3f38 00000400 9dcfdce8 9df42800 dead4ead
[   23.823116] dc80: 803eb5f4 00000000 9dcfdcc4 9dcfdc98 803e82ac 803eb600 00000400 9dcfdce8
[   23.831301] dca0: 9df42800 00000400 9dee0000 00000000 00000400 00000000 9dcfdd1c 9dcfdcc8
[   23.839488] dcc0: 80406048 803e8230 00000400 9dcfdce8 9df42800 9dcfdc78 00000008 00000000
[   23.847673] dce0: 00000000 00000000 00000000 00000004 00000000 9df42800 9dee0000 00000000
[   23.855859] dd00: 9d802030 00000000 9dc8b214 9d802000 9dcfdd44 9dcfdd20 804066cc 80405f50
[   23.864047] dd20: 00000400 9dc8b200 9d802030 9df42800 9dee0000 9dc8b200 9dcfdd84 9dcfdd48
[   23.872233] dd40: 8040a544 804065ac 9e401c80 000080d0 9dcfdd84 00000001 800fc828 9df42400
[   23.880418] dd60: 00000000 00000080 9dc8b200 9dc8b200 9dc8b200 9dee0000 9dcfdddc 9dcfdd88
[   23.888605] dd80: 803fb560 8040a440 9dcfddc4 9dcfdd98 800f1428 9dee1000 a0acf000 00000000
[   23.896792] dda0: 00000000 ffffffff 00000006 00000000 9dee0000 9dee0000 00005600 00000080
[   23.904979] ddc0: 9dc8b200 a0acf000 9dc8b200 8112514c 9dcfde24 9dcfdde0 803fc08c 803fb4f0
[   23.913165] dde0: 9e401c80 00000013 9dcfde04 9dcfddf8 8006bbf8 8006ba00 9dcfde24 00000000
[   23.921351] de00: 9dee0000 00000065 9dee0000 00000001 9dc8b200 8112514c 9dcfde84 9dcfde28
[   23.929538] de20: 8040afa0 803fb948 ffffffff 00000000 9dc8b214 9dcfde40 800f1428 800f11dc
[   23.937724] de40: 9dc8b21c 9dc8b20c 9dc8b204 9dee1000 9dc8b214 8069bb60 fffff000 fffff000
[   23.945911] de60: 9e7b5400 00000000 9dee0000 9dee1000 00001000 9e7b5400 9dcfdecc 9dcfde88
[   23.954097] de80: 803ff1bc 8040a630 9dcfdea4 9dcfde98 00000800 00000800 9dcfdecc 9dcfdea8
[   23.962284] dea0: 803e8f6c 00000000 7e87ab70 9e7b5400 80113e30 00000003 9dcfc000 00000000
[   23.970470] dec0: 9dcfdf04 9dcfded0 804008cc 803feb98 ffffffff 00000003 00000000 00000000
[   23.978656] dee0: 00000000 00000000 9e7cb000 9dc193e0 7e87ab70 9dd92140 9dcfdf7c 9dcfdf08
[   23.986842] df00: 80113b5c 8040080c 800fbed8 8006bbf0 9e7cb000 00000003 9e7cb000 9dd92140
[   23.995029] df20: 9dc193e0 9dd92148 9dcfdf4c 9dcfdf38 8011022c 800fbe78 8000f9cc 9e687300
[   24.003216] df40: 9dcfdf6c 9dcfdf50 8011f798 8007ffe8 7e87ab70 9dd92140 00000003 9dd92140
[   24.011402] df60: 40186f40 7e87ab70 9dcfc000 00000000 9dcfdfa4 9dcfdf80 80113e30 8011373c
[   24.019588] df80: 7e87ab70 7e87ab70 7e87aea9 00000036 8000fb84 9dcfc000 00000000 9dcfdfa8
[   24.027775] dfa0: 8000f9a0 80113e00 7e87ab70 7e87ab70 00000003 40186f40 7e87ab70 00000000
[   24.035962] dfc0: 7e87ab70 7e87ab70 7e87aea9 00000036 00000000 00000000 76fd1f70 00000000
[   24.044148] dfe0: 76f80f8c 7e87ab28 00009810 76f80fc4 60000010 00000003 00000000 00000000
[   24.052328] Backtrace:
[   24.054806] [<803f9bbc>] (memcpy16_toio) from [<803faeb0>] (mxc_nand_command+0x484/0x640)
[   24.062996] [<803faa2c>] (mxc_nand_command) from [<803f2024>] (nand_write_page+0xa4/0x154)
[   24.071264]  r10:9df42800 r9:00000000 r8:803faa2c r7:00000400 r6:803faa2c r5:9e674810
[   24.079180]  r4:9e674b40
[   24.081738] [<803f1f80>] (nand_write_page) from [<803f3bd8>] (nand_do_write_ops+0x240/0x444)
[   24.090180]  r8:00000400 r7:00000400 r6:9e674810 r5:803f1f80 r4:9e674b40
[   24.096970] [<803f3998>] (nand_do_write_ops) from [<803f3f94>] (nand_write+0x68/0x88)
[   24.104804]  r10:00000400 r9:00000000 r8:00580000 r7:9df42800 r6:9dcfdce8 r5:9dcfdc20
[   24.112719]  r4:9e674810
[   24.115287] [<803f3f2c>] (nand_write) from [<803eb63c>] (part_write+0x48/0x50)
[   24.122514]  r10:9d802000 r9:9dee1000 r8:9df42800 r7:00000000 r6:00000400 r5:00000000
[   24.130429]  r4:00580000
[   24.132989] [<803eb5f4>] (part_write) from [<803e82ac>] (mtd_write+0x88/0xa0)
[   24.140129]  r5:00000000 r4:803eb5f4
[   24.143748] [<803e8224>] (mtd_write) from [<80406048>] (ubi_io_write+0x104/0x65c)
[   24.151235]  r7:00000000 r6:00000400 r5:00000000 r4:9dee0000
[   24.156968] [<80405f44>] (ubi_io_write) from [<804066cc>] (ubi_io_write_ec_hdr+0x12c/0x190)
[   24.165323]  r10:9d802000 r9:9dc8b214 r8:00000000 r7:9d802030 r6:00000000 r5:9dee0000
[   24.173239]  r4:9df42800
[   24.175798] [<804065a0>] (ubi_io_write_ec_hdr) from [<8040a544>] (ubi_early_get_peb+0x110/0x1f0)
[   24.184587]  r6:9dc8b200 r5:9dee0000 r4:9df42800
[   24.189262] [<8040a434>] (ubi_early_get_peb) from [<803fb560>] (create_vtbl+0x7c/0x238)
[   24.197271]  r10:9dee0000 r9:9dc8b200 r8:9dc8b200 r7:9dc8b200 r6:00000080 r5:00000000
[   24.205187]  r4:9df42400
[   24.207746] [<803fb4e4>] (create_vtbl) from [<803fc08c>] (ubi_read_volume_table+0x750/0xa64)
[   24.216187]  r10:8112514c r9:9dc8b200 r8:a0acf000 r7:9dc8b200 r6:00000080 r5:00005600
[   24.224103]  r4:9dee0000
[   24.226662] [<803fb93c>] (ubi_read_volume_table) from [<8040afa0>] (ubi_attach+0x97c/0x152c)
[   24.235103]  r10:8112514c r9:9dc8b200 r8:00000001 r7:9dee0000 r6:00000065 r5:9dee0000
[   24.243018]  r4:00000000
[   24.245579] [<8040a624>] (ubi_attach) from [<803ff1bc>] (ubi_attach_mtd_dev+0x630/0xbac)
[   24.253673]  r10:9e7b5400 r9:00001000 r8:9dee1000 r7:9dee0000 r6:00000000 r5:9e7b5400
[   24.261588]  r4:fffff000
[   24.264148] [<803feb8c>] (ubi_attach_mtd_dev) from [<804008cc>] (ctrl_cdev_ioctl+0xcc/0x1cc)
[   24.272589]  r10:00000000 r9:9dcfc000 r8:00000003 r7:80113e30 r6:9e7b5400 r5:7e87ab70
[   24.280505]  r4:00000000
[   24.283070] [<80400800>] (ctrl_cdev_ioctl) from [<80113b5c>] (do_vfs_ioctl+0x42c/0x6c4)
[   24.291077]  r6:9dd92140 r5:7e87ab70 r4:9dc193e0
[   24.295753] [<80113730>] (do_vfs_ioctl) from [<80113e30>] (SyS_ioctl+0x3c/0x64)
[   24.303066]  r10:00000000 r9:9dcfc000 r8:7e87ab70 r7:40186f40 r6:9dd92140 r5:00000003
[   24.310981]  r4:9dd92140
[   24.313549] [<80113df4>] (SyS_ioctl) from [<8000f9a0>] (ret_fast_syscall+0x0/0x54)
[   24.321123]  r9:9dcfc000 r8:8000fb84 r7:00000036 r6:7e87aea9 r5:7e87ab70 r4:7e87ab70
[   24.328957] Code: e1c300b0 e1510002 e1a03001 1afffff9 (e89da800)
[   24.335066] ---[ end trace ab1cb17887f21bbb ]---
[   24.340249] Unhandled fault: imprecise external abort (0x1c06) at 0x7ee8bcf0
[   24.347310] pgd = 9df3c000
[   24.350023] [7ee8bcf0] *pgd=8dcbf831, *pte=8eb3334f, *ppte=8eb3383f
Segmentation fault

Fixes: 35d5d20efa ("mtd: mxc_nand: cleanup copy_spare function")
Signed-off-by: Eric Bénard <eric@eukrea.com>
Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reviewed-by: Baruch Siach <baruch@tkos.co.il>
Cc: <stable@vger.kernel.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2015-09-27 17:09:35 -07:00
arch CRIS changes for 4.3 2015-09-12 12:24:29 -07:00
block Merge branch 'for-4.3/blkcg' of git://git.kernel.dk/linux-block 2015-09-10 18:56:14 -07:00
certs modsign: Handle signing key in source tree 2015-08-14 16:32:52 +01:00
crypto Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security 2015-09-08 12:41:25 -07:00
Documentation Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input 2015-09-11 19:17:28 -07:00
drivers mxc_nand: fix copy_spare 2015-09-27 17:09:35 -07:00
firmware firmware: Update information in linux.git about adding firmware 2015-05-07 09:48:42 -06:00
fs Merge branch 'writeback-plugging' 2015-09-12 11:19:01 -07:00
include blk: rq_data_dir() should not return a boolean 2015-09-12 12:03:30 -07:00
init sys_membarrier(): system-wide memory barrier (generic, x86) 2015-09-11 15:21:34 -07:00
ipc ipc: convert invalid scenarios to use WARN_ON 2015-09-10 13:29:01 -07:00
kernel Merge branch 'akpm' (patches from Andrew) 2015-09-11 19:34:09 -07:00
lib zlib_deflate/deftree: remove bi_reverse() 2015-09-10 13:29:01 -07:00
mm Merge branch 'akpm' (patches from Andrew) 2015-09-11 19:34:09 -07:00
net Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client 2015-09-11 12:33:03 -07:00
samples bpf: fix build warnings and add function read_trace_pipe() 2015-08-12 16:39:12 -07:00
scripts MODSIGN: fix a compilation warning in extract-cert 2015-09-11 15:21:34 -07:00
security mm: mark most vm_operations_struct const 2015-09-10 13:29:01 -07:00
sound sound fixes for 4.3-rc1 2015-09-11 09:42:32 -07:00
tools selftests: enhance membarrier syscall test 2015-09-11 15:21:34 -07:00
usr usr/Kconfig: make initrd compression algorithm selection not expert 2014-12-13 12:42:52 -08:00
virt/kvm Merge branch 'akpm' (patches from Andrew) 2015-09-10 18:19:42 -07:00
.get_maintainer.ignore Add hch to .get_maintainer.ignore 2015-08-21 14:30:10 -07:00
.gitignore Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild 2015-09-08 14:23:13 -07:00
.mailmap .mailmap: Andrey Ryabinin has moved 2015-08-14 15:56:32 -07:00
COPYING
CREDITS MAINTAINERS/CREDITS: mark MaxRAID as Orphan, move Anil Ravindranath to CREDITS 2015-09-10 13:29:01 -07:00
Kbuild time: Remove development rules from Kbuild/Makefile 2015-07-01 09:57:35 +02:00
Kconfig kbuild: migrate all arch to the kconfig mainmenu upgrade 2010-09-19 22:54:11 -04:00
MAINTAINERS Merge branch 'akpm' (patches from Andrew) 2015-09-11 19:34:09 -07:00
Makefile Linux 4.3-rc1 2015-09-12 16:35:56 -07:00
README README: GTK+ is a acronym 2015-07-10 15:17:37 -06:00
REPORTING-BUGS Docs: Move ref to Frohwalt Egerer to end of REPORTING-BUGS 2013-04-18 16:55:09 -07:00

        Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

     xz -cd linux-4.X.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 4.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-4.X) and execute:

     xz -cd ../patch-4.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "X" of your current
   source tree, _in_order_, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 4.x kernel.  For example, if your base kernel is 4.0
   and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
   and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
   want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
   patch -R) _before_ applying the 4.0.3 patch. You can read more on this in
   Documentation/applying-patches.txt

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around:

     cd linux
     make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 4.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:

     kernel source code: /usr/src/linux-4.X
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use:

     cd /usr/src/linux-4.X
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used, then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are:

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     X windows (Qt) based configuration tool.

     "make gconfig"     X windows (GTK+) based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make silentoldconfig"
                        Like above, but avoids cluttering the screen
                        with questions already answered.
                        Additionally updates the dependencies.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

 - NOTES on "make config":

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers

    - Compiling the kernel with "Processor type" set higher than 386
      will result in a kernel that does NOT work on a 386.  The
      kernel will detect this on bootup, and give up.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO, which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

     unable to handle kernel paging request at address C0000010
     Oops: 0002
     EIP:   0010:XXXXXXXX
     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
     Pid: xx, process nr: xx
     xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example, it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternatively, you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

     nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.