958f338e96
Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ...
1248 lines
33 KiB
C
1248 lines
33 KiB
C
/*
|
|
* Local APIC related interfaces to support IOAPIC, MSI, etc.
|
|
*
|
|
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
|
|
* Moved from arch/x86/kernel/apic/io_apic.c.
|
|
* Jiang Liu <jiang.liu@linux.intel.com>
|
|
* Enable support of hierarchical irqdomains
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/irqdomain.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/i8259.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/irq_remapping.h>
|
|
|
|
#include <asm/trace/irq_vectors.h>
|
|
|
|
struct apic_chip_data {
|
|
struct irq_cfg hw_irq_cfg;
|
|
unsigned int vector;
|
|
unsigned int prev_vector;
|
|
unsigned int cpu;
|
|
unsigned int prev_cpu;
|
|
unsigned int irq;
|
|
struct hlist_node clist;
|
|
unsigned int move_in_progress : 1,
|
|
is_managed : 1,
|
|
can_reserve : 1,
|
|
has_reserved : 1;
|
|
};
|
|
|
|
struct irq_domain *x86_vector_domain;
|
|
EXPORT_SYMBOL_GPL(x86_vector_domain);
|
|
static DEFINE_RAW_SPINLOCK(vector_lock);
|
|
static cpumask_var_t vector_searchmask;
|
|
static struct irq_chip lapic_controller;
|
|
static struct irq_matrix *vector_matrix;
|
|
#ifdef CONFIG_SMP
|
|
static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
|
|
#endif
|
|
|
|
void lock_vector_lock(void)
|
|
{
|
|
/* Used to the online set of cpus does not change
|
|
* during assign_irq_vector.
|
|
*/
|
|
raw_spin_lock(&vector_lock);
|
|
}
|
|
|
|
void unlock_vector_lock(void)
|
|
{
|
|
raw_spin_unlock(&vector_lock);
|
|
}
|
|
|
|
void init_irq_alloc_info(struct irq_alloc_info *info,
|
|
const struct cpumask *mask)
|
|
{
|
|
memset(info, 0, sizeof(*info));
|
|
info->mask = mask;
|
|
}
|
|
|
|
void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
|
|
{
|
|
if (src)
|
|
*dst = *src;
|
|
else
|
|
memset(dst, 0, sizeof(*dst));
|
|
}
|
|
|
|
static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
|
|
{
|
|
if (!irqd)
|
|
return NULL;
|
|
|
|
while (irqd->parent_data)
|
|
irqd = irqd->parent_data;
|
|
|
|
return irqd->chip_data;
|
|
}
|
|
|
|
struct irq_cfg *irqd_cfg(struct irq_data *irqd)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
|
|
return apicd ? &apicd->hw_irq_cfg : NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irqd_cfg);
|
|
|
|
struct irq_cfg *irq_cfg(unsigned int irq)
|
|
{
|
|
return irqd_cfg(irq_get_irq_data(irq));
|
|
}
|
|
|
|
static struct apic_chip_data *alloc_apic_chip_data(int node)
|
|
{
|
|
struct apic_chip_data *apicd;
|
|
|
|
apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
|
|
if (apicd)
|
|
INIT_HLIST_NODE(&apicd->clist);
|
|
return apicd;
|
|
}
|
|
|
|
static void free_apic_chip_data(struct apic_chip_data *apicd)
|
|
{
|
|
kfree(apicd);
|
|
}
|
|
|
|
static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
|
|
unsigned int cpu)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
|
|
lockdep_assert_held(&vector_lock);
|
|
|
|
apicd->hw_irq_cfg.vector = vector;
|
|
apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
|
|
irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
|
|
trace_vector_config(irqd->irq, vector, cpu,
|
|
apicd->hw_irq_cfg.dest_apicid);
|
|
}
|
|
|
|
static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
|
|
unsigned int newcpu)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
struct irq_desc *desc = irq_data_to_desc(irqd);
|
|
bool managed = irqd_affinity_is_managed(irqd);
|
|
|
|
lockdep_assert_held(&vector_lock);
|
|
|
|
trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
|
|
apicd->cpu);
|
|
|
|
/*
|
|
* If there is no vector associated or if the associated vector is
|
|
* the shutdown vector, which is associated to make PCI/MSI
|
|
* shutdown mode work, then there is nothing to release. Clear out
|
|
* prev_vector for this and the offlined target case.
|
|
*/
|
|
apicd->prev_vector = 0;
|
|
if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
|
|
goto setnew;
|
|
/*
|
|
* If the target CPU of the previous vector is online, then mark
|
|
* the vector as move in progress and store it for cleanup when the
|
|
* first interrupt on the new vector arrives. If the target CPU is
|
|
* offline then the regular release mechanism via the cleanup
|
|
* vector is not possible and the vector can be immediately freed
|
|
* in the underlying matrix allocator.
|
|
*/
|
|
if (cpu_online(apicd->cpu)) {
|
|
apicd->move_in_progress = true;
|
|
apicd->prev_vector = apicd->vector;
|
|
apicd->prev_cpu = apicd->cpu;
|
|
} else {
|
|
irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
|
|
managed);
|
|
}
|
|
|
|
setnew:
|
|
apicd->vector = newvec;
|
|
apicd->cpu = newcpu;
|
|
BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
|
|
per_cpu(vector_irq, newcpu)[newvec] = desc;
|
|
}
|
|
|
|
static void vector_assign_managed_shutdown(struct irq_data *irqd)
|
|
{
|
|
unsigned int cpu = cpumask_first(cpu_online_mask);
|
|
|
|
apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
|
|
}
|
|
|
|
static int reserve_managed_vector(struct irq_data *irqd)
|
|
{
|
|
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
apicd->is_managed = true;
|
|
ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
trace_vector_reserve_managed(irqd->irq, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void reserve_irq_vector_locked(struct irq_data *irqd)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
|
|
irq_matrix_reserve(vector_matrix);
|
|
apicd->can_reserve = true;
|
|
apicd->has_reserved = true;
|
|
irqd_set_can_reserve(irqd);
|
|
trace_vector_reserve(irqd->irq, 0);
|
|
vector_assign_managed_shutdown(irqd);
|
|
}
|
|
|
|
static int reserve_irq_vector(struct irq_data *irqd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
reserve_irq_vector_locked(irqd);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
bool resvd = apicd->has_reserved;
|
|
unsigned int cpu = apicd->cpu;
|
|
int vector = apicd->vector;
|
|
|
|
lockdep_assert_held(&vector_lock);
|
|
|
|
/*
|
|
* If the current target CPU is online and in the new requested
|
|
* affinity mask, there is no point in moving the interrupt from
|
|
* one CPU to another.
|
|
*/
|
|
if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
|
|
return 0;
|
|
|
|
/*
|
|
* Careful here. @apicd might either have move_in_progress set or
|
|
* be enqueued for cleanup. Assigning a new vector would either
|
|
* leave a stale vector on some CPU around or in case of a pending
|
|
* cleanup corrupt the hlist.
|
|
*/
|
|
if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
|
|
return -EBUSY;
|
|
|
|
vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
|
|
trace_vector_alloc(irqd->irq, vector, resvd, vector);
|
|
if (vector < 0)
|
|
return vector;
|
|
apic_update_vector(irqd, vector, cpu);
|
|
apic_update_irq_cfg(irqd, vector, cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
cpumask_and(vector_searchmask, dest, cpu_online_mask);
|
|
ret = assign_vector_locked(irqd, vector_searchmask);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static int assign_irq_vector_any_locked(struct irq_data *irqd)
|
|
{
|
|
/* Get the affinity mask - either irq_default_affinity or (user) set */
|
|
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
|
|
int node = irq_data_get_node(irqd);
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
goto all;
|
|
/* Try the intersection of @affmsk and node mask */
|
|
cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
|
|
if (!assign_vector_locked(irqd, vector_searchmask))
|
|
return 0;
|
|
/* Try the node mask */
|
|
if (!assign_vector_locked(irqd, cpumask_of_node(node)))
|
|
return 0;
|
|
all:
|
|
/* Try the full affinity mask */
|
|
cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
|
|
if (!assign_vector_locked(irqd, vector_searchmask))
|
|
return 0;
|
|
/* Try the full online mask */
|
|
return assign_vector_locked(irqd, cpu_online_mask);
|
|
}
|
|
|
|
static int
|
|
assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
|
|
{
|
|
if (irqd_affinity_is_managed(irqd))
|
|
return reserve_managed_vector(irqd);
|
|
if (info->mask)
|
|
return assign_irq_vector(irqd, info->mask);
|
|
/*
|
|
* Make only a global reservation with no guarantee. A real vector
|
|
* is associated at activation time.
|
|
*/
|
|
return reserve_irq_vector(irqd);
|
|
}
|
|
|
|
static int
|
|
assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
|
|
{
|
|
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
int vector, cpu;
|
|
|
|
cpumask_and(vector_searchmask, vector_searchmask, affmsk);
|
|
cpu = cpumask_first(vector_searchmask);
|
|
if (cpu >= nr_cpu_ids)
|
|
return -EINVAL;
|
|
/* set_affinity might call here for nothing */
|
|
if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
|
|
return 0;
|
|
vector = irq_matrix_alloc_managed(vector_matrix, cpu);
|
|
trace_vector_alloc_managed(irqd->irq, vector, vector);
|
|
if (vector < 0)
|
|
return vector;
|
|
apic_update_vector(irqd, vector, cpu);
|
|
apic_update_irq_cfg(irqd, vector, cpu);
|
|
return 0;
|
|
}
|
|
|
|
static void clear_irq_vector(struct irq_data *irqd)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
bool managed = irqd_affinity_is_managed(irqd);
|
|
unsigned int vector = apicd->vector;
|
|
|
|
lockdep_assert_held(&vector_lock);
|
|
|
|
if (!vector)
|
|
return;
|
|
|
|
trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
|
|
apicd->prev_cpu);
|
|
|
|
per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED;
|
|
irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
|
|
apicd->vector = 0;
|
|
|
|
/* Clean up move in progress */
|
|
vector = apicd->prev_vector;
|
|
if (!vector)
|
|
return;
|
|
|
|
per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED;
|
|
irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
|
|
apicd->prev_vector = 0;
|
|
apicd->move_in_progress = 0;
|
|
hlist_del_init(&apicd->clist);
|
|
}
|
|
|
|
static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
unsigned long flags;
|
|
|
|
trace_vector_deactivate(irqd->irq, apicd->is_managed,
|
|
apicd->can_reserve, false);
|
|
|
|
/* Regular fixed assigned interrupt */
|
|
if (!apicd->is_managed && !apicd->can_reserve)
|
|
return;
|
|
/* If the interrupt has a global reservation, nothing to do */
|
|
if (apicd->has_reserved)
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
clear_irq_vector(irqd);
|
|
if (apicd->can_reserve)
|
|
reserve_irq_vector_locked(irqd);
|
|
else
|
|
vector_assign_managed_shutdown(irqd);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
}
|
|
|
|
static int activate_reserved(struct irq_data *irqd)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
int ret;
|
|
|
|
ret = assign_irq_vector_any_locked(irqd);
|
|
if (!ret) {
|
|
apicd->has_reserved = false;
|
|
/*
|
|
* Core might have disabled reservation mode after
|
|
* allocating the irq descriptor. Ideally this should
|
|
* happen before allocation time, but that would require
|
|
* completely convoluted ways of transporting that
|
|
* information.
|
|
*/
|
|
if (!irqd_can_reserve(irqd))
|
|
apicd->can_reserve = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int activate_managed(struct irq_data *irqd)
|
|
{
|
|
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
|
|
int ret;
|
|
|
|
cpumask_and(vector_searchmask, dest, cpu_online_mask);
|
|
if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
|
|
/* Something in the core code broke! Survive gracefully */
|
|
pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
|
|
return EINVAL;
|
|
}
|
|
|
|
ret = assign_managed_vector(irqd, vector_searchmask);
|
|
/*
|
|
* This should not happen. The vector reservation got buggered. Handle
|
|
* it gracefully.
|
|
*/
|
|
if (WARN_ON_ONCE(ret < 0)) {
|
|
pr_err("Managed startup irq %u, no vector available\n",
|
|
irqd->irq);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
|
|
bool reserve)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
trace_vector_activate(irqd->irq, apicd->is_managed,
|
|
apicd->can_reserve, reserve);
|
|
|
|
/* Nothing to do for fixed assigned vectors */
|
|
if (!apicd->can_reserve && !apicd->is_managed)
|
|
return 0;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
if (reserve || irqd_is_managed_and_shutdown(irqd))
|
|
vector_assign_managed_shutdown(irqd);
|
|
else if (apicd->is_managed)
|
|
ret = activate_managed(irqd);
|
|
else if (apicd->has_reserved)
|
|
ret = activate_reserved(irqd);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void vector_free_reserved_and_managed(struct irq_data *irqd)
|
|
{
|
|
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
|
|
trace_vector_teardown(irqd->irq, apicd->is_managed,
|
|
apicd->has_reserved);
|
|
|
|
if (apicd->has_reserved)
|
|
irq_matrix_remove_reserved(vector_matrix);
|
|
if (apicd->is_managed)
|
|
irq_matrix_remove_managed(vector_matrix, dest);
|
|
}
|
|
|
|
static void x86_vector_free_irqs(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs)
|
|
{
|
|
struct apic_chip_data *apicd;
|
|
struct irq_data *irqd;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
|
|
if (irqd && irqd->chip_data) {
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
clear_irq_vector(irqd);
|
|
vector_free_reserved_and_managed(irqd);
|
|
apicd = irqd->chip_data;
|
|
irq_domain_reset_irq_data(irqd);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
free_apic_chip_data(apicd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
|
|
struct apic_chip_data *apicd)
|
|
{
|
|
unsigned long flags;
|
|
bool realloc = false;
|
|
|
|
apicd->vector = ISA_IRQ_VECTOR(virq);
|
|
apicd->cpu = 0;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
/*
|
|
* If the interrupt is activated, then it must stay at this vector
|
|
* position. That's usually the timer interrupt (0).
|
|
*/
|
|
if (irqd_is_activated(irqd)) {
|
|
trace_vector_setup(virq, true, 0);
|
|
apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
|
|
} else {
|
|
/* Release the vector */
|
|
apicd->can_reserve = true;
|
|
irqd_set_can_reserve(irqd);
|
|
clear_irq_vector(irqd);
|
|
realloc = true;
|
|
}
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
return realloc;
|
|
}
|
|
|
|
static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
struct irq_alloc_info *info = arg;
|
|
struct apic_chip_data *apicd;
|
|
struct irq_data *irqd;
|
|
int i, err, node;
|
|
|
|
if (disable_apic)
|
|
return -ENXIO;
|
|
|
|
/* Currently vector allocator can't guarantee contiguous allocations */
|
|
if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
|
|
return -ENOSYS;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irqd = irq_domain_get_irq_data(domain, virq + i);
|
|
BUG_ON(!irqd);
|
|
node = irq_data_get_node(irqd);
|
|
WARN_ON_ONCE(irqd->chip_data);
|
|
apicd = alloc_apic_chip_data(node);
|
|
if (!apicd) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
apicd->irq = virq + i;
|
|
irqd->chip = &lapic_controller;
|
|
irqd->chip_data = apicd;
|
|
irqd->hwirq = virq + i;
|
|
irqd_set_single_target(irqd);
|
|
/*
|
|
* Legacy vectors are already assigned when the IOAPIC
|
|
* takes them over. They stay on the same vector. This is
|
|
* required for check_timer() to work correctly as it might
|
|
* switch back to legacy mode. Only update the hardware
|
|
* config.
|
|
*/
|
|
if (info->flags & X86_IRQ_ALLOC_LEGACY) {
|
|
if (!vector_configure_legacy(virq + i, irqd, apicd))
|
|
continue;
|
|
}
|
|
|
|
err = assign_irq_vector_policy(irqd, info);
|
|
trace_vector_setup(virq + i, false, err);
|
|
if (err) {
|
|
irqd->chip_data = NULL;
|
|
free_apic_chip_data(apicd);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
x86_vector_free_irqs(domain, virq, i);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
|
|
static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
|
|
struct irq_data *irqd, int ind)
|
|
{
|
|
struct apic_chip_data apicd;
|
|
unsigned long flags;
|
|
int irq;
|
|
|
|
if (!irqd) {
|
|
irq_matrix_debug_show(m, vector_matrix, ind);
|
|
return;
|
|
}
|
|
|
|
irq = irqd->irq;
|
|
if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
|
|
seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
|
|
seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
|
|
return;
|
|
}
|
|
|
|
if (!irqd->chip_data) {
|
|
seq_printf(m, "%*sVector: Not assigned\n", ind, "");
|
|
return;
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
memcpy(&apicd, irqd->chip_data, sizeof(apicd));
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
|
|
seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
|
|
seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
|
|
if (apicd.prev_vector) {
|
|
seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
|
|
seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
|
|
}
|
|
seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
|
|
seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0);
|
|
seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0);
|
|
seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0);
|
|
seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist));
|
|
}
|
|
#endif
|
|
|
|
static const struct irq_domain_ops x86_vector_domain_ops = {
|
|
.alloc = x86_vector_alloc_irqs,
|
|
.free = x86_vector_free_irqs,
|
|
.activate = x86_vector_activate,
|
|
.deactivate = x86_vector_deactivate,
|
|
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
|
|
.debug_show = x86_vector_debug_show,
|
|
#endif
|
|
};
|
|
|
|
int __init arch_probe_nr_irqs(void)
|
|
{
|
|
int nr;
|
|
|
|
if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
|
|
nr_irqs = NR_VECTORS * nr_cpu_ids;
|
|
|
|
nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
|
|
#if defined(CONFIG_PCI_MSI)
|
|
/*
|
|
* for MSI and HT dyn irq
|
|
*/
|
|
if (gsi_top <= NR_IRQS_LEGACY)
|
|
nr += 8 * nr_cpu_ids;
|
|
else
|
|
nr += gsi_top * 16;
|
|
#endif
|
|
if (nr < nr_irqs)
|
|
nr_irqs = nr;
|
|
|
|
/*
|
|
* We don't know if PIC is present at this point so we need to do
|
|
* probe() to get the right number of legacy IRQs.
|
|
*/
|
|
return legacy_pic->probe();
|
|
}
|
|
|
|
void lapic_assign_legacy_vector(unsigned int irq, bool replace)
|
|
{
|
|
/*
|
|
* Use assign system here so it wont get accounted as allocated
|
|
* and moveable in the cpu hotplug check and it prevents managed
|
|
* irq reservation from touching it.
|
|
*/
|
|
irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
|
|
}
|
|
|
|
void __init lapic_assign_system_vectors(void)
|
|
{
|
|
unsigned int i, vector = 0;
|
|
|
|
for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
|
|
irq_matrix_assign_system(vector_matrix, vector, false);
|
|
|
|
if (nr_legacy_irqs() > 1)
|
|
lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
|
|
|
|
/* System vectors are reserved, online it */
|
|
irq_matrix_online(vector_matrix);
|
|
|
|
/* Mark the preallocated legacy interrupts */
|
|
for (i = 0; i < nr_legacy_irqs(); i++) {
|
|
if (i != PIC_CASCADE_IR)
|
|
irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
|
|
}
|
|
}
|
|
|
|
int __init arch_early_irq_init(void)
|
|
{
|
|
struct fwnode_handle *fn;
|
|
|
|
fn = irq_domain_alloc_named_fwnode("VECTOR");
|
|
BUG_ON(!fn);
|
|
x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
|
|
NULL);
|
|
BUG_ON(x86_vector_domain == NULL);
|
|
irq_domain_free_fwnode(fn);
|
|
irq_set_default_host(x86_vector_domain);
|
|
|
|
arch_init_msi_domain(x86_vector_domain);
|
|
|
|
BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
|
|
|
|
/*
|
|
* Allocate the vector matrix allocator data structure and limit the
|
|
* search area.
|
|
*/
|
|
vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
|
|
FIRST_SYSTEM_VECTOR);
|
|
BUG_ON(!vector_matrix);
|
|
|
|
return arch_early_ioapic_init();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static struct irq_desc *__setup_vector_irq(int vector)
|
|
{
|
|
int isairq = vector - ISA_IRQ_VECTOR(0);
|
|
|
|
/* Check whether the irq is in the legacy space */
|
|
if (isairq < 0 || isairq >= nr_legacy_irqs())
|
|
return VECTOR_UNUSED;
|
|
/* Check whether the irq is handled by the IOAPIC */
|
|
if (test_bit(isairq, &io_apic_irqs))
|
|
return VECTOR_UNUSED;
|
|
return irq_to_desc(isairq);
|
|
}
|
|
|
|
/* Online the local APIC infrastructure and initialize the vectors */
|
|
void lapic_online(void)
|
|
{
|
|
unsigned int vector;
|
|
|
|
lockdep_assert_held(&vector_lock);
|
|
|
|
/* Online the vector matrix array for this CPU */
|
|
irq_matrix_online(vector_matrix);
|
|
|
|
/*
|
|
* The interrupt affinity logic never targets interrupts to offline
|
|
* CPUs. The exception are the legacy PIC interrupts. In general
|
|
* they are only targeted to CPU0, but depending on the platform
|
|
* they can be distributed to any online CPU in hardware. The
|
|
* kernel has no influence on that. So all active legacy vectors
|
|
* must be installed on all CPUs. All non legacy interrupts can be
|
|
* cleared.
|
|
*/
|
|
for (vector = 0; vector < NR_VECTORS; vector++)
|
|
this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
|
|
}
|
|
|
|
void lapic_offline(void)
|
|
{
|
|
lock_vector_lock();
|
|
irq_matrix_offline(vector_matrix);
|
|
unlock_vector_lock();
|
|
}
|
|
|
|
static int apic_set_affinity(struct irq_data *irqd,
|
|
const struct cpumask *dest, bool force)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
int err;
|
|
|
|
/*
|
|
* Core code can call here for inactive interrupts. For inactive
|
|
* interrupts which use managed or reservation mode there is no
|
|
* point in going through the vector assignment right now as the
|
|
* activation will assign a vector which fits the destination
|
|
* cpumask. Let the core code store the destination mask and be
|
|
* done with it.
|
|
*/
|
|
if (!irqd_is_activated(irqd) &&
|
|
(apicd->is_managed || apicd->can_reserve))
|
|
return IRQ_SET_MASK_OK;
|
|
|
|
raw_spin_lock(&vector_lock);
|
|
cpumask_and(vector_searchmask, dest, cpu_online_mask);
|
|
if (irqd_affinity_is_managed(irqd))
|
|
err = assign_managed_vector(irqd, vector_searchmask);
|
|
else
|
|
err = assign_vector_locked(irqd, vector_searchmask);
|
|
raw_spin_unlock(&vector_lock);
|
|
return err ? err : IRQ_SET_MASK_OK;
|
|
}
|
|
|
|
#else
|
|
# define apic_set_affinity NULL
|
|
#endif
|
|
|
|
static int apic_retrigger_irq(struct irq_data *irqd)
|
|
{
|
|
struct apic_chip_data *apicd = apic_chip_data(irqd);
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&vector_lock, flags);
|
|
apic->send_IPI(apicd->cpu, apicd->vector);
|
|
raw_spin_unlock_irqrestore(&vector_lock, flags);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void apic_ack_irq(struct irq_data *irqd)
|
|
{
|
|
irq_move_irq(irqd);
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
void apic_ack_edge(struct irq_data *irqd)
|
|
{
|
|
irq_complete_move(irqd_cfg(irqd));
|
|
apic_ack_irq(irqd);
|
|
}
|
|
|
|
static struct irq_chip lapic_controller = {
|
|
.name = "APIC",
|
|
.irq_ack = apic_ack_edge,
|
|
.irq_set_affinity = apic_set_affinity,
|
|
.irq_retrigger = apic_retrigger_irq,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void free_moved_vector(struct apic_chip_data *apicd)
|
|
{
|
|
unsigned int vector = apicd->prev_vector;
|
|
unsigned int cpu = apicd->prev_cpu;
|
|
bool managed = apicd->is_managed;
|
|
|
|
/*
|
|
* This should never happen. Managed interrupts are not
|
|
* migrated except on CPU down, which does not involve the
|
|
* cleanup vector. But try to keep the accounting correct
|
|
* nevertheless.
|
|
*/
|
|
WARN_ON_ONCE(managed);
|
|
|
|
trace_vector_free_moved(apicd->irq, cpu, vector, managed);
|
|
irq_matrix_free(vector_matrix, cpu, vector, managed);
|
|
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
|
|
hlist_del_init(&apicd->clist);
|
|
apicd->prev_vector = 0;
|
|
apicd->move_in_progress = 0;
|
|
}
|
|
|
|
asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
|
|
{
|
|
struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
|
|
struct apic_chip_data *apicd;
|
|
struct hlist_node *tmp;
|
|
|
|
entering_ack_irq();
|
|
/* Prevent vectors vanishing under us */
|
|
raw_spin_lock(&vector_lock);
|
|
|
|
hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
|
|
unsigned int irr, vector = apicd->prev_vector;
|
|
|
|
/*
|
|
* Paranoia: Check if the vector that needs to be cleaned
|
|
* up is registered at the APICs IRR. If so, then this is
|
|
* not the best time to clean it up. Clean it up in the
|
|
* next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
|
|
* to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
|
|
* priority external vector, so on return from this
|
|
* interrupt the device interrupt will happen first.
|
|
*/
|
|
irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
|
|
if (irr & (1U << (vector % 32))) {
|
|
apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
|
|
continue;
|
|
}
|
|
free_moved_vector(apicd);
|
|
}
|
|
|
|
raw_spin_unlock(&vector_lock);
|
|
exiting_irq();
|
|
}
|
|
|
|
static void __send_cleanup_vector(struct apic_chip_data *apicd)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
raw_spin_lock(&vector_lock);
|
|
apicd->move_in_progress = 0;
|
|
cpu = apicd->prev_cpu;
|
|
if (cpu_online(cpu)) {
|
|
hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
|
|
apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
|
|
} else {
|
|
apicd->prev_vector = 0;
|
|
}
|
|
raw_spin_unlock(&vector_lock);
|
|
}
|
|
|
|
void send_cleanup_vector(struct irq_cfg *cfg)
|
|
{
|
|
struct apic_chip_data *apicd;
|
|
|
|
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
|
|
if (apicd->move_in_progress)
|
|
__send_cleanup_vector(apicd);
|
|
}
|
|
|
|
static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
|
|
{
|
|
struct apic_chip_data *apicd;
|
|
|
|
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
|
|
if (likely(!apicd->move_in_progress))
|
|
return;
|
|
|
|
if (vector == apicd->vector && apicd->cpu == smp_processor_id())
|
|
__send_cleanup_vector(apicd);
|
|
}
|
|
|
|
void irq_complete_move(struct irq_cfg *cfg)
|
|
{
|
|
__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
|
|
}
|
|
|
|
/*
|
|
* Called from fixup_irqs() with @desc->lock held and interrupts disabled.
|
|
*/
|
|
void irq_force_complete_move(struct irq_desc *desc)
|
|
{
|
|
struct apic_chip_data *apicd;
|
|
struct irq_data *irqd;
|
|
unsigned int vector;
|
|
|
|
/*
|
|
* The function is called for all descriptors regardless of which
|
|
* irqdomain they belong to. For example if an IRQ is provided by
|
|
* an irq_chip as part of a GPIO driver, the chip data for that
|
|
* descriptor is specific to the irq_chip in question.
|
|
*
|
|
* Check first that the chip_data is what we expect
|
|
* (apic_chip_data) before touching it any further.
|
|
*/
|
|
irqd = irq_domain_get_irq_data(x86_vector_domain,
|
|
irq_desc_get_irq(desc));
|
|
if (!irqd)
|
|
return;
|
|
|
|
raw_spin_lock(&vector_lock);
|
|
apicd = apic_chip_data(irqd);
|
|
if (!apicd)
|
|
goto unlock;
|
|
|
|
/*
|
|
* If prev_vector is empty, no action required.
|
|
*/
|
|
vector = apicd->prev_vector;
|
|
if (!vector)
|
|
goto unlock;
|
|
|
|
/*
|
|
* This is tricky. If the cleanup of the old vector has not been
|
|
* done yet, then the following setaffinity call will fail with
|
|
* -EBUSY. This can leave the interrupt in a stale state.
|
|
*
|
|
* All CPUs are stuck in stop machine with interrupts disabled so
|
|
* calling __irq_complete_move() would be completely pointless.
|
|
*
|
|
* 1) The interrupt is in move_in_progress state. That means that we
|
|
* have not seen an interrupt since the io_apic was reprogrammed to
|
|
* the new vector.
|
|
*
|
|
* 2) The interrupt has fired on the new vector, but the cleanup IPIs
|
|
* have not been processed yet.
|
|
*/
|
|
if (apicd->move_in_progress) {
|
|
/*
|
|
* In theory there is a race:
|
|
*
|
|
* set_ioapic(new_vector) <-- Interrupt is raised before update
|
|
* is effective, i.e. it's raised on
|
|
* the old vector.
|
|
*
|
|
* So if the target cpu cannot handle that interrupt before
|
|
* the old vector is cleaned up, we get a spurious interrupt
|
|
* and in the worst case the ioapic irq line becomes stale.
|
|
*
|
|
* But in case of cpu hotplug this should be a non issue
|
|
* because if the affinity update happens right before all
|
|
* cpus rendevouz in stop machine, there is no way that the
|
|
* interrupt can be blocked on the target cpu because all cpus
|
|
* loops first with interrupts enabled in stop machine, so the
|
|
* old vector is not yet cleaned up when the interrupt fires.
|
|
*
|
|
* So the only way to run into this issue is if the delivery
|
|
* of the interrupt on the apic/system bus would be delayed
|
|
* beyond the point where the target cpu disables interrupts
|
|
* in stop machine. I doubt that it can happen, but at least
|
|
* there is a theroretical chance. Virtualization might be
|
|
* able to expose this, but AFAICT the IOAPIC emulation is not
|
|
* as stupid as the real hardware.
|
|
*
|
|
* Anyway, there is nothing we can do about that at this point
|
|
* w/o refactoring the whole fixup_irq() business completely.
|
|
* We print at least the irq number and the old vector number,
|
|
* so we have the necessary information when a problem in that
|
|
* area arises.
|
|
*/
|
|
pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
|
|
irqd->irq, vector);
|
|
}
|
|
free_moved_vector(apicd);
|
|
unlock:
|
|
raw_spin_unlock(&vector_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Note, this is not accurate accounting, but at least good enough to
|
|
* prevent that the actual interrupt move will run out of vectors.
|
|
*/
|
|
int lapic_can_unplug_cpu(void)
|
|
{
|
|
unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
|
|
int ret = 0;
|
|
|
|
raw_spin_lock(&vector_lock);
|
|
tomove = irq_matrix_allocated(vector_matrix);
|
|
avl = irq_matrix_available(vector_matrix, true);
|
|
if (avl < tomove) {
|
|
pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
|
|
cpu, tomove, avl);
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
rsvd = irq_matrix_reserved(vector_matrix);
|
|
if (avl < rsvd) {
|
|
pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
|
|
rsvd, avl);
|
|
}
|
|
out:
|
|
raw_spin_unlock(&vector_lock);
|
|
return ret;
|
|
}
|
|
#endif /* HOTPLUG_CPU */
|
|
#endif /* SMP */
|
|
|
|
static void __init print_APIC_field(int base)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_DEBUG);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
pr_cont("%08x", apic_read(base + i*0x10));
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static void __init print_local_APIC(void *dummy)
|
|
{
|
|
unsigned int i, v, ver, maxlvt;
|
|
u64 icr;
|
|
|
|
pr_debug("printing local APIC contents on CPU#%d/%d:\n",
|
|
smp_processor_id(), hard_smp_processor_id());
|
|
v = apic_read(APIC_ID);
|
|
pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
|
|
v = apic_read(APIC_LVR);
|
|
pr_info("... APIC VERSION: %08x\n", v);
|
|
ver = GET_APIC_VERSION(v);
|
|
maxlvt = lapic_get_maxlvt();
|
|
|
|
v = apic_read(APIC_TASKPRI);
|
|
pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
|
|
|
|
/* !82489DX */
|
|
if (APIC_INTEGRATED(ver)) {
|
|
if (!APIC_XAPIC(ver)) {
|
|
v = apic_read(APIC_ARBPRI);
|
|
pr_debug("... APIC ARBPRI: %08x (%02x)\n",
|
|
v, v & APIC_ARBPRI_MASK);
|
|
}
|
|
v = apic_read(APIC_PROCPRI);
|
|
pr_debug("... APIC PROCPRI: %08x\n", v);
|
|
}
|
|
|
|
/*
|
|
* Remote read supported only in the 82489DX and local APIC for
|
|
* Pentium processors.
|
|
*/
|
|
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
|
|
v = apic_read(APIC_RRR);
|
|
pr_debug("... APIC RRR: %08x\n", v);
|
|
}
|
|
|
|
v = apic_read(APIC_LDR);
|
|
pr_debug("... APIC LDR: %08x\n", v);
|
|
if (!x2apic_enabled()) {
|
|
v = apic_read(APIC_DFR);
|
|
pr_debug("... APIC DFR: %08x\n", v);
|
|
}
|
|
v = apic_read(APIC_SPIV);
|
|
pr_debug("... APIC SPIV: %08x\n", v);
|
|
|
|
pr_debug("... APIC ISR field:\n");
|
|
print_APIC_field(APIC_ISR);
|
|
pr_debug("... APIC TMR field:\n");
|
|
print_APIC_field(APIC_TMR);
|
|
pr_debug("... APIC IRR field:\n");
|
|
print_APIC_field(APIC_IRR);
|
|
|
|
/* !82489DX */
|
|
if (APIC_INTEGRATED(ver)) {
|
|
/* Due to the Pentium erratum 3AP. */
|
|
if (maxlvt > 3)
|
|
apic_write(APIC_ESR, 0);
|
|
|
|
v = apic_read(APIC_ESR);
|
|
pr_debug("... APIC ESR: %08x\n", v);
|
|
}
|
|
|
|
icr = apic_icr_read();
|
|
pr_debug("... APIC ICR: %08x\n", (u32)icr);
|
|
pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
|
|
|
|
v = apic_read(APIC_LVTT);
|
|
pr_debug("... APIC LVTT: %08x\n", v);
|
|
|
|
if (maxlvt > 3) {
|
|
/* PC is LVT#4. */
|
|
v = apic_read(APIC_LVTPC);
|
|
pr_debug("... APIC LVTPC: %08x\n", v);
|
|
}
|
|
v = apic_read(APIC_LVT0);
|
|
pr_debug("... APIC LVT0: %08x\n", v);
|
|
v = apic_read(APIC_LVT1);
|
|
pr_debug("... APIC LVT1: %08x\n", v);
|
|
|
|
if (maxlvt > 2) {
|
|
/* ERR is LVT#3. */
|
|
v = apic_read(APIC_LVTERR);
|
|
pr_debug("... APIC LVTERR: %08x\n", v);
|
|
}
|
|
|
|
v = apic_read(APIC_TMICT);
|
|
pr_debug("... APIC TMICT: %08x\n", v);
|
|
v = apic_read(APIC_TMCCT);
|
|
pr_debug("... APIC TMCCT: %08x\n", v);
|
|
v = apic_read(APIC_TDCR);
|
|
pr_debug("... APIC TDCR: %08x\n", v);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
|
|
v = apic_read(APIC_EFEAT);
|
|
maxlvt = (v >> 16) & 0xff;
|
|
pr_debug("... APIC EFEAT: %08x\n", v);
|
|
v = apic_read(APIC_ECTRL);
|
|
pr_debug("... APIC ECTRL: %08x\n", v);
|
|
for (i = 0; i < maxlvt; i++) {
|
|
v = apic_read(APIC_EILVTn(i));
|
|
pr_debug("... APIC EILVT%d: %08x\n", i, v);
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static void __init print_local_APICs(int maxcpu)
|
|
{
|
|
int cpu;
|
|
|
|
if (!maxcpu)
|
|
return;
|
|
|
|
preempt_disable();
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu >= maxcpu)
|
|
break;
|
|
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static void __init print_PIC(void)
|
|
{
|
|
unsigned int v;
|
|
unsigned long flags;
|
|
|
|
if (!nr_legacy_irqs())
|
|
return;
|
|
|
|
pr_debug("\nprinting PIC contents\n");
|
|
|
|
raw_spin_lock_irqsave(&i8259A_lock, flags);
|
|
|
|
v = inb(0xa1) << 8 | inb(0x21);
|
|
pr_debug("... PIC IMR: %04x\n", v);
|
|
|
|
v = inb(0xa0) << 8 | inb(0x20);
|
|
pr_debug("... PIC IRR: %04x\n", v);
|
|
|
|
outb(0x0b, 0xa0);
|
|
outb(0x0b, 0x20);
|
|
v = inb(0xa0) << 8 | inb(0x20);
|
|
outb(0x0a, 0xa0);
|
|
outb(0x0a, 0x20);
|
|
|
|
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
|
|
|
|
pr_debug("... PIC ISR: %04x\n", v);
|
|
|
|
v = inb(0x4d1) << 8 | inb(0x4d0);
|
|
pr_debug("... PIC ELCR: %04x\n", v);
|
|
}
|
|
|
|
static int show_lapic __initdata = 1;
|
|
static __init int setup_show_lapic(char *arg)
|
|
{
|
|
int num = -1;
|
|
|
|
if (strcmp(arg, "all") == 0) {
|
|
show_lapic = CONFIG_NR_CPUS;
|
|
} else {
|
|
get_option(&arg, &num);
|
|
if (num >= 0)
|
|
show_lapic = num;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("show_lapic=", setup_show_lapic);
|
|
|
|
static int __init print_ICs(void)
|
|
{
|
|
if (apic_verbosity == APIC_QUIET)
|
|
return 0;
|
|
|
|
print_PIC();
|
|
|
|
/* don't print out if apic is not there */
|
|
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
|
|
return 0;
|
|
|
|
print_local_APICs(show_lapic);
|
|
print_IO_APICs();
|
|
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(print_ICs);
|