e28642c04a
A mixed bag of fixes, many of which feel just to late for 3.15. * hid sensors - some devices need a feature report request in order to change power state. This isn't part of the spec, but has been observed on several devices and does no harm to others. * mpl3115 has had two errors in the buffer description fixed. The presure is signed, not unsigned and the temperature has 12 bits rather than 16. These could lead to incorrect interpretation of the data in userspace. * tsl2x7x - the high byte of the proximity thresholds should be written along with the low byte (which was). This could lead to interesting results with large thresholds. * twl4030 - a flag to specify processed values were required was not set when initializing a reading. As such values returned were in an unknown state. Fixed by simply initializing it appropriately. * IIO_SIMPLE_DUMMY_BUFFER did not select IIO_BUFFER leading to randconfig build errors. * ak8975 was applying an unwanted le16_to_cpu conversion as the i2c framework already performs one. As such for big endian systems, the bytes would be in the wrong order in the magnetic field measurements reported. * mxs-lradc - the controllable voltage dividers were not enabled / disabled for later channels than the first one during conversion. * at91_adc error handling returned -ENOMEM in a u8. Return value of at91_adc_get_trigger_value_by_name changed to int thus allowing -ENOMEM and also original values to be returned. * mcb - mcb_request_mem returns and ERR_PTR but the caller was checking for NULL to detect an error. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABAgAGBQJTnLYyAAoJEFSFNJnE9BaI6r4QAK22hjl1J3xoWwOPUJhfJ5Hh VTjwO1OxwQ1XtUN5WneeJM73eu6moXD/avG2NbX4orAkNjSXKL6+/3WAds/rYMj2 0vPiJsKsGBBlhu2w2RU80xVOPT2/XXIH3bYWDiUlr/i6DLEh8mU3kKX/yZzF+cIn hheYnOHZzLqGH8JircScEJv+B06svZtlfoDeLYaKY03HupTvEH95mvCSZk71PxZb A+7Qb3nDlZrpLBFKj4L5x15MIoEgopID2pX0kHLNY2DE1sopr2Z+FgSa3u/wtSEx k/ViyHPRk1mjTrQ92RMmTF5lMts6JFCmMgpPCNmcSyRKt6Fe6KcCMiWIlSs9I69i 6KAIes5XpP7Qti5Yd4gi70uiq7fL1hR18Yhzv6IdmNdS8iJhk53YiWDYiYBgXwWS rcOva4NsaoeLYUdNJZRtap3RLsQRKAxg7HNhL+G88rr3wCsA0P7rb6BMdFK+3MiS BDcYe8mHIzX9tJZa4EU8kOdr+aphQeDt1nH4aZDWT3J7fo6RWrWcPMWFAcx+1jp3 VVDL6Jn8WIuxYIDFznSQ6T6tvsvuqPgCqOA0ygfzvruo3m/oWvTT/+i2YFotGH3Y 7Mlw7TACAmcuZStBLg6R0R1fD39zpfp4/+GNRxFaaB8otMPyrbizb0HBcaksQCp0 0MTbFSjuAlXZ3NhVIm2O =RuB2 -----END PGP SIGNATURE----- Merge tag 'iio-fixes-for-3.16a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio into staging-linus Jonathan writes: First set of IIO fixes for the 3.16 cycle. A mixed bag of fixes, many of which feel just to late for 3.15. * hid sensors - some devices need a feature report request in order to change power state. This isn't part of the spec, but has been observed on several devices and does no harm to others. * mpl3115 has had two errors in the buffer description fixed. The presure is signed, not unsigned and the temperature has 12 bits rather than 16. These could lead to incorrect interpretation of the data in userspace. * tsl2x7x - the high byte of the proximity thresholds should be written along with the low byte (which was). This could lead to interesting results with large thresholds. * twl4030 - a flag to specify processed values were required was not set when initializing a reading. As such values returned were in an unknown state. Fixed by simply initializing it appropriately. * IIO_SIMPLE_DUMMY_BUFFER did not select IIO_BUFFER leading to randconfig build errors. * ak8975 was applying an unwanted le16_to_cpu conversion as the i2c framework already performs one. As such for big endian systems, the bytes would be in the wrong order in the magnetic field measurements reported. * mxs-lradc - the controllable voltage dividers were not enabled / disabled for later channels than the first one during conversion. * at91_adc error handling returned -ENOMEM in a u8. Return value of at91_adc_get_trigger_value_by_name changed to int thus allowing -ENOMEM and also original values to be returned. * mcb - mcb_request_mem returns and ERR_PTR but the caller was checking for NULL to detect an error.
632 lines
16 KiB
C
632 lines
16 KiB
C
/*
|
|
* A sensor driver for the magnetometer AK8975.
|
|
*
|
|
* Magnetic compass sensor driver for monitoring magnetic flux information.
|
|
*
|
|
* Copyright (c) 2010, NVIDIA Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/acpi.h>
|
|
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/iio/sysfs.h>
|
|
/*
|
|
* Register definitions, as well as various shifts and masks to get at the
|
|
* individual fields of the registers.
|
|
*/
|
|
#define AK8975_REG_WIA 0x00
|
|
#define AK8975_DEVICE_ID 0x48
|
|
|
|
#define AK8975_REG_INFO 0x01
|
|
|
|
#define AK8975_REG_ST1 0x02
|
|
#define AK8975_REG_ST1_DRDY_SHIFT 0
|
|
#define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
|
|
|
|
#define AK8975_REG_HXL 0x03
|
|
#define AK8975_REG_HXH 0x04
|
|
#define AK8975_REG_HYL 0x05
|
|
#define AK8975_REG_HYH 0x06
|
|
#define AK8975_REG_HZL 0x07
|
|
#define AK8975_REG_HZH 0x08
|
|
#define AK8975_REG_ST2 0x09
|
|
#define AK8975_REG_ST2_DERR_SHIFT 2
|
|
#define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
|
|
|
|
#define AK8975_REG_ST2_HOFL_SHIFT 3
|
|
#define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
|
|
|
|
#define AK8975_REG_CNTL 0x0A
|
|
#define AK8975_REG_CNTL_MODE_SHIFT 0
|
|
#define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
|
|
#define AK8975_REG_CNTL_MODE_POWER_DOWN 0
|
|
#define AK8975_REG_CNTL_MODE_ONCE 1
|
|
#define AK8975_REG_CNTL_MODE_SELF_TEST 8
|
|
#define AK8975_REG_CNTL_MODE_FUSE_ROM 0xF
|
|
|
|
#define AK8975_REG_RSVC 0x0B
|
|
#define AK8975_REG_ASTC 0x0C
|
|
#define AK8975_REG_TS1 0x0D
|
|
#define AK8975_REG_TS2 0x0E
|
|
#define AK8975_REG_I2CDIS 0x0F
|
|
#define AK8975_REG_ASAX 0x10
|
|
#define AK8975_REG_ASAY 0x11
|
|
#define AK8975_REG_ASAZ 0x12
|
|
|
|
#define AK8975_MAX_REGS AK8975_REG_ASAZ
|
|
|
|
/*
|
|
* Miscellaneous values.
|
|
*/
|
|
#define AK8975_MAX_CONVERSION_TIMEOUT 500
|
|
#define AK8975_CONVERSION_DONE_POLL_TIME 10
|
|
#define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
|
|
#define RAW_TO_GAUSS_8975(asa) ((((asa) + 128) * 3000) / 256)
|
|
#define RAW_TO_GAUSS_8963(asa) ((((asa) + 128) * 6000) / 256)
|
|
|
|
/* Compatible Asahi Kasei Compass parts */
|
|
enum asahi_compass_chipset {
|
|
AK8975,
|
|
AK8963,
|
|
};
|
|
|
|
/*
|
|
* Per-instance context data for the device.
|
|
*/
|
|
struct ak8975_data {
|
|
struct i2c_client *client;
|
|
struct attribute_group attrs;
|
|
struct mutex lock;
|
|
u8 asa[3];
|
|
long raw_to_gauss[3];
|
|
u8 reg_cache[AK8975_MAX_REGS];
|
|
int eoc_gpio;
|
|
int eoc_irq;
|
|
wait_queue_head_t data_ready_queue;
|
|
unsigned long flags;
|
|
enum asahi_compass_chipset chipset;
|
|
};
|
|
|
|
static const int ak8975_index_to_reg[] = {
|
|
AK8975_REG_HXL, AK8975_REG_HYL, AK8975_REG_HZL,
|
|
};
|
|
|
|
/*
|
|
* Helper function to write to the I2C device's registers.
|
|
*/
|
|
static int ak8975_write_data(struct i2c_client *client,
|
|
u8 reg, u8 val, u8 mask, u8 shift)
|
|
{
|
|
struct iio_dev *indio_dev = i2c_get_clientdata(client);
|
|
struct ak8975_data *data = iio_priv(indio_dev);
|
|
u8 regval;
|
|
int ret;
|
|
|
|
regval = (data->reg_cache[reg] & ~mask) | (val << shift);
|
|
ret = i2c_smbus_write_byte_data(client, reg, regval);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Write to device fails status %x\n", ret);
|
|
return ret;
|
|
}
|
|
data->reg_cache[reg] = regval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle data ready irq
|
|
*/
|
|
static irqreturn_t ak8975_irq_handler(int irq, void *data)
|
|
{
|
|
struct ak8975_data *ak8975 = data;
|
|
|
|
set_bit(0, &ak8975->flags);
|
|
wake_up(&ak8975->data_ready_queue);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Install data ready interrupt handler
|
|
*/
|
|
static int ak8975_setup_irq(struct ak8975_data *data)
|
|
{
|
|
struct i2c_client *client = data->client;
|
|
int rc;
|
|
int irq;
|
|
|
|
if (client->irq)
|
|
irq = client->irq;
|
|
else
|
|
irq = gpio_to_irq(data->eoc_gpio);
|
|
|
|
rc = request_irq(irq, ak8975_irq_handler,
|
|
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
|
|
dev_name(&client->dev), data);
|
|
if (rc < 0) {
|
|
dev_err(&client->dev,
|
|
"irq %d request failed, (gpio %d): %d\n",
|
|
irq, data->eoc_gpio, rc);
|
|
return rc;
|
|
}
|
|
|
|
init_waitqueue_head(&data->data_ready_queue);
|
|
clear_bit(0, &data->flags);
|
|
data->eoc_irq = irq;
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform some start-of-day setup, including reading the asa calibration
|
|
* values and caching them.
|
|
*/
|
|
static int ak8975_setup(struct i2c_client *client)
|
|
{
|
|
struct iio_dev *indio_dev = i2c_get_clientdata(client);
|
|
struct ak8975_data *data = iio_priv(indio_dev);
|
|
u8 device_id;
|
|
int ret;
|
|
|
|
/* Confirm that the device we're talking to is really an AK8975. */
|
|
ret = i2c_smbus_read_byte_data(client, AK8975_REG_WIA);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Error reading WIA\n");
|
|
return ret;
|
|
}
|
|
device_id = ret;
|
|
if (device_id != AK8975_DEVICE_ID) {
|
|
dev_err(&client->dev, "Device ak8975 not found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Write the fused rom access mode. */
|
|
ret = ak8975_write_data(client,
|
|
AK8975_REG_CNTL,
|
|
AK8975_REG_CNTL_MODE_FUSE_ROM,
|
|
AK8975_REG_CNTL_MODE_MASK,
|
|
AK8975_REG_CNTL_MODE_SHIFT);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Error in setting fuse access mode\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Get asa data and store in the device data. */
|
|
ret = i2c_smbus_read_i2c_block_data(client, AK8975_REG_ASAX,
|
|
3, data->asa);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Not able to read asa data\n");
|
|
return ret;
|
|
}
|
|
|
|
/* After reading fuse ROM data set power-down mode */
|
|
ret = ak8975_write_data(client,
|
|
AK8975_REG_CNTL,
|
|
AK8975_REG_CNTL_MODE_POWER_DOWN,
|
|
AK8975_REG_CNTL_MODE_MASK,
|
|
AK8975_REG_CNTL_MODE_SHIFT);
|
|
|
|
if (data->eoc_gpio > 0 || client->irq) {
|
|
ret = ak8975_setup_irq(data);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev,
|
|
"Error setting data ready interrupt\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Error in setting power-down mode\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Precalculate scale factor (in Gauss units) for each axis and
|
|
* store in the device data.
|
|
*
|
|
* This scale factor is axis-dependent, and is derived from 3 calibration
|
|
* factors ASA(x), ASA(y), and ASA(z).
|
|
*
|
|
* These ASA values are read from the sensor device at start of day, and
|
|
* cached in the device context struct.
|
|
*
|
|
* Adjusting the flux value with the sensitivity adjustment value should be
|
|
* done via the following formula:
|
|
*
|
|
* Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
|
|
*
|
|
* where H is the raw value, ASA is the sensitivity adjustment, and Hadj
|
|
* is the resultant adjusted value.
|
|
*
|
|
* We reduce the formula to:
|
|
*
|
|
* Hadj = H * (ASA + 128) / 256
|
|
*
|
|
* H is in the range of -4096 to 4095. The magnetometer has a range of
|
|
* +-1229uT. To go from the raw value to uT is:
|
|
*
|
|
* HuT = H * 1229/4096, or roughly, 3/10.
|
|
*
|
|
* Since 1uT = 0.01 gauss, our final scale factor becomes:
|
|
*
|
|
* Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
|
|
* Hadj = H * ((ASA + 128) * 0.003) / 256
|
|
*
|
|
* Since ASA doesn't change, we cache the resultant scale factor into the
|
|
* device context in ak8975_setup().
|
|
*/
|
|
if (data->chipset == AK8963) {
|
|
/*
|
|
* H range is +-8190 and magnetometer range is +-4912.
|
|
* So HuT using the above explanation for 8975,
|
|
* 4912/8190 = ~ 6/10.
|
|
* So the Hadj should use 6/10 instead of 3/10.
|
|
*/
|
|
data->raw_to_gauss[0] = RAW_TO_GAUSS_8963(data->asa[0]);
|
|
data->raw_to_gauss[1] = RAW_TO_GAUSS_8963(data->asa[1]);
|
|
data->raw_to_gauss[2] = RAW_TO_GAUSS_8963(data->asa[2]);
|
|
} else {
|
|
data->raw_to_gauss[0] = RAW_TO_GAUSS_8975(data->asa[0]);
|
|
data->raw_to_gauss[1] = RAW_TO_GAUSS_8975(data->asa[1]);
|
|
data->raw_to_gauss[2] = RAW_TO_GAUSS_8975(data->asa[2]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int wait_conversion_complete_gpio(struct ak8975_data *data)
|
|
{
|
|
struct i2c_client *client = data->client;
|
|
u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
|
|
int ret;
|
|
|
|
/* Wait for the conversion to complete. */
|
|
while (timeout_ms) {
|
|
msleep(AK8975_CONVERSION_DONE_POLL_TIME);
|
|
if (gpio_get_value(data->eoc_gpio))
|
|
break;
|
|
timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
|
|
}
|
|
if (!timeout_ms) {
|
|
dev_err(&client->dev, "Conversion timeout happened\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1);
|
|
if (ret < 0)
|
|
dev_err(&client->dev, "Error in reading ST1\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int wait_conversion_complete_polled(struct ak8975_data *data)
|
|
{
|
|
struct i2c_client *client = data->client;
|
|
u8 read_status;
|
|
u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
|
|
int ret;
|
|
|
|
/* Wait for the conversion to complete. */
|
|
while (timeout_ms) {
|
|
msleep(AK8975_CONVERSION_DONE_POLL_TIME);
|
|
ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Error in reading ST1\n");
|
|
return ret;
|
|
}
|
|
read_status = ret;
|
|
if (read_status)
|
|
break;
|
|
timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
|
|
}
|
|
if (!timeout_ms) {
|
|
dev_err(&client->dev, "Conversion timeout happened\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return read_status;
|
|
}
|
|
|
|
/* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
|
|
static int wait_conversion_complete_interrupt(struct ak8975_data *data)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_event_timeout(data->data_ready_queue,
|
|
test_bit(0, &data->flags),
|
|
AK8975_DATA_READY_TIMEOUT);
|
|
clear_bit(0, &data->flags);
|
|
|
|
return ret > 0 ? 0 : -ETIME;
|
|
}
|
|
|
|
/*
|
|
* Emits the raw flux value for the x, y, or z axis.
|
|
*/
|
|
static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
|
|
{
|
|
struct ak8975_data *data = iio_priv(indio_dev);
|
|
struct i2c_client *client = data->client;
|
|
int ret;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
/* Set up the device for taking a sample. */
|
|
ret = ak8975_write_data(client,
|
|
AK8975_REG_CNTL,
|
|
AK8975_REG_CNTL_MODE_ONCE,
|
|
AK8975_REG_CNTL_MODE_MASK,
|
|
AK8975_REG_CNTL_MODE_SHIFT);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Error in setting operating mode\n");
|
|
goto exit;
|
|
}
|
|
|
|
/* Wait for the conversion to complete. */
|
|
if (data->eoc_irq)
|
|
ret = wait_conversion_complete_interrupt(data);
|
|
else if (gpio_is_valid(data->eoc_gpio))
|
|
ret = wait_conversion_complete_gpio(data);
|
|
else
|
|
ret = wait_conversion_complete_polled(data);
|
|
if (ret < 0)
|
|
goto exit;
|
|
|
|
/* This will be executed only for non-interrupt based waiting case */
|
|
if (ret & AK8975_REG_ST1_DRDY_MASK) {
|
|
ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST2);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Error in reading ST2\n");
|
|
goto exit;
|
|
}
|
|
if (ret & (AK8975_REG_ST2_DERR_MASK |
|
|
AK8975_REG_ST2_HOFL_MASK)) {
|
|
dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/* Read the flux value from the appropriate register
|
|
(the register is specified in the iio device attributes). */
|
|
ret = i2c_smbus_read_word_data(client, ak8975_index_to_reg[index]);
|
|
if (ret < 0) {
|
|
dev_err(&client->dev, "Read axis data fails\n");
|
|
goto exit;
|
|
}
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
/* Clamp to valid range. */
|
|
*val = clamp_t(s16, ret, -4096, 4095);
|
|
return IIO_VAL_INT;
|
|
|
|
exit:
|
|
mutex_unlock(&data->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int ak8975_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int *val, int *val2,
|
|
long mask)
|
|
{
|
|
struct ak8975_data *data = iio_priv(indio_dev);
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
return ak8975_read_axis(indio_dev, chan->address, val);
|
|
case IIO_CHAN_INFO_SCALE:
|
|
*val = 0;
|
|
*val2 = data->raw_to_gauss[chan->address];
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
#define AK8975_CHANNEL(axis, index) \
|
|
{ \
|
|
.type = IIO_MAGN, \
|
|
.modified = 1, \
|
|
.channel2 = IIO_MOD_##axis, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
|
|
BIT(IIO_CHAN_INFO_SCALE), \
|
|
.address = index, \
|
|
}
|
|
|
|
static const struct iio_chan_spec ak8975_channels[] = {
|
|
AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
|
|
};
|
|
|
|
static const struct iio_info ak8975_info = {
|
|
.read_raw = &ak8975_read_raw,
|
|
.driver_module = THIS_MODULE,
|
|
};
|
|
|
|
static const struct acpi_device_id ak_acpi_match[] = {
|
|
{"AK8975", AK8975},
|
|
{"AK8963", AK8963},
|
|
{"INVN6500", AK8963},
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
|
|
|
|
static char *ak8975_match_acpi_device(struct device *dev,
|
|
enum asahi_compass_chipset *chipset)
|
|
{
|
|
const struct acpi_device_id *id;
|
|
|
|
id = acpi_match_device(dev->driver->acpi_match_table, dev);
|
|
if (!id)
|
|
return NULL;
|
|
*chipset = (int)id->driver_data;
|
|
|
|
return (char *)dev_name(dev);
|
|
}
|
|
|
|
static int ak8975_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct ak8975_data *data;
|
|
struct iio_dev *indio_dev;
|
|
int eoc_gpio;
|
|
int err;
|
|
char *name = NULL;
|
|
|
|
/* Grab and set up the supplied GPIO. */
|
|
if (client->dev.platform_data)
|
|
eoc_gpio = *(int *)(client->dev.platform_data);
|
|
else if (client->dev.of_node)
|
|
eoc_gpio = of_get_gpio(client->dev.of_node, 0);
|
|
else
|
|
eoc_gpio = -1;
|
|
|
|
if (eoc_gpio == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
|
|
/* We may not have a GPIO based IRQ to scan, that is fine, we will
|
|
poll if so */
|
|
if (gpio_is_valid(eoc_gpio)) {
|
|
err = gpio_request_one(eoc_gpio, GPIOF_IN, "ak_8975");
|
|
if (err < 0) {
|
|
dev_err(&client->dev,
|
|
"failed to request GPIO %d, error %d\n",
|
|
eoc_gpio, err);
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/* Register with IIO */
|
|
indio_dev = iio_device_alloc(sizeof(*data));
|
|
if (indio_dev == NULL) {
|
|
err = -ENOMEM;
|
|
goto exit_gpio;
|
|
}
|
|
data = iio_priv(indio_dev);
|
|
i2c_set_clientdata(client, indio_dev);
|
|
|
|
data->client = client;
|
|
data->eoc_gpio = eoc_gpio;
|
|
data->eoc_irq = 0;
|
|
|
|
/* id will be NULL when enumerated via ACPI */
|
|
if (id) {
|
|
data->chipset =
|
|
(enum asahi_compass_chipset)(id->driver_data);
|
|
name = (char *) id->name;
|
|
} else if (ACPI_HANDLE(&client->dev))
|
|
name = ak8975_match_acpi_device(&client->dev, &data->chipset);
|
|
else {
|
|
err = -ENOSYS;
|
|
goto exit_free_iio;
|
|
}
|
|
dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
|
|
|
|
/* Perform some basic start-of-day setup of the device. */
|
|
err = ak8975_setup(client);
|
|
if (err < 0) {
|
|
dev_err(&client->dev, "AK8975 initialization fails\n");
|
|
goto exit_free_iio;
|
|
}
|
|
|
|
data->client = client;
|
|
mutex_init(&data->lock);
|
|
data->eoc_gpio = eoc_gpio;
|
|
indio_dev->dev.parent = &client->dev;
|
|
indio_dev->channels = ak8975_channels;
|
|
indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
|
|
indio_dev->info = &ak8975_info;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->name = name;
|
|
err = iio_device_register(indio_dev);
|
|
if (err < 0)
|
|
goto exit_free_iio;
|
|
|
|
return 0;
|
|
|
|
exit_free_iio:
|
|
iio_device_free(indio_dev);
|
|
if (data->eoc_irq)
|
|
free_irq(data->eoc_irq, data);
|
|
exit_gpio:
|
|
if (gpio_is_valid(eoc_gpio))
|
|
gpio_free(eoc_gpio);
|
|
exit:
|
|
return err;
|
|
}
|
|
|
|
static int ak8975_remove(struct i2c_client *client)
|
|
{
|
|
struct iio_dev *indio_dev = i2c_get_clientdata(client);
|
|
struct ak8975_data *data = iio_priv(indio_dev);
|
|
|
|
iio_device_unregister(indio_dev);
|
|
|
|
if (data->eoc_irq)
|
|
free_irq(data->eoc_irq, data);
|
|
|
|
if (gpio_is_valid(data->eoc_gpio))
|
|
gpio_free(data->eoc_gpio);
|
|
|
|
iio_device_free(indio_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct i2c_device_id ak8975_id[] = {
|
|
{"ak8975", AK8975},
|
|
{"ak8963", AK8963},
|
|
{}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(i2c, ak8975_id);
|
|
|
|
static const struct of_device_id ak8975_of_match[] = {
|
|
{ .compatible = "asahi-kasei,ak8975", },
|
|
{ .compatible = "ak8975", },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ak8975_of_match);
|
|
|
|
static struct i2c_driver ak8975_driver = {
|
|
.driver = {
|
|
.name = "ak8975",
|
|
.of_match_table = ak8975_of_match,
|
|
.acpi_match_table = ACPI_PTR(ak_acpi_match),
|
|
},
|
|
.probe = ak8975_probe,
|
|
.remove = ak8975_remove,
|
|
.id_table = ak8975_id,
|
|
};
|
|
module_i2c_driver(ak8975_driver);
|
|
|
|
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
|
|
MODULE_DESCRIPTION("AK8975 magnetometer driver");
|
|
MODULE_LICENSE("GPL");
|