linux/arch/x86/entry/common.c
Andy Lutomirski 3c73b81a91 x86/entry, selftests: Further improve user entry sanity checks
Chasing down a Xen bug caused me to realize that the new entry sanity
checks are still fairly weak.  Add some more checks.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/881de09e786ab93ce56ee4a2437ba2c308afe7a9.1593795633.git.luto@kernel.org
2020-07-04 19:47:25 +02:00

825 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* common.c - C code for kernel entry and exit
* Copyright (c) 2015 Andrew Lutomirski
*
* Based on asm and ptrace code by many authors. The code here originated
* in ptrace.c and signal.c.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/tracehook.h>
#include <linux/audit.h>
#include <linux/seccomp.h>
#include <linux/signal.h>
#include <linux/export.h>
#include <linux/context_tracking.h>
#include <linux/user-return-notifier.h>
#include <linux/nospec.h>
#include <linux/uprobes.h>
#include <linux/livepatch.h>
#include <linux/syscalls.h>
#include <linux/uaccess.h>
#ifdef CONFIG_XEN_PV
#include <xen/xen-ops.h>
#include <xen/events.h>
#endif
#include <asm/desc.h>
#include <asm/traps.h>
#include <asm/vdso.h>
#include <asm/cpufeature.h>
#include <asm/fpu/api.h>
#include <asm/nospec-branch.h>
#include <asm/io_bitmap.h>
#include <asm/syscall.h>
#include <asm/irq_stack.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
/* Check that the stack and regs on entry from user mode are sane. */
static void check_user_regs(struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) {
/*
* Make sure that the entry code gave us a sensible EFLAGS
* register. Native because we want to check the actual CPU
* state, not the interrupt state as imagined by Xen.
*/
unsigned long flags = native_save_fl();
WARN_ON_ONCE(flags & (X86_EFLAGS_AC | X86_EFLAGS_DF |
X86_EFLAGS_NT));
/* We think we came from user mode. Make sure pt_regs agrees. */
WARN_ON_ONCE(!user_mode(regs));
/*
* All entries from user mode (except #DF) should be on the
* normal thread stack and should have user pt_regs in the
* correct location.
*/
WARN_ON_ONCE(!on_thread_stack());
WARN_ON_ONCE(regs != task_pt_regs(current));
}
}
#ifdef CONFIG_CONTEXT_TRACKING
/**
* enter_from_user_mode - Establish state when coming from user mode
*
* Syscall entry disables interrupts, but user mode is traced as interrupts
* enabled. Also with NO_HZ_FULL RCU might be idle.
*
* 1) Tell lockdep that interrupts are disabled
* 2) Invoke context tracking if enabled to reactivate RCU
* 3) Trace interrupts off state
*/
static noinstr void enter_from_user_mode(void)
{
enum ctx_state state = ct_state();
lockdep_hardirqs_off(CALLER_ADDR0);
user_exit_irqoff();
instrumentation_begin();
CT_WARN_ON(state != CONTEXT_USER);
trace_hardirqs_off_finish();
instrumentation_end();
}
#else
static __always_inline void enter_from_user_mode(void)
{
lockdep_hardirqs_off(CALLER_ADDR0);
instrumentation_begin();
trace_hardirqs_off_finish();
instrumentation_end();
}
#endif
/**
* exit_to_user_mode - Fixup state when exiting to user mode
*
* Syscall exit enables interrupts, but the kernel state is interrupts
* disabled when this is invoked. Also tell RCU about it.
*
* 1) Trace interrupts on state
* 2) Invoke context tracking if enabled to adjust RCU state
* 3) Clear CPU buffers if CPU is affected by MDS and the migitation is on.
* 4) Tell lockdep that interrupts are enabled
*/
static __always_inline void exit_to_user_mode(void)
{
instrumentation_begin();
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
instrumentation_end();
user_enter_irqoff();
mds_user_clear_cpu_buffers();
lockdep_hardirqs_on(CALLER_ADDR0);
}
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
{
#ifdef CONFIG_X86_64
if (arch == AUDIT_ARCH_X86_64) {
audit_syscall_entry(regs->orig_ax, regs->di,
regs->si, regs->dx, regs->r10);
} else
#endif
{
audit_syscall_entry(regs->orig_ax, regs->bx,
regs->cx, regs->dx, regs->si);
}
}
/*
* Returns the syscall nr to run (which should match regs->orig_ax) or -1
* to skip the syscall.
*/
static long syscall_trace_enter(struct pt_regs *regs)
{
u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
struct thread_info *ti = current_thread_info();
unsigned long ret = 0;
u32 work;
work = READ_ONCE(ti->flags);
if (work & (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU)) {
ret = tracehook_report_syscall_entry(regs);
if (ret || (work & _TIF_SYSCALL_EMU))
return -1L;
}
#ifdef CONFIG_SECCOMP
/*
* Do seccomp after ptrace, to catch any tracer changes.
*/
if (work & _TIF_SECCOMP) {
struct seccomp_data sd;
sd.arch = arch;
sd.nr = regs->orig_ax;
sd.instruction_pointer = regs->ip;
#ifdef CONFIG_X86_64
if (arch == AUDIT_ARCH_X86_64) {
sd.args[0] = regs->di;
sd.args[1] = regs->si;
sd.args[2] = regs->dx;
sd.args[3] = regs->r10;
sd.args[4] = regs->r8;
sd.args[5] = regs->r9;
} else
#endif
{
sd.args[0] = regs->bx;
sd.args[1] = regs->cx;
sd.args[2] = regs->dx;
sd.args[3] = regs->si;
sd.args[4] = regs->di;
sd.args[5] = regs->bp;
}
ret = __secure_computing(&sd);
if (ret == -1)
return ret;
}
#endif
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_enter(regs, regs->orig_ax);
do_audit_syscall_entry(regs, arch);
return ret ?: regs->orig_ax;
}
#define EXIT_TO_USERMODE_LOOP_FLAGS \
(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
_TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING)
static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
{
/*
* In order to return to user mode, we need to have IRQs off with
* none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags
* can be set at any time on preemptible kernels if we have IRQs on,
* so we need to loop. Disabling preemption wouldn't help: doing the
* work to clear some of the flags can sleep.
*/
while (true) {
/* We have work to do. */
local_irq_enable();
if (cached_flags & _TIF_NEED_RESCHED)
schedule();
if (cached_flags & _TIF_UPROBE)
uprobe_notify_resume(regs);
if (cached_flags & _TIF_PATCH_PENDING)
klp_update_patch_state(current);
/* deal with pending signal delivery */
if (cached_flags & _TIF_SIGPENDING)
do_signal(regs);
if (cached_flags & _TIF_NOTIFY_RESUME) {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
rseq_handle_notify_resume(NULL, regs);
}
if (cached_flags & _TIF_USER_RETURN_NOTIFY)
fire_user_return_notifiers();
/* Disable IRQs and retry */
local_irq_disable();
cached_flags = READ_ONCE(current_thread_info()->flags);
if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
break;
}
}
static void __prepare_exit_to_usermode(struct pt_regs *regs)
{
struct thread_info *ti = current_thread_info();
u32 cached_flags;
addr_limit_user_check();
lockdep_assert_irqs_disabled();
lockdep_sys_exit();
cached_flags = READ_ONCE(ti->flags);
if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
exit_to_usermode_loop(regs, cached_flags);
/* Reload ti->flags; we may have rescheduled above. */
cached_flags = READ_ONCE(ti->flags);
if (unlikely(cached_flags & _TIF_IO_BITMAP))
tss_update_io_bitmap();
fpregs_assert_state_consistent();
if (unlikely(cached_flags & _TIF_NEED_FPU_LOAD))
switch_fpu_return();
#ifdef CONFIG_COMPAT
/*
* Compat syscalls set TS_COMPAT. Make sure we clear it before
* returning to user mode. We need to clear it *after* signal
* handling, because syscall restart has a fixup for compat
* syscalls. The fixup is exercised by the ptrace_syscall_32
* selftest.
*
* We also need to clear TS_REGS_POKED_I386: the 32-bit tracer
* special case only applies after poking regs and before the
* very next return to user mode.
*/
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
#endif
}
__visible noinstr void prepare_exit_to_usermode(struct pt_regs *regs)
{
instrumentation_begin();
__prepare_exit_to_usermode(regs);
instrumentation_end();
exit_to_user_mode();
}
#define SYSCALL_EXIT_WORK_FLAGS \
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
_TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
{
bool step;
audit_syscall_exit(regs);
if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
trace_sys_exit(regs, regs->ax);
/*
* If TIF_SYSCALL_EMU is set, we only get here because of
* TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
* We already reported this syscall instruction in
* syscall_trace_enter().
*/
step = unlikely(
(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
== _TIF_SINGLESTEP);
if (step || cached_flags & _TIF_SYSCALL_TRACE)
tracehook_report_syscall_exit(regs, step);
}
static void __syscall_return_slowpath(struct pt_regs *regs)
{
struct thread_info *ti = current_thread_info();
u32 cached_flags = READ_ONCE(ti->flags);
CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
local_irq_enable();
rseq_syscall(regs);
/*
* First do one-time work. If these work items are enabled, we
* want to run them exactly once per syscall exit with IRQs on.
*/
if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
syscall_slow_exit_work(regs, cached_flags);
local_irq_disable();
__prepare_exit_to_usermode(regs);
}
/*
* Called with IRQs on and fully valid regs. Returns with IRQs off in a
* state such that we can immediately switch to user mode.
*/
__visible noinstr void syscall_return_slowpath(struct pt_regs *regs)
{
instrumentation_begin();
__syscall_return_slowpath(regs);
instrumentation_end();
exit_to_user_mode();
}
#ifdef CONFIG_X86_64
__visible noinstr void do_syscall_64(unsigned long nr, struct pt_regs *regs)
{
struct thread_info *ti;
check_user_regs(regs);
enter_from_user_mode();
instrumentation_begin();
local_irq_enable();
ti = current_thread_info();
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
nr = syscall_trace_enter(regs);
if (likely(nr < NR_syscalls)) {
nr = array_index_nospec(nr, NR_syscalls);
regs->ax = sys_call_table[nr](regs);
#ifdef CONFIG_X86_X32_ABI
} else if (likely((nr & __X32_SYSCALL_BIT) &&
(nr & ~__X32_SYSCALL_BIT) < X32_NR_syscalls)) {
nr = array_index_nospec(nr & ~__X32_SYSCALL_BIT,
X32_NR_syscalls);
regs->ax = x32_sys_call_table[nr](regs);
#endif
}
__syscall_return_slowpath(regs);
instrumentation_end();
exit_to_user_mode();
}
#endif
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
/*
* Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does
* all entry and exit work and returns with IRQs off. This function is
* extremely hot in workloads that use it, and it's usually called from
* do_fast_syscall_32, so forcibly inline it to improve performance.
*/
static void do_syscall_32_irqs_on(struct pt_regs *regs)
{
struct thread_info *ti = current_thread_info();
unsigned int nr = (unsigned int)regs->orig_ax;
#ifdef CONFIG_IA32_EMULATION
ti->status |= TS_COMPAT;
#endif
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
/*
* Subtlety here: if ptrace pokes something larger than
* 2^32-1 into orig_ax, this truncates it. This may or
* may not be necessary, but it matches the old asm
* behavior.
*/
nr = syscall_trace_enter(regs);
}
if (likely(nr < IA32_NR_syscalls)) {
nr = array_index_nospec(nr, IA32_NR_syscalls);
regs->ax = ia32_sys_call_table[nr](regs);
}
__syscall_return_slowpath(regs);
}
/* Handles int $0x80 */
__visible noinstr void do_int80_syscall_32(struct pt_regs *regs)
{
check_user_regs(regs);
enter_from_user_mode();
instrumentation_begin();
local_irq_enable();
do_syscall_32_irqs_on(regs);
instrumentation_end();
exit_to_user_mode();
}
static bool __do_fast_syscall_32(struct pt_regs *regs)
{
int res;
/* Fetch EBP from where the vDSO stashed it. */
if (IS_ENABLED(CONFIG_X86_64)) {
/*
* Micro-optimization: the pointer we're following is
* explicitly 32 bits, so it can't be out of range.
*/
res = __get_user(*(u32 *)&regs->bp,
(u32 __user __force *)(unsigned long)(u32)regs->sp);
} else {
res = get_user(*(u32 *)&regs->bp,
(u32 __user __force *)(unsigned long)(u32)regs->sp);
}
if (res) {
/* User code screwed up. */
regs->ax = -EFAULT;
local_irq_disable();
__prepare_exit_to_usermode(regs);
return false;
}
/* Now this is just like a normal syscall. */
do_syscall_32_irqs_on(regs);
return true;
}
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
__visible noinstr long do_fast_syscall_32(struct pt_regs *regs)
{
/*
* Called using the internal vDSO SYSENTER/SYSCALL32 calling
* convention. Adjust regs so it looks like we entered using int80.
*/
unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
vdso_image_32.sym_int80_landing_pad;
bool success;
check_user_regs(regs);
/*
* SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
* so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
* Fix it up.
*/
regs->ip = landing_pad;
enter_from_user_mode();
instrumentation_begin();
local_irq_enable();
success = __do_fast_syscall_32(regs);
instrumentation_end();
exit_to_user_mode();
/* If it failed, keep it simple: use IRET. */
if (!success)
return 0;
#ifdef CONFIG_X86_64
/*
* Opportunistic SYSRETL: if possible, try to return using SYSRETL.
* SYSRETL is available on all 64-bit CPUs, so we don't need to
* bother with SYSEXIT.
*
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
* because the ECX fixup above will ensure that this is essentially
* never the case.
*/
return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
regs->ip == landing_pad &&
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
#else
/*
* Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
*
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
* because the ECX fixup above will ensure that this is essentially
* never the case.
*
* We don't allow syscalls at all from VM86 mode, but we still
* need to check VM, because we might be returning from sys_vm86.
*/
return static_cpu_has(X86_FEATURE_SEP) &&
regs->cs == __USER_CS && regs->ss == __USER_DS &&
regs->ip == landing_pad &&
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
#endif
}
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
__visible noinstr long do_SYSENTER_32(struct pt_regs *regs)
{
/* SYSENTER loses RSP, but the vDSO saved it in RBP. */
regs->sp = regs->bp;
/* SYSENTER clobbers EFLAGS.IF. Assume it was set in usermode. */
regs->flags |= X86_EFLAGS_IF;
return do_fast_syscall_32(regs);
}
#endif
SYSCALL_DEFINE0(ni_syscall)
{
return -ENOSYS;
}
/**
* idtentry_enter_cond_rcu - Handle state tracking on idtentry with conditional
* RCU handling
* @regs: Pointer to pt_regs of interrupted context
*
* Invokes:
* - lockdep irqflag state tracking as low level ASM entry disabled
* interrupts.
*
* - Context tracking if the exception hit user mode.
*
* - The hardirq tracer to keep the state consistent as low level ASM
* entry disabled interrupts.
*
* For kernel mode entries RCU handling is done conditional. If RCU is
* watching then the only RCU requirement is to check whether the tick has
* to be restarted. If RCU is not watching then rcu_irq_enter() has to be
* invoked on entry and rcu_irq_exit() on exit.
*
* Avoiding the rcu_irq_enter/exit() calls is an optimization but also
* solves the problem of kernel mode pagefaults which can schedule, which
* is not possible after invoking rcu_irq_enter() without undoing it.
*
* For user mode entries enter_from_user_mode() must be invoked to
* establish the proper context for NOHZ_FULL. Otherwise scheduling on exit
* would not be possible.
*
* Returns: True if RCU has been adjusted on a kernel entry
* False otherwise
*
* The return value must be fed into the rcu_exit argument of
* idtentry_exit_cond_rcu().
*/
bool noinstr idtentry_enter_cond_rcu(struct pt_regs *regs)
{
if (user_mode(regs)) {
check_user_regs(regs);
enter_from_user_mode();
return false;
}
/*
* If this entry hit the idle task invoke rcu_irq_enter() whether
* RCU is watching or not.
*
* Interupts can nest when the first interrupt invokes softirq
* processing on return which enables interrupts.
*
* Scheduler ticks in the idle task can mark quiescent state and
* terminate a grace period, if and only if the timer interrupt is
* not nested into another interrupt.
*
* Checking for __rcu_is_watching() here would prevent the nesting
* interrupt to invoke rcu_irq_enter(). If that nested interrupt is
* the tick then rcu_flavor_sched_clock_irq() would wrongfully
* assume that it is the first interupt and eventually claim
* quiescient state and end grace periods prematurely.
*
* Unconditionally invoke rcu_irq_enter() so RCU state stays
* consistent.
*
* TINY_RCU does not support EQS, so let the compiler eliminate
* this part when enabled.
*/
if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
/*
* If RCU is not watching then the same careful
* sequence vs. lockdep and tracing is required
* as in enter_from_user_mode().
*/
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_irq_enter();
instrumentation_begin();
trace_hardirqs_off_finish();
instrumentation_end();
return true;
}
/*
* If RCU is watching then RCU only wants to check whether it needs
* to restart the tick in NOHZ mode. rcu_irq_enter_check_tick()
* already contains a warning when RCU is not watching, so no point
* in having another one here.
*/
instrumentation_begin();
rcu_irq_enter_check_tick();
/* Use the combo lockdep/tracing function */
trace_hardirqs_off();
instrumentation_end();
return false;
}
static void idtentry_exit_cond_resched(struct pt_regs *regs, bool may_sched)
{
if (may_sched && !preempt_count()) {
/* Sanity check RCU and thread stack */
rcu_irq_exit_check_preempt();
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
WARN_ON_ONCE(!on_thread_stack());
if (need_resched())
preempt_schedule_irq();
}
/* Covers both tracing and lockdep */
trace_hardirqs_on();
}
/**
* idtentry_exit_cond_rcu - Handle return from exception with conditional RCU
* handling
* @regs: Pointer to pt_regs (exception entry regs)
* @rcu_exit: Invoke rcu_irq_exit() if true
*
* Depending on the return target (kernel/user) this runs the necessary
* preemption and work checks if possible and reguired and returns to
* the caller with interrupts disabled and no further work pending.
*
* This is the last action before returning to the low level ASM code which
* just needs to return to the appropriate context.
*
* Counterpart to idtentry_enter_cond_rcu(). The return value of the entry
* function must be fed into the @rcu_exit argument.
*/
void noinstr idtentry_exit_cond_rcu(struct pt_regs *regs, bool rcu_exit)
{
lockdep_assert_irqs_disabled();
/* Check whether this returns to user mode */
if (user_mode(regs)) {
prepare_exit_to_usermode(regs);
} else if (regs->flags & X86_EFLAGS_IF) {
/*
* If RCU was not watching on entry this needs to be done
* carefully and needs the same ordering of lockdep/tracing
* and RCU as the return to user mode path.
*/
if (rcu_exit) {
instrumentation_begin();
/* Tell the tracer that IRET will enable interrupts */
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
instrumentation_end();
rcu_irq_exit();
lockdep_hardirqs_on(CALLER_ADDR0);
return;
}
instrumentation_begin();
idtentry_exit_cond_resched(regs, IS_ENABLED(CONFIG_PREEMPTION));
instrumentation_end();
} else {
/*
* IRQ flags state is correct already. Just tell RCU if it
* was not watching on entry.
*/
if (rcu_exit)
rcu_irq_exit();
}
}
/**
* idtentry_enter_user - Handle state tracking on idtentry from user mode
* @regs: Pointer to pt_regs of interrupted context
*
* Invokes enter_from_user_mode() to establish the proper context for
* NOHZ_FULL. Otherwise scheduling on exit would not be possible.
*/
void noinstr idtentry_enter_user(struct pt_regs *regs)
{
check_user_regs(regs);
enter_from_user_mode();
}
/**
* idtentry_exit_user - Handle return from exception to user mode
* @regs: Pointer to pt_regs (exception entry regs)
*
* Runs the necessary preemption and work checks and returns to the caller
* with interrupts disabled and no further work pending.
*
* This is the last action before returning to the low level ASM code which
* just needs to return to the appropriate context.
*
* Counterpart to idtentry_enter_user().
*/
void noinstr idtentry_exit_user(struct pt_regs *regs)
{
lockdep_assert_irqs_disabled();
prepare_exit_to_usermode(regs);
}
#ifdef CONFIG_XEN_PV
#ifndef CONFIG_PREEMPTION
/*
* Some hypercalls issued by the toolstack can take many 10s of
* seconds. Allow tasks running hypercalls via the privcmd driver to
* be voluntarily preempted even if full kernel preemption is
* disabled.
*
* Such preemptible hypercalls are bracketed by
* xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
* calls.
*/
DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
/*
* In case of scheduling the flag must be cleared and restored after
* returning from schedule as the task might move to a different CPU.
*/
static __always_inline bool get_and_clear_inhcall(void)
{
bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
__this_cpu_write(xen_in_preemptible_hcall, false);
return inhcall;
}
static __always_inline void restore_inhcall(bool inhcall)
{
__this_cpu_write(xen_in_preemptible_hcall, inhcall);
}
#else
static __always_inline bool get_and_clear_inhcall(void) { return false; }
static __always_inline void restore_inhcall(bool inhcall) { }
#endif
static void __xen_pv_evtchn_do_upcall(void)
{
irq_enter_rcu();
inc_irq_stat(irq_hv_callback_count);
xen_hvm_evtchn_do_upcall();
irq_exit_rcu();
}
__visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
{
struct pt_regs *old_regs;
bool inhcall, rcu_exit;
rcu_exit = idtentry_enter_cond_rcu(regs);
old_regs = set_irq_regs(regs);
instrumentation_begin();
run_on_irqstack_cond(__xen_pv_evtchn_do_upcall, NULL, regs);
instrumentation_begin();
set_irq_regs(old_regs);
inhcall = get_and_clear_inhcall();
if (inhcall && !WARN_ON_ONCE(rcu_exit)) {
instrumentation_begin();
idtentry_exit_cond_resched(regs, true);
instrumentation_end();
restore_inhcall(inhcall);
} else {
idtentry_exit_cond_rcu(regs, rcu_exit);
}
}
#endif /* CONFIG_XEN_PV */