linux/drivers/clk/qcom/clk-alpha-pll.c
Taniya Das 59128c20a6 clk: qcom: clk-alpha-pll: Add support for controlling Lucid PLLs
Add programming sequence support for managing the Lucid PLLs.

Signed-off-by: Taniya Das <tdas@codeaurora.org>
Signed-off-by: Venkata Narendra Kumar Gutta <vnkgutta@codeaurora.org>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Link: https://lkml.kernel.org/r/20200224045003.3783838-4-vkoul@kernel.org
Reviewed-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org>
Tested-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2020-03-09 15:14:56 -07:00

1566 lines
40 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/clk-provider.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include "clk-alpha-pll.h"
#include "common.h"
#define PLL_MODE(p) ((p)->offset + 0x0)
# define PLL_OUTCTRL BIT(0)
# define PLL_BYPASSNL BIT(1)
# define PLL_RESET_N BIT(2)
# define PLL_OFFLINE_REQ BIT(7)
# define PLL_LOCK_COUNT_SHIFT 8
# define PLL_LOCK_COUNT_MASK 0x3f
# define PLL_BIAS_COUNT_SHIFT 14
# define PLL_BIAS_COUNT_MASK 0x3f
# define PLL_VOTE_FSM_ENA BIT(20)
# define PLL_FSM_ENA BIT(20)
# define PLL_VOTE_FSM_RESET BIT(21)
# define PLL_UPDATE BIT(22)
# define PLL_UPDATE_BYPASS BIT(23)
# define PLL_OFFLINE_ACK BIT(28)
# define ALPHA_PLL_ACK_LATCH BIT(29)
# define PLL_ACTIVE_FLAG BIT(30)
# define PLL_LOCK_DET BIT(31)
#define PLL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_L_VAL])
#define PLL_CAL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
#define PLL_ALPHA_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
#define PLL_ALPHA_VAL_U(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
#define PLL_USER_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
# define PLL_POST_DIV_SHIFT 8
# define PLL_POST_DIV_MASK(p) GENMASK((p)->width, 0)
# define PLL_ALPHA_EN BIT(24)
# define PLL_ALPHA_MODE BIT(25)
# define PLL_VCO_SHIFT 20
# define PLL_VCO_MASK 0x3
#define PLL_USER_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
#define PLL_USER_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
#define PLL_CONFIG_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
#define PLL_CONFIG_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
#define PLL_CONFIG_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
#define PLL_TEST_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
#define PLL_TEST_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
#define PLL_TEST_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
#define PLL_STATUS(p) ((p)->offset + (p)->regs[PLL_OFF_STATUS])
#define PLL_OPMODE(p) ((p)->offset + (p)->regs[PLL_OFF_OPMODE])
#define PLL_FRAC(p) ((p)->offset + (p)->regs[PLL_OFF_FRAC])
#define PLL_CAL_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_VAL])
const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
[CLK_ALPHA_PLL_TYPE_DEFAULT] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
[PLL_OFF_USER_CTL] = 0x10,
[PLL_OFF_USER_CTL_U] = 0x14,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_HUAYRA] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x10,
[PLL_OFF_CONFIG_CTL] = 0x14,
[PLL_OFF_CONFIG_CTL_U] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_BRAMMO] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
[PLL_OFF_USER_CTL] = 0x10,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_FABIA] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_USER_CTL_U] = 0x10,
[PLL_OFF_CONFIG_CTL] = 0x14,
[PLL_OFF_CONFIG_CTL_U] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_STATUS] = 0x24,
[PLL_OFF_OPMODE] = 0x2c,
[PLL_OFF_FRAC] = 0x38,
},
[CLK_ALPHA_PLL_TYPE_TRION] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_CAL_L_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_USER_CTL_U] = 0x10,
[PLL_OFF_USER_CTL_U1] = 0x14,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_CONFIG_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL_U1] = 0x20,
[PLL_OFF_TEST_CTL] = 0x24,
[PLL_OFF_TEST_CTL_U] = 0x28,
[PLL_OFF_STATUS] = 0x30,
[PLL_OFF_OPMODE] = 0x38,
[PLL_OFF_ALPHA_VAL] = 0x40,
[PLL_OFF_CAL_VAL] = 0x44,
},
[CLK_ALPHA_PLL_TYPE_LUCID] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_CAL_L_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_USER_CTL_U] = 0x10,
[PLL_OFF_USER_CTL_U1] = 0x14,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_CONFIG_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL_U1] = 0x20,
[PLL_OFF_TEST_CTL] = 0x24,
[PLL_OFF_TEST_CTL_U] = 0x28,
[PLL_OFF_TEST_CTL_U1] = 0x2c,
[PLL_OFF_STATUS] = 0x30,
[PLL_OFF_OPMODE] = 0x38,
[PLL_OFF_ALPHA_VAL] = 0x40,
},
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
/*
* Even though 40 bits are present, use only 32 for ease of calculation.
*/
#define ALPHA_REG_BITWIDTH 40
#define ALPHA_REG_16BIT_WIDTH 16
#define ALPHA_BITWIDTH 32U
#define ALPHA_SHIFT(w) min(w, ALPHA_BITWIDTH)
#define PLL_HUAYRA_M_WIDTH 8
#define PLL_HUAYRA_M_SHIFT 8
#define PLL_HUAYRA_M_MASK 0xff
#define PLL_HUAYRA_N_SHIFT 0
#define PLL_HUAYRA_N_MASK 0xff
#define PLL_HUAYRA_ALPHA_WIDTH 16
#define PLL_STANDBY 0x0
#define PLL_RUN 0x1
#define PLL_OUT_MASK 0x7
#define PLL_RATE_MARGIN 500
/* LUCID PLL specific settings and offsets */
#define LUCID_PLL_CAL_VAL 0x44
#define LUCID_PCAL_DONE BIT(26)
#define pll_alpha_width(p) \
((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ? \
ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
#define pll_has_64bit_config(p) ((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
#define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll, clkr)
#define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll_postdiv, clkr)
static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
const char *action)
{
u32 val;
int count;
int ret;
const char *name = clk_hw_get_name(&pll->clkr.hw);
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
for (count = 100; count > 0; count--) {
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
if (inverse && !(val & mask))
return 0;
else if ((val & mask) == mask)
return 0;
udelay(1);
}
WARN(1, "%s failed to %s!\n", name, action);
return -ETIMEDOUT;
}
#define wait_for_pll_enable_active(pll) \
wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
#define wait_for_pll_enable_lock(pll) \
wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
#define wait_for_pll_disable(pll) \
wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
#define wait_for_pll_offline(pll) \
wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
#define wait_for_pll_update(pll) \
wait_for_pll(pll, PLL_UPDATE, 1, "update")
#define wait_for_pll_update_ack_set(pll) \
wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
#define wait_for_pll_update_ack_clear(pll) \
wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
regmap_write(regmap, PLL_L_VAL(pll), config->l);
regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
if (pll_has_64bit_config(pll))
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
if (pll_alpha_width(pll) > 32)
regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
val = config->main_output_mask;
val |= config->aux_output_mask;
val |= config->aux2_output_mask;
val |= config->early_output_mask;
val |= config->pre_div_val;
val |= config->post_div_val;
val |= config->vco_val;
val |= config->alpha_en_mask;
val |= config->alpha_mode_mask;
mask = config->main_output_mask;
mask |= config->aux_output_mask;
mask |= config->aux2_output_mask;
mask |= config->early_output_mask;
mask |= config->pre_div_mask;
mask |= config->post_div_mask;
mask |= config->vco_mask;
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
if (pll->flags & SUPPORTS_FSM_MODE)
qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
}
EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
val |= PLL_FSM_ENA;
if (pll->flags & SUPPORTS_OFFLINE_REQ)
val &= ~PLL_OFFLINE_REQ;
ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
if (ret)
return ret;
/* Make sure enable request goes through before waiting for update */
mb();
return wait_for_pll_enable_active(pll);
}
static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return;
if (pll->flags & SUPPORTS_OFFLINE_REQ) {
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
if (ret)
return;
ret = wait_for_pll_offline(pll);
if (ret)
return;
}
/* Disable hwfsm */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_FSM_ENA, 0);
if (ret)
return;
wait_for_pll_disable(pll);
}
static int pll_is_enabled(struct clk_hw *hw, u32 mask)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
return !!(val & mask);
}
static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
{
return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
}
static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
{
return pll_is_enabled(hw, PLL_LOCK_DET);
}
static int clk_alpha_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask;
mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
/* Skip if already enabled */
if ((val & mask) == mask)
return 0;
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_BYPASSNL, PLL_BYPASSNL);
if (ret)
return ret;
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset.
*/
mb();
udelay(5);
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_OUTCTRL, PLL_OUTCTRL);
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_alpha_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
mask = PLL_OUTCTRL;
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
/* Delay of 2 output clock ticks required until output is disabled */
mb();
udelay(1);
mask = PLL_RESET_N | PLL_BYPASSNL;
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
}
static unsigned long
alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
{
return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
}
static unsigned long
alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
u32 alpha_width)
{
u64 remainder;
u64 quotient;
quotient = rate;
remainder = do_div(quotient, prate);
*l = quotient;
if (!remainder) {
*a = 0;
return rate;
}
/* Upper ALPHA_BITWIDTH bits of Alpha */
quotient = remainder << ALPHA_SHIFT(alpha_width);
remainder = do_div(quotient, prate);
if (remainder)
quotient++;
*a = quotient;
return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
}
static const struct pll_vco *
alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
{
const struct pll_vco *v = pll->vco_table;
const struct pll_vco *end = v + pll->num_vco;
for (; v < end; v++)
if (rate >= v->min_freq && rate <= v->max_freq)
return v;
return NULL;
}
static unsigned long
clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, low, high, ctl;
u64 a = 0, prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 alpha_width = pll_alpha_width(pll);
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
if (alpha_width > 32) {
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
&high);
a = (u64)high << 32 | low;
} else {
a = low & GENMASK(alpha_width - 1, 0);
}
if (alpha_width > ALPHA_BITWIDTH)
a >>= alpha_width - ALPHA_BITWIDTH;
}
return alpha_pll_calc_rate(prate, l, a, alpha_width);
}
static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
{
int ret;
u32 mode;
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
/* Latch the input to the PLL */
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
PLL_UPDATE);
/* Wait for 2 reference cycle before checking ACK bit */
udelay(1);
/*
* PLL will latch the new L, Alpha and freq control word.
* PLL will respond by raising PLL_ACK_LATCH output when new programming
* has been latched in and PLL is being updated. When
* UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
* automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
*/
if (mode & PLL_UPDATE_BYPASS) {
ret = wait_for_pll_update_ack_set(pll);
if (ret)
return ret;
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
} else {
ret = wait_for_pll_update(pll);
if (ret)
return ret;
}
ret = wait_for_pll_update_ack_clear(pll);
if (ret)
return ret;
/* Wait for PLL output to stabilize */
udelay(10);
return 0;
}
static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
int (*is_enabled)(struct clk_hw *))
{
if (!is_enabled(&pll->clkr.hw) ||
!(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
return 0;
return __clk_alpha_pll_update_latch(pll);
}
static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate,
int (*is_enabled)(struct clk_hw *))
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
u32 l, alpha_width = pll_alpha_width(pll);
u64 a;
rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
vco = alpha_pll_find_vco(pll, rate);
if (pll->vco_table && !vco) {
pr_err("%s: alpha pll not in a valid vco range\n",
clk_hw_get_name(hw));
return -EINVAL;
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
if (alpha_width > ALPHA_BITWIDTH)
a <<= alpha_width - ALPHA_BITWIDTH;
if (alpha_width > 32)
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
if (vco) {
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_VCO_MASK << PLL_VCO_SHIFT,
vco->val << PLL_VCO_SHIFT);
}
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN, PLL_ALPHA_EN);
return clk_alpha_pll_update_latch(pll, is_enabled);
}
static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
return __clk_alpha_pll_set_rate(hw, rate, prate,
clk_alpha_pll_is_enabled);
}
static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
return __clk_alpha_pll_set_rate(hw, rate, prate,
clk_alpha_pll_hwfsm_is_enabled);
}
static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha_width = pll_alpha_width(pll);
u64 a;
unsigned long min_freq, max_freq;
rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
return rate;
min_freq = pll->vco_table[0].min_freq;
max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
return clamp(rate, min_freq, max_freq);
}
static unsigned long
alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
{
/*
* a contains 16 bit alpha_val in twos compliment number in the range
* of [-0.5, 0.5).
*/
if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
l -= 1;
return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
}
static unsigned long
alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
u32 *l, u32 *a)
{
u64 remainder;
u64 quotient;
quotient = rate;
remainder = do_div(quotient, prate);
*l = quotient;
if (!remainder) {
*a = 0;
return rate;
}
quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
remainder = do_div(quotient, prate);
if (remainder)
quotient++;
/*
* alpha_val should be in twos compliment number in the range
* of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
* since alpha value will be subtracted in this case.
*/
if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
*l += 1;
*a = quotient;
return alpha_huayra_pll_calc_rate(prate, *l, *a);
}
static unsigned long
alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u64 rate = parent_rate, tmp;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha = 0, ctl, alpha_m, alpha_n;
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
/*
* Depending upon alpha_mode, it can be treated as M/N value or
* as a twos compliment number. When alpha_mode=1,
* pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
*
* Fout=FIN*(L+(M/N))
*
* M is a signed number (-128 to 127) and N is unsigned
* (0 to 255). M/N has to be within +/-0.5.
*
* When alpha_mode=0, it is a twos compliment number in the
* range [-0.5, 0.5).
*
* Fout=FIN*(L+(alpha_val)/2^16)
*
* where alpha_val is twos compliment number.
*/
if (!(ctl & PLL_ALPHA_MODE))
return alpha_huayra_pll_calc_rate(rate, l, alpha);
alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
rate *= l;
tmp = parent_rate;
if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
tmp *= alpha_m;
do_div(tmp, alpha_n);
rate -= tmp;
} else {
tmp *= alpha_m;
do_div(tmp, alpha_n);
rate += tmp;
}
return rate;
}
return alpha_huayra_pll_calc_rate(rate, l, alpha);
}
static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, a, ctl, cur_alpha = 0;
rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
if (ctl & PLL_ALPHA_EN)
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
/*
* Huayra PLL supports PLL dynamic programming. User can change L_VAL,
* without having to go through the power on sequence.
*/
if (clk_alpha_pll_is_enabled(hw)) {
if (cur_alpha != a) {
pr_err("%s: clock needs to be gated\n",
clk_hw_get_name(hw));
return -EBUSY;
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
/* Ensure that the write above goes to detect L val change. */
mb();
return wait_for_pll_enable_lock(pll);
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
if (a == 0)
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN, 0x0);
else
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
return 0;
}
static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
u32 l, a;
return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
}
static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
struct regmap *regmap)
{
u32 mode_regval, opmode_regval;
int ret;
ret = regmap_read(regmap, PLL_MODE(pll), &mode_regval);
ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_regval);
if (ret)
return 0;
return ((opmode_regval & PLL_RUN) && (mode_regval & PLL_OUTCTRL));
}
static int clk_trion_pll_is_enabled(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
return trion_pll_is_enabled(pll, pll->clkr.regmap);
}
static int clk_trion_pll_enable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
/* Set operation mode to RUN */
regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_OUT_MASK, PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
return regmap_update_bits(regmap, PLL_MODE(pll),
PLL_OUTCTRL, PLL_OUTCTRL);
}
static void clk_trion_pll_disable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
static unsigned long
clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, frac, alpha_width = pll_alpha_width(pll);
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
}
const struct clk_ops clk_alpha_pll_fixed_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
const struct clk_ops clk_alpha_pll_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
const struct clk_ops clk_alpha_pll_huayra_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = alpha_pll_huayra_recalc_rate,
.round_rate = alpha_pll_huayra_round_rate,
.set_rate = alpha_pll_huayra_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
const struct clk_ops clk_alpha_pll_hwfsm_ops = {
.enable = clk_alpha_pll_hwfsm_enable,
.disable = clk_alpha_pll_hwfsm_disable,
.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_hwfsm_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
const struct clk_ops clk_trion_fixed_pll_ops = {
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_trion_fixed_pll_ops);
static unsigned long
clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 ctl;
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= PLL_POST_DIV_MASK(pll);
return parent_rate >> fls(ctl);
}
static const struct clk_div_table clk_alpha_div_table[] = {
{ 0x0, 1 },
{ 0x1, 2 },
{ 0x3, 4 },
{ 0x7, 8 },
{ 0xf, 16 },
{ }
};
static const struct clk_div_table clk_alpha_2bit_div_table[] = {
{ 0x0, 1 },
{ 0x1, 2 },
{ 0x3, 4 },
{ }
};
static long
clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
const struct clk_div_table *table;
if (pll->width == 2)
table = clk_alpha_2bit_div_table;
else
table = clk_alpha_div_table;
return divider_round_rate(hw, rate, prate, table,
pll->width, CLK_DIVIDER_POWER_OF_TWO);
}
static long
clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 ctl, div;
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= BIT(pll->width) - 1;
div = 1 << fls(ctl);
if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
return DIV_ROUND_UP_ULL((u64)*prate, div);
}
static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int div;
/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
div << PLL_POST_DIV_SHIFT);
}
const struct clk_ops clk_alpha_pll_postdiv_ops = {
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_round_rate,
.set_rate = clk_alpha_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
if (config->l)
regmap_write(regmap, PLL_L_VAL(pll), config->l);
if (config->alpha)
regmap_write(regmap, PLL_FRAC(pll), config->alpha);
if (config->config_ctl_val)
regmap_write(regmap, PLL_CONFIG_CTL(pll),
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
if (config->user_ctl_val)
regmap_write(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
if (config->user_ctl_hi_val)
regmap_write(regmap, PLL_USER_CTL_U(pll),
config->user_ctl_hi_val);
if (config->test_ctl_val)
regmap_write(regmap, PLL_TEST_CTL(pll),
config->test_ctl_val);
if (config->test_ctl_hi_val)
regmap_write(regmap, PLL_TEST_CTL_U(pll),
config->test_ctl_hi_val);
if (config->post_div_mask) {
mask = config->post_div_mask;
val = config->post_div_val;
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
}
regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
PLL_UPDATE_BYPASS);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
static int alpha_pll_fabia_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, opmode_val;
struct regmap *regmap = pll->clkr.regmap;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
if (ret)
return ret;
/* Skip If PLL is already running */
if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
return 0;
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return ret;
ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
if (ret)
return ret;
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
PLL_RESET_N);
if (ret)
return ret;
ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
if (ret)
return ret;
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_OUT_MASK, PLL_OUT_MASK);
if (ret)
return ret;
return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
PLL_OUTCTRL);
}
static void alpha_pll_fabia_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
struct regmap *regmap = pll->clkr.regmap;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable main outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL in STANDBY */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
}
static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, frac, alpha_width = pll_alpha_width(pll);
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
}
static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha_width = pll_alpha_width(pll);
u64 a;
unsigned long rrate, max = rate + PLL_RATE_MARGIN;
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
/*
* Due to limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + PLL_RATE_MARGIN) || rrate < rate) {
pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
clk_hw_get_name(hw), rrate, rate, max);
return -EINVAL;
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
return __clk_alpha_pll_update_latch(pll);
}
static int alpha_pll_fabia_prepare(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
struct clk_hw *parent_hw;
unsigned long cal_freq, rrate;
u32 cal_l, val, alpha_width = pll_alpha_width(pll);
const char *name = clk_hw_get_name(hw);
u64 a;
int ret;
/* Check if calibration needs to be done i.e. PLL is in reset */
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* Return early if calibration is not needed. */
if (val & PLL_RESET_N)
return 0;
vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
if (!vco) {
pr_err("%s: alpha pll not in a valid vco range\n", name);
return -EINVAL;
}
cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
pll->vco_table[0].max_freq) * 54, 100);
parent_hw = clk_hw_get_parent(hw);
if (!parent_hw)
return -EINVAL;
rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
&cal_l, &a, alpha_width);
/*
* Due to a limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (cal_freq + PLL_RATE_MARGIN) || rrate < cal_freq)
return -EINVAL;
/* Setup PLL for calibration frequency */
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), cal_l);
/* Bringup the PLL at calibration frequency */
ret = clk_alpha_pll_enable(hw);
if (ret) {
pr_err("%s: alpha pll calibration failed\n", name);
return ret;
}
clk_alpha_pll_disable(hw);
return 0;
}
const struct clk_ops clk_alpha_pll_fabia_ops = {
.prepare = alpha_pll_fabia_prepare,
.enable = alpha_pll_fabia_enable,
.disable = alpha_pll_fabia_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.set_rate = alpha_pll_fabia_set_rate,
.recalc_rate = alpha_pll_fabia_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
.enable = alpha_pll_fabia_enable,
.disable = alpha_pll_fabia_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = alpha_pll_fabia_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 i, div = 1, val;
int ret;
ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
if (ret)
return ret;
val >>= pll->post_div_shift;
val &= BIT(pll->width) - 1;
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static unsigned long
clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 i, div = 1, val;
regmap_read(regmap, PLL_USER_CTL(pll), &val);
val >>= pll->post_div_shift;
val &= PLL_POST_DIV_MASK(pll);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static long
clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
};
static int
clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
struct regmap *regmap = pll->clkr.regmap;
int i, val = 0, div;
div = DIV_ROUND_UP_ULL(parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
val << PLL_POST_DIV_SHIFT);
}
const struct clk_ops clk_trion_pll_postdiv_ops = {
.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
.round_rate = clk_trion_pll_postdiv_round_rate,
.set_rate = clk_trion_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_trion_pll_postdiv_ops);
static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
}
static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int i, val = 0, div, ret;
/*
* If the PLL is in FSM mode, then treat set_rate callback as a
* no-operation.
*/
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
if (val & PLL_VOTE_FSM_ENA)
return 0;
div = DIV_ROUND_UP_ULL(parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
(BIT(pll->width) - 1) << pll->post_div_shift,
val << pll->post_div_shift);
}
const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
/**
* clk_lucid_pll_configure - configure the lucid pll
*
* @pll: clk alpha pll
* @regmap: register map
* @config: configuration to apply for pll
*/
void clk_lucid_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
if (config->l)
regmap_write(regmap, PLL_L_VAL(pll), config->l);
regmap_write(regmap, PLL_CAL_L_VAL(pll), LUCID_PLL_CAL_VAL);
if (config->alpha)
regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
if (config->config_ctl_val)
regmap_write(regmap, PLL_CONFIG_CTL(pll),
config->config_ctl_val);
if (config->config_ctl_hi_val)
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
if (config->config_ctl_hi1_val)
regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
config->config_ctl_hi1_val);
if (config->user_ctl_val)
regmap_write(regmap, PLL_USER_CTL(pll),
config->user_ctl_val);
if (config->user_ctl_hi_val)
regmap_write(regmap, PLL_USER_CTL_U(pll),
config->user_ctl_hi_val);
if (config->user_ctl_hi1_val)
regmap_write(regmap, PLL_USER_CTL_U1(pll),
config->user_ctl_hi1_val);
if (config->test_ctl_val)
regmap_write(regmap, PLL_TEST_CTL(pll),
config->test_ctl_val);
if (config->test_ctl_hi_val)
regmap_write(regmap, PLL_TEST_CTL_U(pll),
config->test_ctl_hi_val);
if (config->test_ctl_hi1_val)
regmap_write(regmap, PLL_TEST_CTL_U1(pll),
config->test_ctl_hi1_val);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
PLL_UPDATE_BYPASS);
/* Disable PLL output */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
/* Set operation mode to OFF */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
/* Place the PLL in STANDBY mode */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
EXPORT_SYMBOL_GPL(clk_lucid_pll_configure);
/*
* The Lucid PLL requires a power-on self-calibration which happens when the
* PLL comes out of reset. Calibrate in case it is not completed.
*/
static int alpha_pll_lucid_prepare(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 regval;
int ret;
/* Return early if calibration is not needed. */
regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &regval);
if (regval & LUCID_PCAL_DONE)
return 0;
/* On/off to calibrate */
ret = clk_trion_pll_enable(hw);
if (!ret)
clk_trion_pll_disable(hw);
return ret;
}
static int alpha_pll_lucid_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 regval, l, alpha_width = pll_alpha_width(pll);
u64 a;
int ret;
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
/*
* Due to a limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
if (rrate > (rate + PLL_RATE_MARGIN) || rrate < rate) {
pr_err("Call set rate on the PLL with rounded rates!\n");
return -EINVAL;
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
/* Latch the PLL input */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_UPDATE, PLL_UPDATE);
if (ret)
return ret;
/* Wait for 2 reference cycles before checking the ACK bit. */
udelay(1);
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &regval);
if (!(regval & ALPHA_PLL_ACK_LATCH)) {
pr_err("Lucid PLL latch failed. Output may be unstable!\n");
return -EINVAL;
}
/* Return the latch input to 0 */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_UPDATE, 0);
if (ret)
return ret;
if (clk_hw_is_enabled(hw)) {
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
}
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
const struct clk_ops clk_alpha_pll_lucid_ops = {
.prepare = alpha_pll_lucid_prepare,
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_lucid_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
const struct clk_ops clk_alpha_pll_fixed_lucid_ops = {
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_ops);
const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);