forked from Minki/linux
a497bfe9db
Two regressions fixes from snowboarding land * 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel: drm/i915: Revert hdmi HDP pin checks drm/i915: Handle untiled planes when computing their offsets
9368 lines
251 KiB
C
9368 lines
251 KiB
C
/*
|
|
* Copyright © 2006-2007 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*/
|
|
|
|
#include <linux/dmi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/input.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vgaarb.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/drmP.h>
|
|
#include "intel_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include <drm/drm_dp_helper.h>
|
|
#include <drm/drm_crtc_helper.h>
|
|
#include <linux/dma_remapping.h>
|
|
|
|
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
|
|
static void intel_increase_pllclock(struct drm_crtc *crtc);
|
|
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
|
|
|
|
typedef struct {
|
|
/* given values */
|
|
int n;
|
|
int m1, m2;
|
|
int p1, p2;
|
|
/* derived values */
|
|
int dot;
|
|
int vco;
|
|
int m;
|
|
int p;
|
|
} intel_clock_t;
|
|
|
|
typedef struct {
|
|
int min, max;
|
|
} intel_range_t;
|
|
|
|
typedef struct {
|
|
int dot_limit;
|
|
int p2_slow, p2_fast;
|
|
} intel_p2_t;
|
|
|
|
#define INTEL_P2_NUM 2
|
|
typedef struct intel_limit intel_limit_t;
|
|
struct intel_limit {
|
|
intel_range_t dot, vco, n, m, m1, m2, p, p1;
|
|
intel_p2_t p2;
|
|
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
|
|
int, int, intel_clock_t *, intel_clock_t *);
|
|
};
|
|
|
|
/* FDI */
|
|
#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
|
|
|
|
int
|
|
intel_pch_rawclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
WARN_ON(!HAS_PCH_SPLIT(dev));
|
|
|
|
return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
|
|
}
|
|
|
|
static bool
|
|
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock);
|
|
static bool
|
|
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock);
|
|
|
|
static bool
|
|
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock);
|
|
static bool
|
|
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock);
|
|
|
|
static bool
|
|
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock);
|
|
|
|
static inline u32 /* units of 100MHz */
|
|
intel_fdi_link_freq(struct drm_device *dev)
|
|
{
|
|
if (IS_GEN5(dev)) {
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
|
|
} else
|
|
return 27;
|
|
}
|
|
|
|
static const intel_limit_t intel_limits_i8xx_dvo = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 930000, .max = 1400000 },
|
|
.n = { .min = 3, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 2, .max = 33 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 4, .p2_fast = 2 },
|
|
.find_pll = intel_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i8xx_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 930000, .max = 1400000 },
|
|
.n = { .min = 3, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 1, .max = 6 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 14, .p2_fast = 7 },
|
|
.find_pll = intel_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i9xx_sdvo = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1400000, .max = 2800000 },
|
|
.n = { .min = 1, .max = 6 },
|
|
.m = { .min = 70, .max = 120 },
|
|
.m1 = { .min = 8, .max = 18 },
|
|
.m2 = { .min = 3, .max = 7 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 200000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
.find_pll = intel_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i9xx_lvds = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1400000, .max = 2800000 },
|
|
.n = { .min = 1, .max = 6 },
|
|
.m = { .min = 70, .max = 120 },
|
|
.m1 = { .min = 8, .max = 18 },
|
|
.m2 = { .min = 3, .max = 7 },
|
|
.p = { .min = 7, .max = 98 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 112000,
|
|
.p2_slow = 14, .p2_fast = 7 },
|
|
.find_pll = intel_find_best_PLL,
|
|
};
|
|
|
|
|
|
static const intel_limit_t intel_limits_g4x_sdvo = {
|
|
.dot = { .min = 25000, .max = 270000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 4 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 10, .max = 30 },
|
|
.p1 = { .min = 1, .max = 3},
|
|
.p2 = { .dot_limit = 270000,
|
|
.p2_slow = 10,
|
|
.p2_fast = 10
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_hdmi = {
|
|
.dot = { .min = 22000, .max = 400000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 4 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 16, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8},
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
|
|
.dot = { .min = 20000, .max = 115000 },
|
|
.vco = { .min = 1750000, .max = 3500000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 14, .p2_fast = 14
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
|
|
.dot = { .min = 80000, .max = 224000 },
|
|
.vco = { .min = 1750000, .max = 3500000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 14, .max = 42 },
|
|
.p1 = { .min = 2, .max = 6 },
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 7, .p2_fast = 7
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_display_port = {
|
|
.dot = { .min = 161670, .max = 227000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 2 },
|
|
.m = { .min = 97, .max = 108 },
|
|
.m1 = { .min = 0x10, .max = 0x12 },
|
|
.m2 = { .min = 0x05, .max = 0x06 },
|
|
.p = { .min = 10, .max = 20 },
|
|
.p1 = { .min = 1, .max = 2},
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 10, .p2_fast = 10 },
|
|
.find_pll = intel_find_pll_g4x_dp,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_pineview_sdvo = {
|
|
.dot = { .min = 20000, .max = 400000},
|
|
.vco = { .min = 1700000, .max = 3500000 },
|
|
/* Pineview's Ncounter is a ring counter */
|
|
.n = { .min = 3, .max = 6 },
|
|
.m = { .min = 2, .max = 256 },
|
|
/* Pineview only has one combined m divider, which we treat as m2. */
|
|
.m1 = { .min = 0, .max = 0 },
|
|
.m2 = { .min = 0, .max = 254 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 200000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
.find_pll = intel_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_pineview_lvds = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1700000, .max = 3500000 },
|
|
.n = { .min = 3, .max = 6 },
|
|
.m = { .min = 2, .max = 256 },
|
|
.m1 = { .min = 0, .max = 0 },
|
|
.m2 = { .min = 0, .max = 254 },
|
|
.p = { .min = 7, .max = 112 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 112000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
.find_pll = intel_find_best_PLL,
|
|
};
|
|
|
|
/* Ironlake / Sandybridge
|
|
*
|
|
* We calculate clock using (register_value + 2) for N/M1/M2, so here
|
|
* the range value for them is (actual_value - 2).
|
|
*/
|
|
static const intel_limit_t intel_limits_ironlake_dac = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 5 },
|
|
.m = { .min = 79, .max = 127 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_single_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 118 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 127 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 14, .max = 56 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 7, .p2_fast = 7 },
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
/* LVDS 100mhz refclk limits. */
|
|
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 2 },
|
|
.m = { .min = 79, .max = 126 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 126 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 14, .max = 42 },
|
|
.p1 = { .min = 2, .max = 6 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 7, .p2_fast = 7 },
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_display_port = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000},
|
|
.n = { .min = 1, .max = 2 },
|
|
.m = { .min = 81, .max = 90 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 10, .max = 20 },
|
|
.p1 = { .min = 1, .max = 2},
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 10, .p2_fast = 10 },
|
|
.find_pll = intel_find_pll_ironlake_dp,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_vlv_dac = {
|
|
.dot = { .min = 25000, .max = 270000 },
|
|
.vco = { .min = 4000000, .max = 6000000 },
|
|
.n = { .min = 1, .max = 7 },
|
|
.m = { .min = 22, .max = 450 }, /* guess */
|
|
.m1 = { .min = 2, .max = 3 },
|
|
.m2 = { .min = 11, .max = 156 },
|
|
.p = { .min = 10, .max = 30 },
|
|
.p1 = { .min = 2, .max = 3 },
|
|
.p2 = { .dot_limit = 270000,
|
|
.p2_slow = 2, .p2_fast = 20 },
|
|
.find_pll = intel_vlv_find_best_pll,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_vlv_hdmi = {
|
|
.dot = { .min = 20000, .max = 165000 },
|
|
.vco = { .min = 4000000, .max = 5994000},
|
|
.n = { .min = 1, .max = 7 },
|
|
.m = { .min = 60, .max = 300 }, /* guess */
|
|
.m1 = { .min = 2, .max = 3 },
|
|
.m2 = { .min = 11, .max = 156 },
|
|
.p = { .min = 10, .max = 30 },
|
|
.p1 = { .min = 2, .max = 3 },
|
|
.p2 = { .dot_limit = 270000,
|
|
.p2_slow = 2, .p2_fast = 20 },
|
|
.find_pll = intel_vlv_find_best_pll,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_vlv_dp = {
|
|
.dot = { .min = 25000, .max = 270000 },
|
|
.vco = { .min = 4000000, .max = 6000000 },
|
|
.n = { .min = 1, .max = 7 },
|
|
.m = { .min = 22, .max = 450 },
|
|
.m1 = { .min = 2, .max = 3 },
|
|
.m2 = { .min = 11, .max = 156 },
|
|
.p = { .min = 10, .max = 30 },
|
|
.p1 = { .min = 2, .max = 3 },
|
|
.p2 = { .dot_limit = 270000,
|
|
.p2_slow = 2, .p2_fast = 20 },
|
|
.find_pll = intel_vlv_find_best_pll,
|
|
};
|
|
|
|
u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
|
|
|
|
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
|
|
DRM_ERROR("DPIO idle wait timed out\n");
|
|
return 0;
|
|
}
|
|
|
|
I915_WRITE(DPIO_REG, reg);
|
|
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
|
|
DPIO_BYTE);
|
|
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
|
|
DRM_ERROR("DPIO read wait timed out\n");
|
|
return 0;
|
|
}
|
|
|
|
return I915_READ(DPIO_DATA);
|
|
}
|
|
|
|
static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
|
|
u32 val)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
|
|
|
|
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
|
|
DRM_ERROR("DPIO idle wait timed out\n");
|
|
return;
|
|
}
|
|
|
|
I915_WRITE(DPIO_DATA, val);
|
|
I915_WRITE(DPIO_REG, reg);
|
|
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
|
|
DPIO_BYTE);
|
|
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
|
|
DRM_ERROR("DPIO write wait timed out\n");
|
|
}
|
|
|
|
static void vlv_init_dpio(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* Reset the DPIO config */
|
|
I915_WRITE(DPIO_CTL, 0);
|
|
POSTING_READ(DPIO_CTL);
|
|
I915_WRITE(DPIO_CTL, 1);
|
|
POSTING_READ(DPIO_CTL);
|
|
}
|
|
|
|
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
|
|
int refclk)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_is_dual_link_lvds(dev)) {
|
|
/* LVDS dual channel */
|
|
if (refclk == 100000)
|
|
limit = &intel_limits_ironlake_dual_lvds_100m;
|
|
else
|
|
limit = &intel_limits_ironlake_dual_lvds;
|
|
} else {
|
|
if (refclk == 100000)
|
|
limit = &intel_limits_ironlake_single_lvds_100m;
|
|
else
|
|
limit = &intel_limits_ironlake_single_lvds;
|
|
}
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
|
|
limit = &intel_limits_ironlake_display_port;
|
|
else
|
|
limit = &intel_limits_ironlake_dac;
|
|
|
|
return limit;
|
|
}
|
|
|
|
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_is_dual_link_lvds(dev))
|
|
/* LVDS with dual channel */
|
|
limit = &intel_limits_g4x_dual_channel_lvds;
|
|
else
|
|
/* LVDS with dual channel */
|
|
limit = &intel_limits_g4x_single_channel_lvds;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
|
|
limit = &intel_limits_g4x_hdmi;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
|
|
limit = &intel_limits_g4x_sdvo;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
|
|
limit = &intel_limits_g4x_display_port;
|
|
} else /* The option is for other outputs */
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
|
|
return limit;
|
|
}
|
|
|
|
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
limit = intel_ironlake_limit(crtc, refclk);
|
|
else if (IS_G4X(dev)) {
|
|
limit = intel_g4x_limit(crtc);
|
|
} else if (IS_PINEVIEW(dev)) {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_pineview_lvds;
|
|
else
|
|
limit = &intel_limits_pineview_sdvo;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
|
|
limit = &intel_limits_vlv_dac;
|
|
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
|
|
limit = &intel_limits_vlv_hdmi;
|
|
else
|
|
limit = &intel_limits_vlv_dp;
|
|
} else if (!IS_GEN2(dev)) {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_i9xx_lvds;
|
|
else
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
} else {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_i8xx_lvds;
|
|
else
|
|
limit = &intel_limits_i8xx_dvo;
|
|
}
|
|
return limit;
|
|
}
|
|
|
|
/* m1 is reserved as 0 in Pineview, n is a ring counter */
|
|
static void pineview_clock(int refclk, intel_clock_t *clock)
|
|
{
|
|
clock->m = clock->m2 + 2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
clock->vco = refclk * clock->m / clock->n;
|
|
clock->dot = clock->vco / clock->p;
|
|
}
|
|
|
|
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
|
|
{
|
|
if (IS_PINEVIEW(dev)) {
|
|
pineview_clock(refclk, clock);
|
|
return;
|
|
}
|
|
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
|
|
clock->p = clock->p1 * clock->p2;
|
|
clock->vco = refclk * clock->m / (clock->n + 2);
|
|
clock->dot = clock->vco / clock->p;
|
|
}
|
|
|
|
/**
|
|
* Returns whether any output on the specified pipe is of the specified type
|
|
*/
|
|
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->type == type)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
|
|
/**
|
|
* Returns whether the given set of divisors are valid for a given refclk with
|
|
* the given connectors.
|
|
*/
|
|
|
|
static bool intel_PLL_is_valid(struct drm_device *dev,
|
|
const intel_limit_t *limit,
|
|
const intel_clock_t *clock)
|
|
{
|
|
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
|
|
INTELPllInvalid("p1 out of range\n");
|
|
if (clock->p < limit->p.min || limit->p.max < clock->p)
|
|
INTELPllInvalid("p out of range\n");
|
|
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
|
|
INTELPllInvalid("m2 out of range\n");
|
|
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
|
|
INTELPllInvalid("m1 out of range\n");
|
|
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
|
|
INTELPllInvalid("m1 <= m2\n");
|
|
if (clock->m < limit->m.min || limit->m.max < clock->m)
|
|
INTELPllInvalid("m out of range\n");
|
|
if (clock->n < limit->n.min || limit->n.max < clock->n)
|
|
INTELPllInvalid("n out of range\n");
|
|
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
|
|
INTELPllInvalid("vco out of range\n");
|
|
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
|
|
* connector, etc., rather than just a single range.
|
|
*/
|
|
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
|
|
INTELPllInvalid("dot out of range\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
intel_clock_t clock;
|
|
int err = target;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
/*
|
|
* For LVDS just rely on its current settings for dual-channel.
|
|
* We haven't figured out how to reliably set up different
|
|
* single/dual channel state, if we even can.
|
|
*/
|
|
if (intel_is_dual_link_lvds(dev))
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
|
|
clock.m1++) {
|
|
for (clock.m2 = limit->m2.min;
|
|
clock.m2 <= limit->m2.max; clock.m2++) {
|
|
/* m1 is always 0 in Pineview */
|
|
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
|
|
break;
|
|
for (clock.n = limit->n.min;
|
|
clock.n <= limit->n.max; clock.n++) {
|
|
for (clock.p1 = limit->p1.min;
|
|
clock.p1 <= limit->p1.max; clock.p1++) {
|
|
int this_err;
|
|
|
|
intel_clock(dev, refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
if (match_clock &&
|
|
clock.p != match_clock->p)
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (err != target);
|
|
}
|
|
|
|
static bool
|
|
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
intel_clock_t clock;
|
|
int max_n;
|
|
bool found;
|
|
/* approximately equals target * 0.00585 */
|
|
int err_most = (target >> 8) + (target >> 9);
|
|
found = false;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
int lvds_reg;
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
lvds_reg = PCH_LVDS;
|
|
else
|
|
lvds_reg = LVDS;
|
|
if (intel_is_dual_link_lvds(dev))
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
max_n = limit->n.max;
|
|
/* based on hardware requirement, prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
|
|
/* based on hardware requirement, prefere larger m1,m2 */
|
|
for (clock.m1 = limit->m1.max;
|
|
clock.m1 >= limit->m1.min; clock.m1--) {
|
|
for (clock.m2 = limit->m2.max;
|
|
clock.m2 >= limit->m2.min; clock.m2--) {
|
|
for (clock.p1 = limit->p1.max;
|
|
clock.p1 >= limit->p1.min; clock.p1--) {
|
|
int this_err;
|
|
|
|
intel_clock(dev, refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
if (match_clock &&
|
|
clock.p != match_clock->p)
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err_most) {
|
|
*best_clock = clock;
|
|
err_most = this_err;
|
|
max_n = clock.n;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static bool
|
|
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
intel_clock_t clock;
|
|
|
|
if (target < 200000) {
|
|
clock.n = 1;
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.m1 = 12;
|
|
clock.m2 = 9;
|
|
} else {
|
|
clock.n = 2;
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.m1 = 14;
|
|
clock.m2 = 8;
|
|
}
|
|
intel_clock(dev, refclk, &clock);
|
|
memcpy(best_clock, &clock, sizeof(intel_clock_t));
|
|
return true;
|
|
}
|
|
|
|
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
|
|
static bool
|
|
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
intel_clock_t clock;
|
|
if (target < 200000) {
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.n = 2;
|
|
clock.m1 = 23;
|
|
clock.m2 = 8;
|
|
} else {
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.n = 1;
|
|
clock.m1 = 14;
|
|
clock.m2 = 2;
|
|
}
|
|
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
|
|
clock.p = (clock.p1 * clock.p2);
|
|
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
|
|
clock.vco = 0;
|
|
memcpy(best_clock, &clock, sizeof(intel_clock_t));
|
|
return true;
|
|
}
|
|
static bool
|
|
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
|
|
u32 m, n, fastclk;
|
|
u32 updrate, minupdate, fracbits, p;
|
|
unsigned long bestppm, ppm, absppm;
|
|
int dotclk, flag;
|
|
|
|
flag = 0;
|
|
dotclk = target * 1000;
|
|
bestppm = 1000000;
|
|
ppm = absppm = 0;
|
|
fastclk = dotclk / (2*100);
|
|
updrate = 0;
|
|
minupdate = 19200;
|
|
fracbits = 1;
|
|
n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
|
|
bestm1 = bestm2 = bestp1 = bestp2 = 0;
|
|
|
|
/* based on hardware requirement, prefer smaller n to precision */
|
|
for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
|
|
updrate = refclk / n;
|
|
for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
|
|
for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
|
|
if (p2 > 10)
|
|
p2 = p2 - 1;
|
|
p = p1 * p2;
|
|
/* based on hardware requirement, prefer bigger m1,m2 values */
|
|
for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
|
|
m2 = (((2*(fastclk * p * n / m1 )) +
|
|
refclk) / (2*refclk));
|
|
m = m1 * m2;
|
|
vco = updrate * m;
|
|
if (vco >= limit->vco.min && vco < limit->vco.max) {
|
|
ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
|
|
absppm = (ppm > 0) ? ppm : (-ppm);
|
|
if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
|
|
bestppm = 0;
|
|
flag = 1;
|
|
}
|
|
if (absppm < bestppm - 10) {
|
|
bestppm = absppm;
|
|
flag = 1;
|
|
}
|
|
if (flag) {
|
|
bestn = n;
|
|
bestm1 = m1;
|
|
bestm2 = m2;
|
|
bestp1 = p1;
|
|
bestp2 = p2;
|
|
flag = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
best_clock->n = bestn;
|
|
best_clock->m1 = bestm1;
|
|
best_clock->m2 = bestm2;
|
|
best_clock->p1 = bestp1;
|
|
best_clock->p2 = bestp2;
|
|
|
|
return true;
|
|
}
|
|
|
|
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
return intel_crtc->cpu_transcoder;
|
|
}
|
|
|
|
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 frame, frame_reg = PIPEFRAME(pipe);
|
|
|
|
frame = I915_READ(frame_reg);
|
|
|
|
if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
|
|
DRM_DEBUG_KMS("vblank wait timed out\n");
|
|
}
|
|
|
|
/**
|
|
* intel_wait_for_vblank - wait for vblank on a given pipe
|
|
* @dev: drm device
|
|
* @pipe: pipe to wait for
|
|
*
|
|
* Wait for vblank to occur on a given pipe. Needed for various bits of
|
|
* mode setting code.
|
|
*/
|
|
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipestat_reg = PIPESTAT(pipe);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
ironlake_wait_for_vblank(dev, pipe);
|
|
return;
|
|
}
|
|
|
|
/* Clear existing vblank status. Note this will clear any other
|
|
* sticky status fields as well.
|
|
*
|
|
* This races with i915_driver_irq_handler() with the result
|
|
* that either function could miss a vblank event. Here it is not
|
|
* fatal, as we will either wait upon the next vblank interrupt or
|
|
* timeout. Generally speaking intel_wait_for_vblank() is only
|
|
* called during modeset at which time the GPU should be idle and
|
|
* should *not* be performing page flips and thus not waiting on
|
|
* vblanks...
|
|
* Currently, the result of us stealing a vblank from the irq
|
|
* handler is that a single frame will be skipped during swapbuffers.
|
|
*/
|
|
I915_WRITE(pipestat_reg,
|
|
I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
|
|
|
|
/* Wait for vblank interrupt bit to set */
|
|
if (wait_for(I915_READ(pipestat_reg) &
|
|
PIPE_VBLANK_INTERRUPT_STATUS,
|
|
50))
|
|
DRM_DEBUG_KMS("vblank wait timed out\n");
|
|
}
|
|
|
|
/*
|
|
* intel_wait_for_pipe_off - wait for pipe to turn off
|
|
* @dev: drm device
|
|
* @pipe: pipe to wait for
|
|
*
|
|
* After disabling a pipe, we can't wait for vblank in the usual way,
|
|
* spinning on the vblank interrupt status bit, since we won't actually
|
|
* see an interrupt when the pipe is disabled.
|
|
*
|
|
* On Gen4 and above:
|
|
* wait for the pipe register state bit to turn off
|
|
*
|
|
* Otherwise:
|
|
* wait for the display line value to settle (it usually
|
|
* ends up stopping at the start of the next frame).
|
|
*
|
|
*/
|
|
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
int reg = PIPECONF(cpu_transcoder);
|
|
|
|
/* Wait for the Pipe State to go off */
|
|
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
|
|
100))
|
|
WARN(1, "pipe_off wait timed out\n");
|
|
} else {
|
|
u32 last_line, line_mask;
|
|
int reg = PIPEDSL(pipe);
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(100);
|
|
|
|
if (IS_GEN2(dev))
|
|
line_mask = DSL_LINEMASK_GEN2;
|
|
else
|
|
line_mask = DSL_LINEMASK_GEN3;
|
|
|
|
/* Wait for the display line to settle */
|
|
do {
|
|
last_line = I915_READ(reg) & line_mask;
|
|
mdelay(5);
|
|
} while (((I915_READ(reg) & line_mask) != last_line) &&
|
|
time_after(timeout, jiffies));
|
|
if (time_after(jiffies, timeout))
|
|
WARN(1, "pipe_off wait timed out\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ibx_digital_port_connected - is the specified port connected?
|
|
* @dev_priv: i915 private structure
|
|
* @port: the port to test
|
|
*
|
|
* Returns true if @port is connected, false otherwise.
|
|
*/
|
|
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
u32 bit;
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
switch(port->port) {
|
|
case PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG;
|
|
break;
|
|
case PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG;
|
|
break;
|
|
case PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
} else {
|
|
switch(port->port) {
|
|
case PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG_CPT;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static const char *state_string(bool enabled)
|
|
{
|
|
return enabled ? "on" : "off";
|
|
}
|
|
|
|
/* Only for pre-ILK configs */
|
|
static void assert_pll(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = DPLL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & DPLL_VCO_ENABLE);
|
|
WARN(cur_state != state,
|
|
"PLL state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
|
|
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
|
|
|
|
/* For ILK+ */
|
|
static void assert_pch_pll(struct drm_i915_private *dev_priv,
|
|
struct intel_pch_pll *pll,
|
|
struct intel_crtc *crtc,
|
|
bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
if (HAS_PCH_LPT(dev_priv->dev)) {
|
|
DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
|
|
return;
|
|
}
|
|
|
|
if (WARN (!pll,
|
|
"asserting PCH PLL %s with no PLL\n", state_string(state)))
|
|
return;
|
|
|
|
val = I915_READ(pll->pll_reg);
|
|
cur_state = !!(val & DPLL_VCO_ENABLE);
|
|
WARN(cur_state != state,
|
|
"PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
|
|
pll->pll_reg, state_string(state), state_string(cur_state), val);
|
|
|
|
/* Make sure the selected PLL is correctly attached to the transcoder */
|
|
if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
|
|
u32 pch_dpll;
|
|
|
|
pch_dpll = I915_READ(PCH_DPLL_SEL);
|
|
cur_state = pll->pll_reg == _PCH_DPLL_B;
|
|
if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
|
|
"PLL[%d] not attached to this transcoder %d: %08x\n",
|
|
cur_state, crtc->pipe, pch_dpll)) {
|
|
cur_state = !!(val >> (4*crtc->pipe + 3));
|
|
WARN(cur_state != state,
|
|
"PLL[%d] not %s on this transcoder %d: %08x\n",
|
|
pll->pll_reg == _PCH_DPLL_B,
|
|
state_string(state),
|
|
crtc->pipe,
|
|
val);
|
|
}
|
|
}
|
|
}
|
|
#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
|
|
#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
|
|
|
|
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
|
|
if (HAS_DDI(dev_priv->dev)) {
|
|
/* DDI does not have a specific FDI_TX register */
|
|
reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
|
|
} else {
|
|
reg = FDI_TX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & FDI_TX_ENABLE);
|
|
}
|
|
WARN(cur_state != state,
|
|
"FDI TX state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
|
|
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
|
|
|
|
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & FDI_RX_ENABLE);
|
|
WARN(cur_state != state,
|
|
"FDI RX state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
|
|
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
|
|
|
|
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* ILK FDI PLL is always enabled */
|
|
if (dev_priv->info->gen == 5)
|
|
return;
|
|
|
|
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
|
|
if (HAS_DDI(dev_priv->dev))
|
|
return;
|
|
|
|
reg = FDI_TX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int pp_reg, lvds_reg;
|
|
u32 val;
|
|
enum pipe panel_pipe = PIPE_A;
|
|
bool locked = true;
|
|
|
|
if (HAS_PCH_SPLIT(dev_priv->dev)) {
|
|
pp_reg = PCH_PP_CONTROL;
|
|
lvds_reg = PCH_LVDS;
|
|
} else {
|
|
pp_reg = PP_CONTROL;
|
|
lvds_reg = LVDS;
|
|
}
|
|
|
|
val = I915_READ(pp_reg);
|
|
if (!(val & PANEL_POWER_ON) ||
|
|
((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
|
|
locked = false;
|
|
|
|
if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
|
|
panel_pipe = PIPE_B;
|
|
|
|
WARN(panel_pipe == pipe && locked,
|
|
"panel assertion failure, pipe %c regs locked\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
void assert_pipe(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
|
|
/* if we need the pipe A quirk it must be always on */
|
|
if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
|
|
state = true;
|
|
|
|
if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
|
|
!(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
|
|
cur_state = false;
|
|
} else {
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & PIPECONF_ENABLE);
|
|
}
|
|
|
|
WARN(cur_state != state,
|
|
"pipe %c assertion failure (expected %s, current %s)\n",
|
|
pipe_name(pipe), state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
static void assert_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = DSPCNTR(plane);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
|
|
WARN(cur_state != state,
|
|
"plane %c assertion failure (expected %s, current %s)\n",
|
|
plane_name(plane), state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
|
|
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
|
|
|
|
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg, i;
|
|
u32 val;
|
|
int cur_pipe;
|
|
|
|
/* Planes are fixed to pipes on ILK+ */
|
|
if (HAS_PCH_SPLIT(dev_priv->dev)) {
|
|
reg = DSPCNTR(pipe);
|
|
val = I915_READ(reg);
|
|
WARN((val & DISPLAY_PLANE_ENABLE),
|
|
"plane %c assertion failure, should be disabled but not\n",
|
|
plane_name(pipe));
|
|
return;
|
|
}
|
|
|
|
/* Need to check both planes against the pipe */
|
|
for (i = 0; i < 2; i++) {
|
|
reg = DSPCNTR(i);
|
|
val = I915_READ(reg);
|
|
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
|
|
DISPPLANE_SEL_PIPE_SHIFT;
|
|
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
|
|
"plane %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(i), pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
bool enabled;
|
|
|
|
if (HAS_PCH_LPT(dev_priv->dev)) {
|
|
DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
|
|
return;
|
|
}
|
|
|
|
val = I915_READ(PCH_DREF_CONTROL);
|
|
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
|
|
DREF_SUPERSPREAD_SOURCE_MASK));
|
|
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool enabled;
|
|
|
|
reg = TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
enabled = !!(val & TRANS_ENABLE);
|
|
WARN(enabled,
|
|
"transcoder assertion failed, should be off on pipe %c but is still active\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 port_sel, u32 val)
|
|
{
|
|
if ((val & DP_PORT_EN) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
|
|
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
|
|
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
|
|
return false;
|
|
} else {
|
|
if ((val & DP_PIPE_MASK) != (pipe << 30))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & PORT_ENABLE) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & LVDS_PORT_EN) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & ADPA_DAC_ENABLE) == 0)
|
|
return false;
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, int reg, u32 port_sel)
|
|
{
|
|
u32 val = I915_READ(reg);
|
|
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
|
|
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
|
|
reg, pipe_name(pipe));
|
|
|
|
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
|
|
&& (val & DP_PIPEB_SELECT),
|
|
"IBX PCH dp port still using transcoder B\n");
|
|
}
|
|
|
|
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, int reg)
|
|
{
|
|
u32 val = I915_READ(reg);
|
|
WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
|
|
reg, pipe_name(pipe));
|
|
|
|
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
|
|
&& (val & SDVO_PIPE_B_SELECT),
|
|
"IBX PCH hdmi port still using transcoder B\n");
|
|
}
|
|
|
|
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
|
|
|
|
reg = PCH_ADPA;
|
|
val = I915_READ(reg);
|
|
WARN(adpa_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH VGA enabled on transcoder %c, should be disabled\n",
|
|
pipe_name(pipe));
|
|
|
|
reg = PCH_LVDS;
|
|
val = I915_READ(reg);
|
|
WARN(lvds_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH LVDS enabled on transcoder %c, should be disabled\n",
|
|
pipe_name(pipe));
|
|
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
|
|
}
|
|
|
|
/**
|
|
* intel_enable_pll - enable a PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to enable
|
|
*
|
|
* Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
|
|
* make sure the PLL reg is writable first though, since the panel write
|
|
* protect mechanism may be enabled.
|
|
*
|
|
* Note! This is for pre-ILK only.
|
|
*
|
|
* Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
|
|
*/
|
|
static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* No really, not for ILK+ */
|
|
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
|
|
|
|
/* PLL is protected by panel, make sure we can write it */
|
|
if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
|
|
reg = DPLL(pipe);
|
|
val = I915_READ(reg);
|
|
val |= DPLL_VCO_ENABLE;
|
|
|
|
/* We do this three times for luck */
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
}
|
|
|
|
/**
|
|
* intel_disable_pll - disable a PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to disable
|
|
*
|
|
* Disable the PLL for @pipe, making sure the pipe is off first.
|
|
*
|
|
* Note! This is for pre-ILK only.
|
|
*/
|
|
static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* Don't disable pipe A or pipe A PLLs if needed */
|
|
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
|
|
return;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
reg = DPLL(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~DPLL_VCO_ENABLE;
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
/* SBI access */
|
|
static void
|
|
intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
|
|
enum intel_sbi_destination destination)
|
|
{
|
|
u32 tmp;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
|
|
|
|
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
|
|
100)) {
|
|
DRM_ERROR("timeout waiting for SBI to become ready\n");
|
|
return;
|
|
}
|
|
|
|
I915_WRITE(SBI_ADDR, (reg << 16));
|
|
I915_WRITE(SBI_DATA, value);
|
|
|
|
if (destination == SBI_ICLK)
|
|
tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
|
|
else
|
|
tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
|
|
I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
|
|
|
|
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
|
|
100)) {
|
|
DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static u32
|
|
intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
|
|
enum intel_sbi_destination destination)
|
|
{
|
|
u32 value = 0;
|
|
WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
|
|
|
|
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
|
|
100)) {
|
|
DRM_ERROR("timeout waiting for SBI to become ready\n");
|
|
return 0;
|
|
}
|
|
|
|
I915_WRITE(SBI_ADDR, (reg << 16));
|
|
|
|
if (destination == SBI_ICLK)
|
|
value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
|
|
else
|
|
value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
|
|
I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
|
|
|
|
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
|
|
100)) {
|
|
DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
|
|
return 0;
|
|
}
|
|
|
|
return I915_READ(SBI_DATA);
|
|
}
|
|
|
|
/**
|
|
* ironlake_enable_pch_pll - enable PCH PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to enable
|
|
*
|
|
* The PCH PLL needs to be enabled before the PCH transcoder, since it
|
|
* drives the transcoder clock.
|
|
*/
|
|
static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
|
|
struct intel_pch_pll *pll;
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* PCH PLLs only available on ILK, SNB and IVB */
|
|
BUG_ON(dev_priv->info->gen < 5);
|
|
pll = intel_crtc->pch_pll;
|
|
if (pll == NULL)
|
|
return;
|
|
|
|
if (WARN_ON(pll->refcount == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
|
|
pll->pll_reg, pll->active, pll->on,
|
|
intel_crtc->base.base.id);
|
|
|
|
/* PCH refclock must be enabled first */
|
|
assert_pch_refclk_enabled(dev_priv);
|
|
|
|
if (pll->active++ && pll->on) {
|
|
assert_pch_pll_enabled(dev_priv, pll, NULL);
|
|
return;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
|
|
|
|
reg = pll->pll_reg;
|
|
val = I915_READ(reg);
|
|
val |= DPLL_VCO_ENABLE;
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
pll->on = true;
|
|
}
|
|
|
|
static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
|
|
struct intel_pch_pll *pll = intel_crtc->pch_pll;
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* PCH only available on ILK+ */
|
|
BUG_ON(dev_priv->info->gen < 5);
|
|
if (pll == NULL)
|
|
return;
|
|
|
|
if (WARN_ON(pll->refcount == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
|
|
pll->pll_reg, pll->active, pll->on,
|
|
intel_crtc->base.base.id);
|
|
|
|
if (WARN_ON(pll->active == 0)) {
|
|
assert_pch_pll_disabled(dev_priv, pll, NULL);
|
|
return;
|
|
}
|
|
|
|
if (--pll->active) {
|
|
assert_pch_pll_enabled(dev_priv, pll, NULL);
|
|
return;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
|
|
|
|
/* Make sure transcoder isn't still depending on us */
|
|
assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
|
|
|
|
reg = pll->pll_reg;
|
|
val = I915_READ(reg);
|
|
val &= ~DPLL_VCO_ENABLE;
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
pll->on = false;
|
|
}
|
|
|
|
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
uint32_t reg, val, pipeconf_val;
|
|
|
|
/* PCH only available on ILK+ */
|
|
BUG_ON(dev_priv->info->gen < 5);
|
|
|
|
/* Make sure PCH DPLL is enabled */
|
|
assert_pch_pll_enabled(dev_priv,
|
|
to_intel_crtc(crtc)->pch_pll,
|
|
to_intel_crtc(crtc));
|
|
|
|
/* FDI must be feeding us bits for PCH ports */
|
|
assert_fdi_tx_enabled(dev_priv, pipe);
|
|
assert_fdi_rx_enabled(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
/* Workaround: Set the timing override bit before enabling the
|
|
* pch transcoder. */
|
|
reg = TRANS_CHICKEN2(pipe);
|
|
val = I915_READ(reg);
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
reg = TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
pipeconf_val = I915_READ(PIPECONF(pipe));
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
/*
|
|
* make the BPC in transcoder be consistent with
|
|
* that in pipeconf reg.
|
|
*/
|
|
val &= ~PIPECONF_BPC_MASK;
|
|
val |= pipeconf_val & PIPECONF_BPC_MASK;
|
|
}
|
|
|
|
val &= ~TRANS_INTERLACE_MASK;
|
|
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
|
|
if (HAS_PCH_IBX(dev_priv->dev) &&
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
|
|
val |= TRANS_LEGACY_INTERLACED_ILK;
|
|
else
|
|
val |= TRANS_INTERLACED;
|
|
else
|
|
val |= TRANS_PROGRESSIVE;
|
|
|
|
I915_WRITE(reg, val | TRANS_ENABLE);
|
|
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
|
|
DRM_ERROR("failed to enable transcoder %d\n", pipe);
|
|
}
|
|
|
|
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder)
|
|
{
|
|
u32 val, pipeconf_val;
|
|
|
|
/* PCH only available on ILK+ */
|
|
BUG_ON(dev_priv->info->gen < 5);
|
|
|
|
/* FDI must be feeding us bits for PCH ports */
|
|
assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
|
|
assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
|
|
|
|
/* Workaround: set timing override bit. */
|
|
val = I915_READ(_TRANSA_CHICKEN2);
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(_TRANSA_CHICKEN2, val);
|
|
|
|
val = TRANS_ENABLE;
|
|
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
|
|
|
|
if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
|
|
PIPECONF_INTERLACED_ILK)
|
|
val |= TRANS_INTERLACED;
|
|
else
|
|
val |= TRANS_PROGRESSIVE;
|
|
|
|
I915_WRITE(TRANSCONF(TRANSCODER_A), val);
|
|
if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
|
|
DRM_ERROR("Failed to enable PCH transcoder\n");
|
|
}
|
|
|
|
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
uint32_t reg, val;
|
|
|
|
/* FDI relies on the transcoder */
|
|
assert_fdi_tx_disabled(dev_priv, pipe);
|
|
assert_fdi_rx_disabled(dev_priv, pipe);
|
|
|
|
/* Ports must be off as well */
|
|
assert_pch_ports_disabled(dev_priv, pipe);
|
|
|
|
reg = TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~TRANS_ENABLE;
|
|
I915_WRITE(reg, val);
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
|
|
DRM_ERROR("failed to disable transcoder %d\n", pipe);
|
|
|
|
if (!HAS_PCH_IBX(dev)) {
|
|
/* Workaround: Clear the timing override chicken bit again. */
|
|
reg = TRANS_CHICKEN2(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
}
|
|
|
|
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
val = I915_READ(_TRANSACONF);
|
|
val &= ~TRANS_ENABLE;
|
|
I915_WRITE(_TRANSACONF, val);
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
|
|
DRM_ERROR("Failed to disable PCH transcoder\n");
|
|
|
|
/* Workaround: clear timing override bit. */
|
|
val = I915_READ(_TRANSA_CHICKEN2);
|
|
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(_TRANSA_CHICKEN2, val);
|
|
}
|
|
|
|
/**
|
|
* intel_enable_pipe - enable a pipe, asserting requirements
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe to enable
|
|
* @pch_port: on ILK+, is this pipe driving a PCH port or not
|
|
*
|
|
* Enable @pipe, making sure that various hardware specific requirements
|
|
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
|
|
*
|
|
* @pipe should be %PIPE_A or %PIPE_B.
|
|
*
|
|
* Will wait until the pipe is actually running (i.e. first vblank) before
|
|
* returning.
|
|
*/
|
|
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
|
|
bool pch_port)
|
|
{
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
enum pipe pch_transcoder;
|
|
int reg;
|
|
u32 val;
|
|
|
|
if (HAS_PCH_LPT(dev_priv->dev))
|
|
pch_transcoder = TRANSCODER_A;
|
|
else
|
|
pch_transcoder = pipe;
|
|
|
|
/*
|
|
* A pipe without a PLL won't actually be able to drive bits from
|
|
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
|
|
* need the check.
|
|
*/
|
|
if (!HAS_PCH_SPLIT(dev_priv->dev))
|
|
assert_pll_enabled(dev_priv, pipe);
|
|
else {
|
|
if (pch_port) {
|
|
/* if driving the PCH, we need FDI enabled */
|
|
assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
|
|
assert_fdi_tx_pll_enabled(dev_priv,
|
|
(enum pipe) cpu_transcoder);
|
|
}
|
|
/* FIXME: assert CPU port conditions for SNB+ */
|
|
}
|
|
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
if (val & PIPECONF_ENABLE)
|
|
return;
|
|
|
|
I915_WRITE(reg, val | PIPECONF_ENABLE);
|
|
intel_wait_for_vblank(dev_priv->dev, pipe);
|
|
}
|
|
|
|
/**
|
|
* intel_disable_pipe - disable a pipe, asserting requirements
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe to disable
|
|
*
|
|
* Disable @pipe, making sure that various hardware specific requirements
|
|
* are met, if applicable, e.g. plane disabled, panel fitter off, etc.
|
|
*
|
|
* @pipe should be %PIPE_A or %PIPE_B.
|
|
*
|
|
* Will wait until the pipe has shut down before returning.
|
|
*/
|
|
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
int reg;
|
|
u32 val;
|
|
|
|
/*
|
|
* Make sure planes won't keep trying to pump pixels to us,
|
|
* or we might hang the display.
|
|
*/
|
|
assert_planes_disabled(dev_priv, pipe);
|
|
|
|
/* Don't disable pipe A or pipe A PLLs if needed */
|
|
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
|
|
return;
|
|
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
if ((val & PIPECONF_ENABLE) == 0)
|
|
return;
|
|
|
|
I915_WRITE(reg, val & ~PIPECONF_ENABLE);
|
|
intel_wait_for_pipe_off(dev_priv->dev, pipe);
|
|
}
|
|
|
|
/*
|
|
* Plane regs are double buffered, going from enabled->disabled needs a
|
|
* trigger in order to latch. The display address reg provides this.
|
|
*/
|
|
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane)
|
|
{
|
|
if (dev_priv->info->gen >= 4)
|
|
I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
|
|
else
|
|
I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
|
|
}
|
|
|
|
/**
|
|
* intel_enable_plane - enable a display plane on a given pipe
|
|
* @dev_priv: i915 private structure
|
|
* @plane: plane to enable
|
|
* @pipe: pipe being fed
|
|
*
|
|
* Enable @plane on @pipe, making sure that @pipe is running first.
|
|
*/
|
|
static void intel_enable_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane, enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* If the pipe isn't enabled, we can't pump pixels and may hang */
|
|
assert_pipe_enabled(dev_priv, pipe);
|
|
|
|
reg = DSPCNTR(plane);
|
|
val = I915_READ(reg);
|
|
if (val & DISPLAY_PLANE_ENABLE)
|
|
return;
|
|
|
|
I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
|
|
intel_flush_display_plane(dev_priv, plane);
|
|
intel_wait_for_vblank(dev_priv->dev, pipe);
|
|
}
|
|
|
|
/**
|
|
* intel_disable_plane - disable a display plane
|
|
* @dev_priv: i915 private structure
|
|
* @plane: plane to disable
|
|
* @pipe: pipe consuming the data
|
|
*
|
|
* Disable @plane; should be an independent operation.
|
|
*/
|
|
static void intel_disable_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane, enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
reg = DSPCNTR(plane);
|
|
val = I915_READ(reg);
|
|
if ((val & DISPLAY_PLANE_ENABLE) == 0)
|
|
return;
|
|
|
|
I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
|
|
intel_flush_display_plane(dev_priv, plane);
|
|
intel_wait_for_vblank(dev_priv->dev, pipe);
|
|
}
|
|
|
|
int
|
|
intel_pin_and_fence_fb_obj(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 alignment;
|
|
int ret;
|
|
|
|
switch (obj->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
|
|
alignment = 128 * 1024;
|
|
else if (INTEL_INFO(dev)->gen >= 4)
|
|
alignment = 4 * 1024;
|
|
else
|
|
alignment = 64 * 1024;
|
|
break;
|
|
case I915_TILING_X:
|
|
/* pin() will align the object as required by fence */
|
|
alignment = 0;
|
|
break;
|
|
case I915_TILING_Y:
|
|
/* FIXME: Is this true? */
|
|
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
|
|
return -EINVAL;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
dev_priv->mm.interruptible = false;
|
|
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
|
|
if (ret)
|
|
goto err_interruptible;
|
|
|
|
/* Install a fence for tiled scan-out. Pre-i965 always needs a
|
|
* fence, whereas 965+ only requires a fence if using
|
|
* framebuffer compression. For simplicity, we always install
|
|
* a fence as the cost is not that onerous.
|
|
*/
|
|
ret = i915_gem_object_get_fence(obj);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
i915_gem_object_pin_fence(obj);
|
|
|
|
dev_priv->mm.interruptible = true;
|
|
return 0;
|
|
|
|
err_unpin:
|
|
i915_gem_object_unpin(obj);
|
|
err_interruptible:
|
|
dev_priv->mm.interruptible = true;
|
|
return ret;
|
|
}
|
|
|
|
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_unpin_fence(obj);
|
|
i915_gem_object_unpin(obj);
|
|
}
|
|
|
|
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
|
|
* is assumed to be a power-of-two. */
|
|
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
|
|
unsigned int tiling_mode,
|
|
unsigned int cpp,
|
|
unsigned int pitch)
|
|
{
|
|
if (tiling_mode != I915_TILING_NONE) {
|
|
unsigned int tile_rows, tiles;
|
|
|
|
tile_rows = *y / 8;
|
|
*y %= 8;
|
|
|
|
tiles = *x / (512/cpp);
|
|
*x %= 512/cpp;
|
|
|
|
return tile_rows * pitch * 8 + tiles * 4096;
|
|
} else {
|
|
unsigned int offset;
|
|
|
|
offset = *y * pitch + *x * cpp;
|
|
*y = 0;
|
|
*x = (offset & 4095) / cpp;
|
|
return offset & -4096;
|
|
}
|
|
}
|
|
|
|
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
|
|
int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj;
|
|
int plane = intel_crtc->plane;
|
|
unsigned long linear_offset;
|
|
u32 dspcntr;
|
|
u32 reg;
|
|
|
|
switch (plane) {
|
|
case 0:
|
|
case 1:
|
|
break;
|
|
default:
|
|
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_fb = to_intel_framebuffer(fb);
|
|
obj = intel_fb->obj;
|
|
|
|
reg = DSPCNTR(plane);
|
|
dspcntr = I915_READ(reg);
|
|
/* Mask out pixel format bits in case we change it */
|
|
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
case DRM_FORMAT_ARGB1555:
|
|
dspcntr |= DISPPLANE_BGRX555;
|
|
break;
|
|
case DRM_FORMAT_RGB565:
|
|
dspcntr |= DISPPLANE_BGRX565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
dspcntr |= DISPPLANE_BGRX888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
dspcntr |= DISPPLANE_RGBX888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
dspcntr |= DISPPLANE_BGRX101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
dspcntr |= DISPPLANE_RGBX101010;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (obj->tiling_mode != I915_TILING_NONE)
|
|
dspcntr |= DISPPLANE_TILED;
|
|
else
|
|
dspcntr &= ~DISPPLANE_TILED;
|
|
}
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
intel_crtc->dspaddr_offset =
|
|
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
|
|
fb->bits_per_pixel / 8,
|
|
fb->pitches[0]);
|
|
linear_offset -= intel_crtc->dspaddr_offset;
|
|
} else {
|
|
intel_crtc->dspaddr_offset = linear_offset;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
|
|
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
|
|
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
I915_MODIFY_DISPBASE(DSPSURF(plane),
|
|
obj->gtt_offset + intel_crtc->dspaddr_offset);
|
|
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
|
|
I915_WRITE(DSPLINOFF(plane), linear_offset);
|
|
} else
|
|
I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
|
|
POSTING_READ(reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ironlake_update_plane(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb, int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj;
|
|
int plane = intel_crtc->plane;
|
|
unsigned long linear_offset;
|
|
u32 dspcntr;
|
|
u32 reg;
|
|
|
|
switch (plane) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
break;
|
|
default:
|
|
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_fb = to_intel_framebuffer(fb);
|
|
obj = intel_fb->obj;
|
|
|
|
reg = DSPCNTR(plane);
|
|
dspcntr = I915_READ(reg);
|
|
/* Mask out pixel format bits in case we change it */
|
|
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case DRM_FORMAT_RGB565:
|
|
dspcntr |= DISPPLANE_BGRX565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
dspcntr |= DISPPLANE_BGRX888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
dspcntr |= DISPPLANE_RGBX888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
dspcntr |= DISPPLANE_BGRX101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
dspcntr |= DISPPLANE_RGBX101010;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE)
|
|
dspcntr |= DISPPLANE_TILED;
|
|
else
|
|
dspcntr &= ~DISPPLANE_TILED;
|
|
|
|
/* must disable */
|
|
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
|
|
intel_crtc->dspaddr_offset =
|
|
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
|
|
fb->bits_per_pixel / 8,
|
|
fb->pitches[0]);
|
|
linear_offset -= intel_crtc->dspaddr_offset;
|
|
|
|
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
|
|
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
|
|
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
|
|
I915_MODIFY_DISPBASE(DSPSURF(plane),
|
|
obj->gtt_offset + intel_crtc->dspaddr_offset);
|
|
if (IS_HASWELL(dev)) {
|
|
I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
|
|
} else {
|
|
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
|
|
I915_WRITE(DSPLINOFF(plane), linear_offset);
|
|
}
|
|
POSTING_READ(reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Assume fb object is pinned & idle & fenced and just update base pointers */
|
|
static int
|
|
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
|
|
int x, int y, enum mode_set_atomic state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->display.disable_fbc)
|
|
dev_priv->display.disable_fbc(dev);
|
|
intel_increase_pllclock(crtc);
|
|
|
|
return dev_priv->display.update_plane(crtc, fb, x, y);
|
|
}
|
|
|
|
static int
|
|
intel_finish_fb(struct drm_framebuffer *old_fb)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
bool was_interruptible = dev_priv->mm.interruptible;
|
|
int ret;
|
|
|
|
/* Big Hammer, we also need to ensure that any pending
|
|
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
|
|
* current scanout is retired before unpinning the old
|
|
* framebuffer.
|
|
*
|
|
* This should only fail upon a hung GPU, in which case we
|
|
* can safely continue.
|
|
*/
|
|
dev_priv->mm.interruptible = false;
|
|
ret = i915_gem_object_finish_gpu(obj);
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_master_private *master_priv;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
if (!dev->primary->master)
|
|
return;
|
|
|
|
master_priv = dev->primary->master->driver_priv;
|
|
if (!master_priv->sarea_priv)
|
|
return;
|
|
|
|
switch (intel_crtc->pipe) {
|
|
case 0:
|
|
master_priv->sarea_priv->pipeA_x = x;
|
|
master_priv->sarea_priv->pipeA_y = y;
|
|
break;
|
|
case 1:
|
|
master_priv->sarea_priv->pipeB_x = x;
|
|
master_priv->sarea_priv->pipeB_y = y;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_framebuffer *old_fb;
|
|
int ret;
|
|
|
|
/* no fb bound */
|
|
if (!fb) {
|
|
DRM_ERROR("No FB bound\n");
|
|
return 0;
|
|
}
|
|
|
|
if(intel_crtc->plane > dev_priv->num_pipe) {
|
|
DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
|
|
intel_crtc->plane,
|
|
dev_priv->num_pipe);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = intel_pin_and_fence_fb_obj(dev,
|
|
to_intel_framebuffer(fb)->obj,
|
|
NULL);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
DRM_ERROR("pin & fence failed\n");
|
|
return ret;
|
|
}
|
|
|
|
if (crtc->fb)
|
|
intel_finish_fb(crtc->fb);
|
|
|
|
ret = dev_priv->display.update_plane(crtc, fb, x, y);
|
|
if (ret) {
|
|
intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
DRM_ERROR("failed to update base address\n");
|
|
return ret;
|
|
}
|
|
|
|
old_fb = crtc->fb;
|
|
crtc->fb = fb;
|
|
crtc->x = x;
|
|
crtc->y = y;
|
|
|
|
if (old_fb) {
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
|
|
}
|
|
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_crtc_update_sarea_pos(crtc, x, y);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_fdi_normal_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
/* enable normal train */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (IS_IVYBRIDGE(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
|
|
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_NONE;
|
|
}
|
|
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
|
|
|
|
/* wait one idle pattern time */
|
|
POSTING_READ(reg);
|
|
udelay(1000);
|
|
|
|
/* IVB wants error correction enabled */
|
|
if (IS_IVYBRIDGE(dev))
|
|
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
|
|
FDI_FE_ERRC_ENABLE);
|
|
}
|
|
|
|
static void ivb_modeset_global_resources(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *pipe_B_crtc =
|
|
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
|
|
struct intel_crtc *pipe_C_crtc =
|
|
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
|
|
uint32_t temp;
|
|
|
|
/* When everything is off disable fdi C so that we could enable fdi B
|
|
* with all lanes. XXX: This misses the case where a pipe is not using
|
|
* any pch resources and so doesn't need any fdi lanes. */
|
|
if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
|
|
|
|
temp = I915_READ(SOUTH_CHICKEN1);
|
|
temp &= ~FDI_BC_BIFURCATION_SELECT;
|
|
DRM_DEBUG_KMS("disabling fdi C rx\n");
|
|
I915_WRITE(SOUTH_CHICKEN1, temp);
|
|
}
|
|
}
|
|
|
|
/* The FDI link training functions for ILK/Ibexpeak. */
|
|
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
u32 reg, temp, tries;
|
|
|
|
/* FDI needs bits from pipe & plane first */
|
|
assert_pipe_enabled(dev_priv, pipe);
|
|
assert_plane_enabled(dev_priv, plane);
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
I915_READ(reg);
|
|
udelay(150);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(7 << 19);
|
|
temp |= (intel_crtc->fdi_lanes - 1) << 19;
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
/* Ironlake workaround, enable clock pointer after FDI enable*/
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
|
|
FDI_RX_PHASE_SYNC_POINTER_EN);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
for (tries = 0; tries < 5; tries++) {
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if ((temp & FDI_RX_BIT_LOCK)) {
|
|
DRM_DEBUG_KMS("FDI train 1 done.\n");
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
break;
|
|
}
|
|
}
|
|
if (tries == 5)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
for (tries = 0; tries < 5; tries++) {
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done.\n");
|
|
break;
|
|
}
|
|
}
|
|
if (tries == 5)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done\n");
|
|
|
|
}
|
|
|
|
static const int snb_b_fdi_train_param[] = {
|
|
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
|
|
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
|
|
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
|
|
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
|
|
};
|
|
|
|
/* The FDI link training functions for SNB/Cougarpoint. */
|
|
static void gen6_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp, i, retry;
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(7 << 19);
|
|
temp |= (intel_crtc->fdi_lanes - 1) << 19;
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
/* SNB-B */
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
I915_WRITE(FDI_RX_MISC(pipe),
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
}
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
if (temp & FDI_RX_BIT_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 1 done.\n");
|
|
break;
|
|
}
|
|
udelay(50);
|
|
}
|
|
if (retry < 5)
|
|
break;
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
if (IS_GEN6(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
/* SNB-B */
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done.\n");
|
|
break;
|
|
}
|
|
udelay(50);
|
|
}
|
|
if (retry < 5)
|
|
break;
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done.\n");
|
|
}
|
|
|
|
/* Manual link training for Ivy Bridge A0 parts */
|
|
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp, i;
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
|
|
I915_READ(FDI_RX_IIR(pipe)));
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(7 << 19);
|
|
temp |= (intel_crtc->fdi_lanes - 1) << 19;
|
|
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
temp |= FDI_COMPOSITE_SYNC;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
I915_WRITE(FDI_RX_MISC(pipe),
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_AUTO;
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
temp |= FDI_COMPOSITE_SYNC;
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_BIT_LOCK ||
|
|
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
|
|
break;
|
|
}
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
|
|
break;
|
|
}
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done.\n");
|
|
}
|
|
|
|
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
|
|
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~((0x7 << 19) | (0x7 << 16));
|
|
temp |= (intel_crtc->fdi_lanes - 1) << 19;
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
/* Switch from Rawclk to PCDclk */
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp | FDI_PCDCLK);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
/* Enable CPU FDI TX PLL, always on for Ironlake */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
|
|
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
}
|
|
|
|
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
/* Switch from PCDclk to Rawclk */
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_PCDCLK);
|
|
|
|
/* Disable CPU FDI TX PLL */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
|
|
|
|
/* Wait for the clocks to turn off. */
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
|
|
static void ironlake_fdi_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
/* disable CPU FDI tx and PCH FDI rx */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
|
|
POSTING_READ(reg);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(0x7 << 16);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
|
|
/* Ironlake workaround, disable clock pointer after downing FDI */
|
|
if (HAS_PCH_IBX(dev)) {
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
|
|
}
|
|
|
|
/* still set train pattern 1 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
}
|
|
/* BPC in FDI rx is consistent with that in PIPECONF */
|
|
temp &= ~(0x07 << 16);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
|
|
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
unsigned long flags;
|
|
bool pending;
|
|
|
|
if (i915_reset_in_progress(&dev_priv->gpu_error) ||
|
|
intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
pending = to_intel_crtc(crtc)->unpin_work != NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
return pending;
|
|
}
|
|
|
|
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (crtc->fb == NULL)
|
|
return;
|
|
|
|
WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
|
|
|
|
wait_event(dev_priv->pending_flip_queue,
|
|
!intel_crtc_has_pending_flip(crtc));
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_finish_fb(crtc->fb);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *intel_encoder;
|
|
|
|
/*
|
|
* If there's a non-PCH eDP on this crtc, it must be DP_A, and that
|
|
* must be driven by its own crtc; no sharing is possible.
|
|
*/
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_EDP:
|
|
if (!intel_encoder_is_pch_edp(&intel_encoder->base))
|
|
return false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
|
|
{
|
|
return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
|
|
}
|
|
|
|
/* Program iCLKIP clock to the desired frequency */
|
|
static void lpt_program_iclkip(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 divsel, phaseinc, auxdiv, phasedir = 0;
|
|
u32 temp;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
/* It is necessary to ungate the pixclk gate prior to programming
|
|
* the divisors, and gate it back when it is done.
|
|
*/
|
|
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
|
|
|
|
/* Disable SSCCTL */
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL6,
|
|
intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
|
|
SBI_SSCCTL_DISABLE,
|
|
SBI_ICLK);
|
|
|
|
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
|
|
if (crtc->mode.clock == 20000) {
|
|
auxdiv = 1;
|
|
divsel = 0x41;
|
|
phaseinc = 0x20;
|
|
} else {
|
|
/* The iCLK virtual clock root frequency is in MHz,
|
|
* but the crtc->mode.clock in in KHz. To get the divisors,
|
|
* it is necessary to divide one by another, so we
|
|
* convert the virtual clock precision to KHz here for higher
|
|
* precision.
|
|
*/
|
|
u32 iclk_virtual_root_freq = 172800 * 1000;
|
|
u32 iclk_pi_range = 64;
|
|
u32 desired_divisor, msb_divisor_value, pi_value;
|
|
|
|
desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
|
|
msb_divisor_value = desired_divisor / iclk_pi_range;
|
|
pi_value = desired_divisor % iclk_pi_range;
|
|
|
|
auxdiv = 0;
|
|
divsel = msb_divisor_value - 2;
|
|
phaseinc = pi_value;
|
|
}
|
|
|
|
/* This should not happen with any sane values */
|
|
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
|
|
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
|
|
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
|
|
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
|
|
|
|
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
|
|
crtc->mode.clock,
|
|
auxdiv,
|
|
divsel,
|
|
phasedir,
|
|
phaseinc);
|
|
|
|
/* Program SSCDIVINTPHASE6 */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
|
|
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
|
|
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
|
|
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
|
|
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
|
|
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
|
|
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
|
|
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
|
|
|
|
/* Program SSCAUXDIV */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
|
|
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
|
|
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
|
|
intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
|
|
|
|
/* Enable modulator and associated divider */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
|
|
temp &= ~SBI_SSCCTL_DISABLE;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
|
|
|
|
/* Wait for initialization time */
|
|
udelay(24);
|
|
|
|
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
/*
|
|
* Enable PCH resources required for PCH ports:
|
|
* - PCH PLLs
|
|
* - FDI training & RX/TX
|
|
* - update transcoder timings
|
|
* - DP transcoding bits
|
|
* - transcoder
|
|
*/
|
|
static void ironlake_pch_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
assert_transcoder_disabled(dev_priv, pipe);
|
|
|
|
/* Write the TU size bits before fdi link training, so that error
|
|
* detection works. */
|
|
I915_WRITE(FDI_RX_TUSIZE1(pipe),
|
|
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
|
|
|
|
/* For PCH output, training FDI link */
|
|
dev_priv->display.fdi_link_train(crtc);
|
|
|
|
/* XXX: pch pll's can be enabled any time before we enable the PCH
|
|
* transcoder, and we actually should do this to not upset any PCH
|
|
* transcoder that already use the clock when we share it.
|
|
*
|
|
* Note that enable_pch_pll tries to do the right thing, but get_pch_pll
|
|
* unconditionally resets the pll - we need that to have the right LVDS
|
|
* enable sequence. */
|
|
ironlake_enable_pch_pll(intel_crtc);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
u32 sel;
|
|
|
|
temp = I915_READ(PCH_DPLL_SEL);
|
|
switch (pipe) {
|
|
default:
|
|
case 0:
|
|
temp |= TRANSA_DPLL_ENABLE;
|
|
sel = TRANSA_DPLLB_SEL;
|
|
break;
|
|
case 1:
|
|
temp |= TRANSB_DPLL_ENABLE;
|
|
sel = TRANSB_DPLLB_SEL;
|
|
break;
|
|
case 2:
|
|
temp |= TRANSC_DPLL_ENABLE;
|
|
sel = TRANSC_DPLLB_SEL;
|
|
break;
|
|
}
|
|
if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
|
|
temp |= sel;
|
|
else
|
|
temp &= ~sel;
|
|
I915_WRITE(PCH_DPLL_SEL, temp);
|
|
}
|
|
|
|
/* set transcoder timing, panel must allow it */
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
|
|
I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
|
|
I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
|
|
|
|
I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
|
|
I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
|
|
I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
|
|
I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
|
|
|
|
intel_fdi_normal_train(crtc);
|
|
|
|
/* For PCH DP, enable TRANS_DP_CTL */
|
|
if (HAS_PCH_CPT(dev) &&
|
|
(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
|
|
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
|
|
reg = TRANS_DP_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(TRANS_DP_PORT_SEL_MASK |
|
|
TRANS_DP_SYNC_MASK |
|
|
TRANS_DP_BPC_MASK);
|
|
temp |= (TRANS_DP_OUTPUT_ENABLE |
|
|
TRANS_DP_ENH_FRAMING);
|
|
temp |= bpc << 9; /* same format but at 11:9 */
|
|
|
|
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
|
|
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
|
|
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
|
|
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
|
|
|
|
switch (intel_trans_dp_port_sel(crtc)) {
|
|
case PCH_DP_B:
|
|
temp |= TRANS_DP_PORT_SEL_B;
|
|
break;
|
|
case PCH_DP_C:
|
|
temp |= TRANS_DP_PORT_SEL_C;
|
|
break;
|
|
case PCH_DP_D:
|
|
temp |= TRANS_DP_PORT_SEL_D;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
I915_WRITE(reg, temp);
|
|
}
|
|
|
|
ironlake_enable_pch_transcoder(dev_priv, pipe);
|
|
}
|
|
|
|
static void lpt_pch_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
|
|
|
|
assert_transcoder_disabled(dev_priv, TRANSCODER_A);
|
|
|
|
lpt_program_iclkip(crtc);
|
|
|
|
/* Set transcoder timing. */
|
|
I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
|
|
I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
|
|
I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
|
|
|
|
I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
|
|
I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
|
|
I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
|
|
I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
|
|
|
|
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
|
|
}
|
|
|
|
static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct intel_pch_pll *pll = intel_crtc->pch_pll;
|
|
|
|
if (pll == NULL)
|
|
return;
|
|
|
|
if (pll->refcount == 0) {
|
|
WARN(1, "bad PCH PLL refcount\n");
|
|
return;
|
|
}
|
|
|
|
--pll->refcount;
|
|
intel_crtc->pch_pll = NULL;
|
|
}
|
|
|
|
static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
|
|
struct intel_pch_pll *pll;
|
|
int i;
|
|
|
|
pll = intel_crtc->pch_pll;
|
|
if (pll) {
|
|
DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
|
|
intel_crtc->base.base.id, pll->pll_reg);
|
|
goto prepare;
|
|
}
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
|
|
i = intel_crtc->pipe;
|
|
pll = &dev_priv->pch_plls[i];
|
|
|
|
DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
|
|
intel_crtc->base.base.id, pll->pll_reg);
|
|
|
|
goto found;
|
|
}
|
|
|
|
for (i = 0; i < dev_priv->num_pch_pll; i++) {
|
|
pll = &dev_priv->pch_plls[i];
|
|
|
|
/* Only want to check enabled timings first */
|
|
if (pll->refcount == 0)
|
|
continue;
|
|
|
|
if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
|
|
fp == I915_READ(pll->fp0_reg)) {
|
|
DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
|
|
intel_crtc->base.base.id,
|
|
pll->pll_reg, pll->refcount, pll->active);
|
|
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* Ok no matching timings, maybe there's a free one? */
|
|
for (i = 0; i < dev_priv->num_pch_pll; i++) {
|
|
pll = &dev_priv->pch_plls[i];
|
|
if (pll->refcount == 0) {
|
|
DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
|
|
intel_crtc->base.base.id, pll->pll_reg);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
intel_crtc->pch_pll = pll;
|
|
pll->refcount++;
|
|
DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
|
|
prepare: /* separate function? */
|
|
DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
|
|
|
|
/* Wait for the clocks to stabilize before rewriting the regs */
|
|
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
|
|
POSTING_READ(pll->pll_reg);
|
|
udelay(150);
|
|
|
|
I915_WRITE(pll->fp0_reg, fp);
|
|
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
|
|
pll->on = false;
|
|
return pll;
|
|
}
|
|
|
|
void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int dslreg = PIPEDSL(pipe);
|
|
u32 temp;
|
|
|
|
temp = I915_READ(dslreg);
|
|
udelay(500);
|
|
if (wait_for(I915_READ(dslreg) != temp, 5)) {
|
|
if (wait_for(I915_READ(dslreg) != temp, 5))
|
|
DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
|
|
}
|
|
}
|
|
|
|
static void ironlake_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
u32 temp;
|
|
bool is_pch_port;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
intel_crtc->active = true;
|
|
intel_update_watermarks(dev);
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
temp = I915_READ(PCH_LVDS);
|
|
if ((temp & LVDS_PORT_EN) == 0)
|
|
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
|
|
}
|
|
|
|
is_pch_port = ironlake_crtc_driving_pch(crtc);
|
|
|
|
if (is_pch_port) {
|
|
/* Note: FDI PLL enabling _must_ be done before we enable the
|
|
* cpu pipes, hence this is separate from all the other fdi/pch
|
|
* enabling. */
|
|
ironlake_fdi_pll_enable(intel_crtc);
|
|
} else {
|
|
assert_fdi_tx_disabled(dev_priv, pipe);
|
|
assert_fdi_rx_disabled(dev_priv, pipe);
|
|
}
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
/* Enable panel fitting for LVDS */
|
|
if (dev_priv->pch_pf_size &&
|
|
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
|
|
/* Force use of hard-coded filter coefficients
|
|
* as some pre-programmed values are broken,
|
|
* e.g. x201.
|
|
*/
|
|
if (IS_IVYBRIDGE(dev))
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
|
|
PF_PIPE_SEL_IVB(pipe));
|
|
else
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
|
|
I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
|
|
I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
|
|
}
|
|
|
|
/*
|
|
* On ILK+ LUT must be loaded before the pipe is running but with
|
|
* clocks enabled
|
|
*/
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
intel_enable_pipe(dev_priv, pipe, is_pch_port);
|
|
intel_enable_plane(dev_priv, plane, pipe);
|
|
|
|
if (is_pch_port)
|
|
ironlake_pch_enable(crtc);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
|
|
if (HAS_PCH_CPT(dev))
|
|
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
|
|
|
|
/*
|
|
* There seems to be a race in PCH platform hw (at least on some
|
|
* outputs) where an enabled pipe still completes any pageflip right
|
|
* away (as if the pipe is off) instead of waiting for vblank. As soon
|
|
* as the first vblank happend, everything works as expected. Hence just
|
|
* wait for one vblank before returning to avoid strange things
|
|
* happening.
|
|
*/
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
}
|
|
|
|
static void haswell_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
bool is_pch_port;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
intel_crtc->active = true;
|
|
intel_update_watermarks(dev);
|
|
|
|
is_pch_port = haswell_crtc_driving_pch(crtc);
|
|
|
|
if (is_pch_port)
|
|
dev_priv->display.fdi_link_train(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
intel_ddi_enable_pipe_clock(intel_crtc);
|
|
|
|
/* Enable panel fitting for eDP */
|
|
if (dev_priv->pch_pf_size &&
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
|
|
/* Force use of hard-coded filter coefficients
|
|
* as some pre-programmed values are broken,
|
|
* e.g. x201.
|
|
*/
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
|
|
PF_PIPE_SEL_IVB(pipe));
|
|
I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
|
|
I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
|
|
}
|
|
|
|
/*
|
|
* On ILK+ LUT must be loaded before the pipe is running but with
|
|
* clocks enabled
|
|
*/
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
intel_ddi_set_pipe_settings(crtc);
|
|
intel_ddi_enable_pipe_func(crtc);
|
|
|
|
intel_enable_pipe(dev_priv, pipe, is_pch_port);
|
|
intel_enable_plane(dev_priv, plane, pipe);
|
|
|
|
if (is_pch_port)
|
|
lpt_pch_enable(crtc);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
|
|
/*
|
|
* There seems to be a race in PCH platform hw (at least on some
|
|
* outputs) where an enabled pipe still completes any pageflip right
|
|
* away (as if the pipe is off) instead of waiting for vblank. As soon
|
|
* as the first vblank happend, everything works as expected. Hence just
|
|
* wait for one vblank before returning to avoid strange things
|
|
* happening.
|
|
*/
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
}
|
|
|
|
static void ironlake_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
u32 reg, temp;
|
|
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
intel_crtc_wait_for_pending_flips(crtc);
|
|
drm_vblank_off(dev, pipe);
|
|
intel_crtc_update_cursor(crtc, false);
|
|
|
|
intel_disable_plane(dev_priv, plane, pipe);
|
|
|
|
if (dev_priv->cfb_plane == plane)
|
|
intel_disable_fbc(dev);
|
|
|
|
intel_disable_pipe(dev_priv, pipe);
|
|
|
|
/* Disable PF */
|
|
I915_WRITE(PF_CTL(pipe), 0);
|
|
I915_WRITE(PF_WIN_SZ(pipe), 0);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
ironlake_fdi_disable(crtc);
|
|
|
|
ironlake_disable_pch_transcoder(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
/* disable TRANS_DP_CTL */
|
|
reg = TRANS_DP_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
|
|
temp |= TRANS_DP_PORT_SEL_NONE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
/* disable DPLL_SEL */
|
|
temp = I915_READ(PCH_DPLL_SEL);
|
|
switch (pipe) {
|
|
case 0:
|
|
temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
|
|
break;
|
|
case 1:
|
|
temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
|
|
break;
|
|
case 2:
|
|
/* C shares PLL A or B */
|
|
temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
|
|
break;
|
|
default:
|
|
BUG(); /* wtf */
|
|
}
|
|
I915_WRITE(PCH_DPLL_SEL, temp);
|
|
}
|
|
|
|
/* disable PCH DPLL */
|
|
intel_disable_pch_pll(intel_crtc);
|
|
|
|
ironlake_fdi_pll_disable(intel_crtc);
|
|
|
|
intel_crtc->active = false;
|
|
intel_update_watermarks(dev);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static void haswell_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
|
|
bool is_pch_port;
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
is_pch_port = haswell_crtc_driving_pch(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
intel_crtc_wait_for_pending_flips(crtc);
|
|
drm_vblank_off(dev, pipe);
|
|
intel_crtc_update_cursor(crtc, false);
|
|
|
|
intel_disable_plane(dev_priv, plane, pipe);
|
|
|
|
if (dev_priv->cfb_plane == plane)
|
|
intel_disable_fbc(dev);
|
|
|
|
intel_disable_pipe(dev_priv, pipe);
|
|
|
|
intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
|
|
|
|
/* Disable PF */
|
|
I915_WRITE(PF_CTL(pipe), 0);
|
|
I915_WRITE(PF_WIN_SZ(pipe), 0);
|
|
|
|
intel_ddi_disable_pipe_clock(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
if (is_pch_port) {
|
|
lpt_disable_pch_transcoder(dev_priv);
|
|
intel_ddi_fdi_disable(crtc);
|
|
}
|
|
|
|
intel_crtc->active = false;
|
|
intel_update_watermarks(dev);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static void ironlake_crtc_off(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
intel_put_pch_pll(intel_crtc);
|
|
}
|
|
|
|
static void haswell_crtc_off(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
/* Stop saying we're using TRANSCODER_EDP because some other CRTC might
|
|
* start using it. */
|
|
intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
|
|
|
|
intel_ddi_put_crtc_pll(crtc);
|
|
}
|
|
|
|
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
|
|
{
|
|
if (!enable && intel_crtc->overlay) {
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->mm.interruptible = false;
|
|
(void) intel_overlay_switch_off(intel_crtc->overlay);
|
|
dev_priv->mm.interruptible = true;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/* Let userspace switch the overlay on again. In most cases userspace
|
|
* has to recompute where to put it anyway.
|
|
*/
|
|
}
|
|
|
|
static void i9xx_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
intel_crtc->active = true;
|
|
intel_update_watermarks(dev);
|
|
|
|
intel_enable_pll(dev_priv, pipe);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
intel_enable_pipe(dev_priv, pipe, false);
|
|
intel_enable_plane(dev_priv, plane, pipe);
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
intel_update_fbc(dev);
|
|
|
|
/* Give the overlay scaler a chance to enable if it's on this pipe */
|
|
intel_crtc_dpms_overlay(intel_crtc, true);
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
}
|
|
|
|
static void i9xx_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
u32 pctl;
|
|
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
/* Give the overlay scaler a chance to disable if it's on this pipe */
|
|
intel_crtc_wait_for_pending_flips(crtc);
|
|
drm_vblank_off(dev, pipe);
|
|
intel_crtc_dpms_overlay(intel_crtc, false);
|
|
intel_crtc_update_cursor(crtc, false);
|
|
|
|
if (dev_priv->cfb_plane == plane)
|
|
intel_disable_fbc(dev);
|
|
|
|
intel_disable_plane(dev_priv, plane, pipe);
|
|
intel_disable_pipe(dev_priv, pipe);
|
|
|
|
/* Disable pannel fitter if it is on this pipe. */
|
|
pctl = I915_READ(PFIT_CONTROL);
|
|
if ((pctl & PFIT_ENABLE) &&
|
|
((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
|
|
I915_WRITE(PFIT_CONTROL, 0);
|
|
|
|
intel_disable_pll(dev_priv, pipe);
|
|
|
|
intel_crtc->active = false;
|
|
intel_update_fbc(dev);
|
|
intel_update_watermarks(dev);
|
|
}
|
|
|
|
static void i9xx_crtc_off(struct drm_crtc *crtc)
|
|
{
|
|
}
|
|
|
|
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
|
|
bool enabled)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_master_private *master_priv;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
if (!dev->primary->master)
|
|
return;
|
|
|
|
master_priv = dev->primary->master->driver_priv;
|
|
if (!master_priv->sarea_priv)
|
|
return;
|
|
|
|
switch (pipe) {
|
|
case 0:
|
|
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
|
|
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
|
|
break;
|
|
case 1:
|
|
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
|
|
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the power management mode of the pipe and plane.
|
|
*/
|
|
void intel_crtc_update_dpms(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *intel_encoder;
|
|
bool enable = false;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
|
|
enable |= intel_encoder->connectors_active;
|
|
|
|
if (enable)
|
|
dev_priv->display.crtc_enable(crtc);
|
|
else
|
|
dev_priv->display.crtc_disable(crtc);
|
|
|
|
intel_crtc_update_sarea(crtc, enable);
|
|
}
|
|
|
|
static void intel_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_connector *connector;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
/* crtc should still be enabled when we disable it. */
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
intel_crtc->eld_vld = false;
|
|
dev_priv->display.crtc_disable(crtc);
|
|
intel_crtc_update_sarea(crtc, false);
|
|
dev_priv->display.off(crtc);
|
|
|
|
assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
|
|
assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
|
|
|
|
if (crtc->fb) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
crtc->fb = NULL;
|
|
}
|
|
|
|
/* Update computed state. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
if (!connector->encoder || !connector->encoder->crtc)
|
|
continue;
|
|
|
|
if (connector->encoder->crtc != crtc)
|
|
continue;
|
|
|
|
connector->dpms = DRM_MODE_DPMS_OFF;
|
|
to_intel_encoder(connector->encoder)->connectors_active = false;
|
|
}
|
|
}
|
|
|
|
void intel_modeset_disable(struct drm_device *dev)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
if (crtc->enabled)
|
|
intel_crtc_disable(crtc);
|
|
}
|
|
}
|
|
|
|
void intel_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
|
|
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(intel_encoder);
|
|
}
|
|
|
|
/* Simple dpms helper for encodres with just one connector, no cloning and only
|
|
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
|
|
* state of the entire output pipe. */
|
|
void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
|
|
{
|
|
if (mode == DRM_MODE_DPMS_ON) {
|
|
encoder->connectors_active = true;
|
|
|
|
intel_crtc_update_dpms(encoder->base.crtc);
|
|
} else {
|
|
encoder->connectors_active = false;
|
|
|
|
intel_crtc_update_dpms(encoder->base.crtc);
|
|
}
|
|
}
|
|
|
|
/* Cross check the actual hw state with our own modeset state tracking (and it's
|
|
* internal consistency). */
|
|
static void intel_connector_check_state(struct intel_connector *connector)
|
|
{
|
|
if (connector->get_hw_state(connector)) {
|
|
struct intel_encoder *encoder = connector->encoder;
|
|
struct drm_crtc *crtc;
|
|
bool encoder_enabled;
|
|
enum pipe pipe;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.base.id,
|
|
drm_get_connector_name(&connector->base));
|
|
|
|
WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
|
|
"wrong connector dpms state\n");
|
|
WARN(connector->base.encoder != &encoder->base,
|
|
"active connector not linked to encoder\n");
|
|
WARN(!encoder->connectors_active,
|
|
"encoder->connectors_active not set\n");
|
|
|
|
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
|
|
WARN(!encoder_enabled, "encoder not enabled\n");
|
|
if (WARN_ON(!encoder->base.crtc))
|
|
return;
|
|
|
|
crtc = encoder->base.crtc;
|
|
|
|
WARN(!crtc->enabled, "crtc not enabled\n");
|
|
WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
|
|
WARN(pipe != to_intel_crtc(crtc)->pipe,
|
|
"encoder active on the wrong pipe\n");
|
|
}
|
|
}
|
|
|
|
/* Even simpler default implementation, if there's really no special case to
|
|
* consider. */
|
|
void intel_connector_dpms(struct drm_connector *connector, int mode)
|
|
{
|
|
struct intel_encoder *encoder = intel_attached_encoder(connector);
|
|
|
|
/* All the simple cases only support two dpms states. */
|
|
if (mode != DRM_MODE_DPMS_ON)
|
|
mode = DRM_MODE_DPMS_OFF;
|
|
|
|
if (mode == connector->dpms)
|
|
return;
|
|
|
|
connector->dpms = mode;
|
|
|
|
/* Only need to change hw state when actually enabled */
|
|
if (encoder->base.crtc)
|
|
intel_encoder_dpms(encoder, mode);
|
|
else
|
|
WARN_ON(encoder->connectors_active != false);
|
|
|
|
intel_modeset_check_state(connector->dev);
|
|
}
|
|
|
|
/* Simple connector->get_hw_state implementation for encoders that support only
|
|
* one connector and no cloning and hence the encoder state determines the state
|
|
* of the connector. */
|
|
bool intel_connector_get_hw_state(struct intel_connector *connector)
|
|
{
|
|
enum pipe pipe = 0;
|
|
struct intel_encoder *encoder = connector->encoder;
|
|
|
|
return encoder->get_hw_state(encoder, &pipe);
|
|
}
|
|
|
|
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
|
|
const struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
/* FDI link clock is fixed at 2.7G */
|
|
if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
|
|
return false;
|
|
}
|
|
|
|
/* All interlaced capable intel hw wants timings in frames. Note though
|
|
* that intel_lvds_mode_fixup does some funny tricks with the crtc
|
|
* timings, so we need to be careful not to clobber these.*/
|
|
if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
|
|
drm_mode_set_crtcinfo(adjusted_mode, 0);
|
|
|
|
/* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
|
|
* with a hsync front porch of 0.
|
|
*/
|
|
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
|
|
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int valleyview_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 400000; /* FIXME */
|
|
}
|
|
|
|
static int i945_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 400000;
|
|
}
|
|
|
|
static int i915_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 333000;
|
|
}
|
|
|
|
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 200000;
|
|
}
|
|
|
|
static int i915gm_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 gcfgc = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
|
|
return 133000;
|
|
else {
|
|
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
|
|
case GC_DISPLAY_CLOCK_333_MHZ:
|
|
return 333000;
|
|
default:
|
|
case GC_DISPLAY_CLOCK_190_200_MHZ:
|
|
return 190000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int i865_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 266000;
|
|
}
|
|
|
|
static int i855_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 hpllcc = 0;
|
|
/* Assume that the hardware is in the high speed state. This
|
|
* should be the default.
|
|
*/
|
|
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
|
|
case GC_CLOCK_133_200:
|
|
case GC_CLOCK_100_200:
|
|
return 200000;
|
|
case GC_CLOCK_166_250:
|
|
return 250000;
|
|
case GC_CLOCK_100_133:
|
|
return 133000;
|
|
}
|
|
|
|
/* Shouldn't happen */
|
|
return 0;
|
|
}
|
|
|
|
static int i830_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 133000;
|
|
}
|
|
|
|
static void
|
|
intel_reduce_ratio(uint32_t *num, uint32_t *den)
|
|
{
|
|
while (*num > 0xffffff || *den > 0xffffff) {
|
|
*num >>= 1;
|
|
*den >>= 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
|
|
int pixel_clock, int link_clock,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
m_n->tu = 64;
|
|
m_n->gmch_m = bits_per_pixel * pixel_clock;
|
|
m_n->gmch_n = link_clock * nlanes * 8;
|
|
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
|
|
m_n->link_m = pixel_clock;
|
|
m_n->link_n = link_clock;
|
|
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
|
|
}
|
|
|
|
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (i915_panel_use_ssc >= 0)
|
|
return i915_panel_use_ssc != 0;
|
|
return dev_priv->lvds_use_ssc
|
|
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
|
|
}
|
|
|
|
/**
|
|
* intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
|
|
* @crtc: CRTC structure
|
|
* @mode: requested mode
|
|
*
|
|
* A pipe may be connected to one or more outputs. Based on the depth of the
|
|
* attached framebuffer, choose a good color depth to use on the pipe.
|
|
*
|
|
* If possible, match the pipe depth to the fb depth. In some cases, this
|
|
* isn't ideal, because the connected output supports a lesser or restricted
|
|
* set of depths. Resolve that here:
|
|
* LVDS typically supports only 6bpc, so clamp down in that case
|
|
* HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
|
|
* Displays may support a restricted set as well, check EDID and clamp as
|
|
* appropriate.
|
|
* DP may want to dither down to 6bpc to fit larger modes
|
|
*
|
|
* RETURNS:
|
|
* Dithering requirement (i.e. false if display bpc and pipe bpc match,
|
|
* true if they don't match).
|
|
*/
|
|
static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
unsigned int *pipe_bpp,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_connector *connector;
|
|
struct intel_encoder *intel_encoder;
|
|
unsigned int display_bpc = UINT_MAX, bpc;
|
|
|
|
/* Walk the encoders & connectors on this crtc, get min bpc */
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
|
|
if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
|
|
unsigned int lvds_bpc;
|
|
|
|
if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
|
|
LVDS_A3_POWER_UP)
|
|
lvds_bpc = 8;
|
|
else
|
|
lvds_bpc = 6;
|
|
|
|
if (lvds_bpc < display_bpc) {
|
|
DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
|
|
display_bpc = lvds_bpc;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Not one of the known troublemakers, check the EDID */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
head) {
|
|
if (connector->encoder != &intel_encoder->base)
|
|
continue;
|
|
|
|
/* Don't use an invalid EDID bpc value */
|
|
if (connector->display_info.bpc &&
|
|
connector->display_info.bpc < display_bpc) {
|
|
DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
|
|
display_bpc = connector->display_info.bpc;
|
|
}
|
|
}
|
|
|
|
if (intel_encoder->type == INTEL_OUTPUT_EDP) {
|
|
/* Use VBT settings if we have an eDP panel */
|
|
unsigned int edp_bpc = dev_priv->edp.bpp / 3;
|
|
|
|
if (edp_bpc && edp_bpc < display_bpc) {
|
|
DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
|
|
display_bpc = edp_bpc;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* HDMI is either 12 or 8, so if the display lets 10bpc sneak
|
|
* through, clamp it down. (Note: >12bpc will be caught below.)
|
|
*/
|
|
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
|
|
if (display_bpc > 8 && display_bpc < 12) {
|
|
DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
|
|
display_bpc = 12;
|
|
} else {
|
|
DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
|
|
display_bpc = 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
|
|
DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
|
|
display_bpc = 6;
|
|
}
|
|
|
|
/*
|
|
* We could just drive the pipe at the highest bpc all the time and
|
|
* enable dithering as needed, but that costs bandwidth. So choose
|
|
* the minimum value that expresses the full color range of the fb but
|
|
* also stays within the max display bpc discovered above.
|
|
*/
|
|
|
|
switch (fb->depth) {
|
|
case 8:
|
|
bpc = 8; /* since we go through a colormap */
|
|
break;
|
|
case 15:
|
|
case 16:
|
|
bpc = 6; /* min is 18bpp */
|
|
break;
|
|
case 24:
|
|
bpc = 8;
|
|
break;
|
|
case 30:
|
|
bpc = 10;
|
|
break;
|
|
case 48:
|
|
bpc = 12;
|
|
break;
|
|
default:
|
|
DRM_DEBUG("unsupported depth, assuming 24 bits\n");
|
|
bpc = min((unsigned int)8, display_bpc);
|
|
break;
|
|
}
|
|
|
|
display_bpc = min(display_bpc, bpc);
|
|
|
|
DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
|
|
bpc, display_bpc);
|
|
|
|
*pipe_bpp = display_bpc * 3;
|
|
|
|
return display_bpc != bpc;
|
|
}
|
|
|
|
static int vlv_get_refclk(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int refclk = 27000; /* for DP & HDMI */
|
|
|
|
return 100000; /* only one validated so far */
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
|
|
refclk = 96000;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_panel_use_ssc(dev_priv))
|
|
refclk = 100000;
|
|
else
|
|
refclk = 96000;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
|
|
refclk = 100000;
|
|
}
|
|
|
|
return refclk;
|
|
}
|
|
|
|
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int refclk;
|
|
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
refclk = vlv_get_refclk(crtc);
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
|
|
refclk = dev_priv->lvds_ssc_freq * 1000;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
|
|
refclk / 1000);
|
|
} else if (!IS_GEN2(dev)) {
|
|
refclk = 96000;
|
|
} else {
|
|
refclk = 48000;
|
|
}
|
|
|
|
return refclk;
|
|
}
|
|
|
|
static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
|
|
intel_clock_t *clock)
|
|
{
|
|
/* SDVO TV has fixed PLL values depend on its clock range,
|
|
this mirrors vbios setting. */
|
|
if (adjusted_mode->clock >= 100000
|
|
&& adjusted_mode->clock < 140500) {
|
|
clock->p1 = 2;
|
|
clock->p2 = 10;
|
|
clock->n = 3;
|
|
clock->m1 = 16;
|
|
clock->m2 = 8;
|
|
} else if (adjusted_mode->clock >= 140500
|
|
&& adjusted_mode->clock <= 200000) {
|
|
clock->p1 = 1;
|
|
clock->p2 = 10;
|
|
clock->n = 6;
|
|
clock->m1 = 12;
|
|
clock->m2 = 8;
|
|
}
|
|
}
|
|
|
|
static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
|
|
intel_clock_t *clock,
|
|
intel_clock_t *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 fp, fp2 = 0;
|
|
|
|
if (IS_PINEVIEW(dev)) {
|
|
fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
|
|
if (reduced_clock)
|
|
fp2 = (1 << reduced_clock->n) << 16 |
|
|
reduced_clock->m1 << 8 | reduced_clock->m2;
|
|
} else {
|
|
fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
|
|
if (reduced_clock)
|
|
fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
|
|
reduced_clock->m2;
|
|
}
|
|
|
|
I915_WRITE(FP0(pipe), fp);
|
|
|
|
intel_crtc->lowfreq_avail = false;
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
reduced_clock && i915_powersave) {
|
|
I915_WRITE(FP1(pipe), fp2);
|
|
intel_crtc->lowfreq_avail = true;
|
|
} else {
|
|
I915_WRITE(FP1(pipe), fp);
|
|
}
|
|
}
|
|
|
|
static void vlv_update_pll(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
intel_clock_t *clock, intel_clock_t *reduced_clock,
|
|
int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 dpll, mdiv, pdiv;
|
|
u32 bestn, bestm1, bestm2, bestp1, bestp2;
|
|
bool is_sdvo;
|
|
u32 temp;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
|
|
dpll |= DPLL_REFA_CLK_ENABLE_VLV;
|
|
dpll |= DPLL_INTEGRATED_CLOCK_VLV;
|
|
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
POSTING_READ(DPLL(pipe));
|
|
|
|
bestn = clock->n;
|
|
bestm1 = clock->m1;
|
|
bestm2 = clock->m2;
|
|
bestp1 = clock->p1;
|
|
bestp2 = clock->p2;
|
|
|
|
/*
|
|
* In Valleyview PLL and program lane counter registers are exposed
|
|
* through DPIO interface
|
|
*/
|
|
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
|
|
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
|
|
mdiv |= ((bestn << DPIO_N_SHIFT));
|
|
mdiv |= (1 << DPIO_POST_DIV_SHIFT);
|
|
mdiv |= (1 << DPIO_K_SHIFT);
|
|
mdiv |= DPIO_ENABLE_CALIBRATION;
|
|
intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
|
|
|
|
intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
|
|
|
|
pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
|
|
(3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
|
|
(7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
|
|
(5 << DPIO_CLK_BIAS_CTL_SHIFT);
|
|
intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
|
|
|
|
intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
POSTING_READ(DPLL(pipe));
|
|
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
|
|
DRM_ERROR("DPLL %d failed to lock\n", pipe);
|
|
|
|
intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
|
|
intel_dp_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(DPLL(pipe));
|
|
udelay(150);
|
|
|
|
temp = 0;
|
|
if (is_sdvo) {
|
|
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
|
|
if (temp > 1)
|
|
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
else
|
|
temp = 0;
|
|
}
|
|
I915_WRITE(DPLL_MD(pipe), temp);
|
|
POSTING_READ(DPLL_MD(pipe));
|
|
|
|
/* Now program lane control registers */
|
|
if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
|
|
|| intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
|
|
{
|
|
temp = 0x1000C4;
|
|
if(pipe == 1)
|
|
temp |= (1 << 21);
|
|
intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
|
|
}
|
|
if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
|
|
{
|
|
temp = 0x1000C4;
|
|
if(pipe == 1)
|
|
temp |= (1 << 21);
|
|
intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
static void i9xx_update_pll(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
intel_clock_t *clock, intel_clock_t *reduced_clock,
|
|
int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 dpll;
|
|
bool is_sdvo;
|
|
|
|
i9xx_update_pll_dividers(crtc, clock, reduced_clock);
|
|
|
|
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
if (is_sdvo) {
|
|
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
|
|
if (pixel_multiplier > 1) {
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
|
|
}
|
|
dpll |= DPLL_DVO_HIGH_SPEED;
|
|
}
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
|
|
dpll |= DPLL_DVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
if (IS_PINEVIEW(dev))
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
|
|
else {
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (IS_G4X(dev) && reduced_clock)
|
|
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
}
|
|
switch (clock->p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
|
|
|
|
if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
|
|
dpll |= PLL_REF_INPUT_TVCLKINBC;
|
|
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
|
|
/* XXX: just matching BIOS for now */
|
|
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
|
|
dpll |= 3;
|
|
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
|
|
POSTING_READ(DPLL(pipe));
|
|
udelay(150);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_pll_enable)
|
|
encoder->pre_pll_enable(encoder);
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
|
|
intel_dp_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(DPLL(pipe));
|
|
udelay(150);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
u32 temp = 0;
|
|
if (is_sdvo) {
|
|
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
|
|
if (temp > 1)
|
|
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
else
|
|
temp = 0;
|
|
}
|
|
I915_WRITE(DPLL_MD(pipe), temp);
|
|
} else {
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
}
|
|
}
|
|
|
|
static void i8xx_update_pll(struct drm_crtc *crtc,
|
|
struct drm_display_mode *adjusted_mode,
|
|
intel_clock_t *clock, intel_clock_t *reduced_clock,
|
|
int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 dpll;
|
|
|
|
i9xx_update_pll_dividers(crtc, clock, reduced_clock);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
} else {
|
|
if (clock->p1 == 2)
|
|
dpll |= PLL_P1_DIVIDE_BY_TWO;
|
|
else
|
|
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (clock->p2 == 4)
|
|
dpll |= PLL_P2_DIVIDE_BY_4;
|
|
}
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
|
|
/* XXX: just matching BIOS for now */
|
|
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
|
|
dpll |= 3;
|
|
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
|
|
POSTING_READ(DPLL(pipe));
|
|
udelay(150);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_pll_enable)
|
|
encoder->pre_pll_enable(encoder);
|
|
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(DPLL(pipe));
|
|
udelay(150);
|
|
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(DPLL(pipe), dpll);
|
|
}
|
|
|
|
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
|
|
uint32_t vsyncshift;
|
|
|
|
if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
/* the chip adds 2 halflines automatically */
|
|
adjusted_mode->crtc_vtotal -= 1;
|
|
adjusted_mode->crtc_vblank_end -= 1;
|
|
vsyncshift = adjusted_mode->crtc_hsync_start
|
|
- adjusted_mode->crtc_htotal / 2;
|
|
} else {
|
|
vsyncshift = 0;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen > 3)
|
|
I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
|
|
|
|
I915_WRITE(HTOTAL(cpu_transcoder),
|
|
(adjusted_mode->crtc_hdisplay - 1) |
|
|
((adjusted_mode->crtc_htotal - 1) << 16));
|
|
I915_WRITE(HBLANK(cpu_transcoder),
|
|
(adjusted_mode->crtc_hblank_start - 1) |
|
|
((adjusted_mode->crtc_hblank_end - 1) << 16));
|
|
I915_WRITE(HSYNC(cpu_transcoder),
|
|
(adjusted_mode->crtc_hsync_start - 1) |
|
|
((adjusted_mode->crtc_hsync_end - 1) << 16));
|
|
|
|
I915_WRITE(VTOTAL(cpu_transcoder),
|
|
(adjusted_mode->crtc_vdisplay - 1) |
|
|
((adjusted_mode->crtc_vtotal - 1) << 16));
|
|
I915_WRITE(VBLANK(cpu_transcoder),
|
|
(adjusted_mode->crtc_vblank_start - 1) |
|
|
((adjusted_mode->crtc_vblank_end - 1) << 16));
|
|
I915_WRITE(VSYNC(cpu_transcoder),
|
|
(adjusted_mode->crtc_vsync_start - 1) |
|
|
((adjusted_mode->crtc_vsync_end - 1) << 16));
|
|
|
|
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
|
|
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
|
|
* documented on the DDI_FUNC_CTL register description, EDP Input Select
|
|
* bits. */
|
|
if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
|
|
(pipe == PIPE_B || pipe == PIPE_C))
|
|
I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
|
|
|
|
/* pipesrc controls the size that is scaled from, which should
|
|
* always be the user's requested size.
|
|
*/
|
|
I915_WRITE(PIPESRC(pipe),
|
|
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
|
|
}
|
|
|
|
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
int x, int y,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
int refclk, num_connectors = 0;
|
|
intel_clock_t clock, reduced_clock;
|
|
u32 dspcntr, pipeconf;
|
|
bool ok, has_reduced_clock = false, is_sdvo = false;
|
|
bool is_lvds = false, is_tv = false, is_dp = false;
|
|
struct intel_encoder *encoder;
|
|
const intel_limit_t *limit;
|
|
int ret;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_SDVO:
|
|
case INTEL_OUTPUT_HDMI:
|
|
is_sdvo = true;
|
|
if (encoder->needs_tv_clock)
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_TVOUT:
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
}
|
|
|
|
num_connectors++;
|
|
}
|
|
|
|
refclk = i9xx_get_refclk(crtc, num_connectors);
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*/
|
|
limit = intel_limit(crtc, refclk);
|
|
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
|
|
&clock);
|
|
if (!ok) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure that the cursor is valid for the new mode before changing... */
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
if (is_lvds && dev_priv->lvds_downclock_avail) {
|
|
/*
|
|
* Ensure we match the reduced clock's P to the target clock.
|
|
* If the clocks don't match, we can't switch the display clock
|
|
* by using the FP0/FP1. In such case we will disable the LVDS
|
|
* downclock feature.
|
|
*/
|
|
has_reduced_clock = limit->find_pll(limit, crtc,
|
|
dev_priv->lvds_downclock,
|
|
refclk,
|
|
&clock,
|
|
&reduced_clock);
|
|
}
|
|
|
|
if (is_sdvo && is_tv)
|
|
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
|
|
|
|
if (IS_GEN2(dev))
|
|
i8xx_update_pll(crtc, adjusted_mode, &clock,
|
|
has_reduced_clock ? &reduced_clock : NULL,
|
|
num_connectors);
|
|
else if (IS_VALLEYVIEW(dev))
|
|
vlv_update_pll(crtc, mode, adjusted_mode, &clock,
|
|
has_reduced_clock ? &reduced_clock : NULL,
|
|
num_connectors);
|
|
else
|
|
i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
|
|
has_reduced_clock ? &reduced_clock : NULL,
|
|
num_connectors);
|
|
|
|
/* setup pipeconf */
|
|
pipeconf = I915_READ(PIPECONF(pipe));
|
|
|
|
/* Set up the display plane register */
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
|
|
if (pipe == 0)
|
|
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
|
|
else
|
|
dspcntr |= DISPPLANE_SEL_PIPE_B;
|
|
|
|
if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
|
|
/* Enable pixel doubling when the dot clock is > 90% of the (display)
|
|
* core speed.
|
|
*
|
|
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
|
|
* pipe == 0 check?
|
|
*/
|
|
if (mode->clock >
|
|
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
|
|
pipeconf |= PIPECONF_DOUBLE_WIDE;
|
|
else
|
|
pipeconf &= ~PIPECONF_DOUBLE_WIDE;
|
|
}
|
|
|
|
/* default to 8bpc */
|
|
pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
|
|
if (is_dp) {
|
|
if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
|
|
pipeconf |= PIPECONF_6BPC |
|
|
PIPECONF_DITHER_EN |
|
|
PIPECONF_DITHER_TYPE_SP;
|
|
}
|
|
}
|
|
|
|
if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
|
|
if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
|
|
pipeconf |= PIPECONF_6BPC |
|
|
PIPECONF_ENABLE |
|
|
I965_PIPECONF_ACTIVE;
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
|
|
drm_mode_debug_printmodeline(mode);
|
|
|
|
if (HAS_PIPE_CXSR(dev)) {
|
|
if (intel_crtc->lowfreq_avail) {
|
|
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
|
|
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
|
|
} else {
|
|
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
|
|
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
|
|
}
|
|
}
|
|
|
|
pipeconf &= ~PIPECONF_INTERLACE_MASK;
|
|
if (!IS_GEN2(dev) &&
|
|
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
|
|
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
|
|
else
|
|
pipeconf |= PIPECONF_PROGRESSIVE;
|
|
|
|
intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
|
|
|
|
/* pipesrc and dspsize control the size that is scaled from,
|
|
* which should always be the user's requested size.
|
|
*/
|
|
I915_WRITE(DSPSIZE(plane),
|
|
((mode->vdisplay - 1) << 16) |
|
|
(mode->hdisplay - 1));
|
|
I915_WRITE(DSPPOS(plane), 0);
|
|
|
|
I915_WRITE(PIPECONF(pipe), pipeconf);
|
|
POSTING_READ(PIPECONF(pipe));
|
|
intel_enable_pipe(dev_priv, pipe, false);
|
|
|
|
intel_wait_for_vblank(dev, pipe);
|
|
|
|
I915_WRITE(DSPCNTR(plane), dspcntr);
|
|
POSTING_READ(DSPCNTR(plane));
|
|
|
|
ret = intel_pipe_set_base(crtc, x, y, fb);
|
|
|
|
intel_update_watermarks(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ironlake_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct intel_encoder *encoder;
|
|
u32 temp;
|
|
bool has_lvds = false;
|
|
bool has_cpu_edp = false;
|
|
bool has_pch_edp = false;
|
|
bool has_panel = false;
|
|
bool has_ck505 = false;
|
|
bool can_ssc = false;
|
|
|
|
/* We need to take the global config into account */
|
|
list_for_each_entry(encoder, &mode_config->encoder_list,
|
|
base.head) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
has_panel = true;
|
|
has_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
has_panel = true;
|
|
if (intel_encoder_is_pch_edp(&encoder->base))
|
|
has_pch_edp = true;
|
|
else
|
|
has_cpu_edp = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (HAS_PCH_IBX(dev)) {
|
|
has_ck505 = dev_priv->display_clock_mode;
|
|
can_ssc = has_ck505;
|
|
} else {
|
|
has_ck505 = false;
|
|
can_ssc = true;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
|
|
has_panel, has_lvds, has_pch_edp, has_cpu_edp,
|
|
has_ck505);
|
|
|
|
/* Ironlake: try to setup display ref clock before DPLL
|
|
* enabling. This is only under driver's control after
|
|
* PCH B stepping, previous chipset stepping should be
|
|
* ignoring this setting.
|
|
*/
|
|
temp = I915_READ(PCH_DREF_CONTROL);
|
|
/* Always enable nonspread source */
|
|
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
|
|
|
|
if (has_ck505)
|
|
temp |= DREF_NONSPREAD_CK505_ENABLE;
|
|
else
|
|
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
|
|
|
|
if (has_panel) {
|
|
temp &= ~DREF_SSC_SOURCE_MASK;
|
|
temp |= DREF_SSC_SOURCE_ENABLE;
|
|
|
|
/* SSC must be turned on before enabling the CPU output */
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
|
|
DRM_DEBUG_KMS("Using SSC on panel\n");
|
|
temp |= DREF_SSC1_ENABLE;
|
|
} else
|
|
temp &= ~DREF_SSC1_ENABLE;
|
|
|
|
/* Get SSC going before enabling the outputs */
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
|
|
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
|
|
/* Enable CPU source on CPU attached eDP */
|
|
if (has_cpu_edp) {
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
|
|
DRM_DEBUG_KMS("Using SSC on eDP\n");
|
|
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
|
|
}
|
|
else
|
|
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
|
|
} else
|
|
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
} else {
|
|
DRM_DEBUG_KMS("Disabling SSC entirely\n");
|
|
|
|
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
|
|
/* Turn off CPU output */
|
|
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
|
|
/* Turn off the SSC source */
|
|
temp &= ~DREF_SSC_SOURCE_MASK;
|
|
temp |= DREF_SSC_SOURCE_DISABLE;
|
|
|
|
/* Turn off SSC1 */
|
|
temp &= ~ DREF_SSC1_ENABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
}
|
|
}
|
|
|
|
/* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
|
|
static void lpt_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct intel_encoder *encoder;
|
|
bool has_vga = false;
|
|
bool is_sdv = false;
|
|
u32 tmp;
|
|
|
|
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_ANALOG:
|
|
has_vga = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!has_vga)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
/* XXX: Rip out SDV support once Haswell ships for real. */
|
|
if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
|
|
is_sdv = true;
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
tmp &= ~SBI_SSCCTL_DISABLE;
|
|
tmp |= SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
|
|
udelay(24);
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
tmp &= ~SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
|
|
if (!is_sdv) {
|
|
tmp = I915_READ(SOUTH_CHICKEN2);
|
|
tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
|
|
I915_WRITE(SOUTH_CHICKEN2, tmp);
|
|
|
|
if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
|
|
FDI_MPHY_IOSFSB_RESET_STATUS, 100))
|
|
DRM_ERROR("FDI mPHY reset assert timeout\n");
|
|
|
|
tmp = I915_READ(SOUTH_CHICKEN2);
|
|
tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
|
|
I915_WRITE(SOUTH_CHICKEN2, tmp);
|
|
|
|
if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
|
|
FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
|
|
100))
|
|
DRM_ERROR("FDI mPHY reset de-assert timeout\n");
|
|
}
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
|
|
tmp &= ~(0xFF << 24);
|
|
tmp |= (0x12 << 24);
|
|
intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
|
|
|
|
if (!is_sdv) {
|
|
tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
|
|
tmp &= ~(0x3 << 6);
|
|
tmp |= (1 << 6) | (1 << 0);
|
|
intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
|
|
}
|
|
|
|
if (is_sdv) {
|
|
tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
|
|
tmp |= 0x7FFF;
|
|
intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
|
|
}
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
|
|
tmp |= (1 << 11);
|
|
intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
|
|
tmp |= (1 << 11);
|
|
intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
|
|
|
|
if (is_sdv) {
|
|
tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
|
|
tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
|
|
intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
|
|
tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
|
|
intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
|
|
tmp |= (0x3F << 8);
|
|
intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
|
|
tmp |= (0x3F << 8);
|
|
intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
|
|
}
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
|
|
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
|
|
intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
|
|
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
|
|
intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
|
|
|
|
if (!is_sdv) {
|
|
tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
|
|
tmp &= ~(7 << 13);
|
|
tmp |= (5 << 13);
|
|
intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
|
|
tmp &= ~(7 << 13);
|
|
tmp |= (5 << 13);
|
|
intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
|
|
}
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
|
|
tmp &= ~0xFF;
|
|
tmp |= 0x1C;
|
|
intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
|
|
tmp &= ~0xFF;
|
|
tmp |= 0x1C;
|
|
intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
|
|
tmp &= ~(0xFF << 16);
|
|
tmp |= (0x1C << 16);
|
|
intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
|
|
tmp &= ~(0xFF << 16);
|
|
tmp |= (0x1C << 16);
|
|
intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
|
|
|
|
if (!is_sdv) {
|
|
tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
|
|
tmp |= (1 << 27);
|
|
intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
|
|
tmp |= (1 << 27);
|
|
intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
|
|
tmp &= ~(0xF << 28);
|
|
tmp |= (4 << 28);
|
|
intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
|
|
tmp &= ~(0xF << 28);
|
|
tmp |= (4 << 28);
|
|
intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
|
|
}
|
|
|
|
/* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
|
|
tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
|
|
tmp |= SBI_DBUFF0_ENABLE;
|
|
intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize reference clocks when the driver loads
|
|
*/
|
|
void intel_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
|
|
ironlake_init_pch_refclk(dev);
|
|
else if (HAS_PCH_LPT(dev))
|
|
lpt_init_pch_refclk(dev);
|
|
}
|
|
|
|
static int ironlake_get_refclk(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *encoder;
|
|
struct intel_encoder *edp_encoder = NULL;
|
|
int num_connectors = 0;
|
|
bool is_lvds = false;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
edp_encoder = encoder;
|
|
break;
|
|
}
|
|
num_connectors++;
|
|
}
|
|
|
|
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
|
|
dev_priv->lvds_ssc_freq);
|
|
return dev_priv->lvds_ssc_freq * 1000;
|
|
}
|
|
|
|
return 120000;
|
|
}
|
|
|
|
static void ironlake_set_pipeconf(struct drm_crtc *crtc,
|
|
struct drm_display_mode *adjusted_mode,
|
|
bool dither)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t val;
|
|
|
|
val = I915_READ(PIPECONF(pipe));
|
|
|
|
val &= ~PIPECONF_BPC_MASK;
|
|
switch (intel_crtc->bpp) {
|
|
case 18:
|
|
val |= PIPECONF_6BPC;
|
|
break;
|
|
case 24:
|
|
val |= PIPECONF_8BPC;
|
|
break;
|
|
case 30:
|
|
val |= PIPECONF_10BPC;
|
|
break;
|
|
case 36:
|
|
val |= PIPECONF_12BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by intel_choose_pipe_bpp_dither. */
|
|
BUG();
|
|
}
|
|
|
|
val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
|
|
if (dither)
|
|
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
|
|
|
|
val &= ~PIPECONF_INTERLACE_MASK;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
|
|
val |= PIPECONF_INTERLACED_ILK;
|
|
else
|
|
val |= PIPECONF_PROGRESSIVE;
|
|
|
|
if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
|
|
val |= PIPECONF_COLOR_RANGE_SELECT;
|
|
else
|
|
val &= ~PIPECONF_COLOR_RANGE_SELECT;
|
|
|
|
I915_WRITE(PIPECONF(pipe), val);
|
|
POSTING_READ(PIPECONF(pipe));
|
|
}
|
|
|
|
/*
|
|
* Set up the pipe CSC unit.
|
|
*
|
|
* Currently only full range RGB to limited range RGB conversion
|
|
* is supported, but eventually this should handle various
|
|
* RGB<->YCbCr scenarios as well.
|
|
*/
|
|
static void intel_set_pipe_csc(struct drm_crtc *crtc,
|
|
const struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint16_t coeff = 0x7800; /* 1.0 */
|
|
|
|
/*
|
|
* TODO: Check what kind of values actually come out of the pipe
|
|
* with these coeff/postoff values and adjust to get the best
|
|
* accuracy. Perhaps we even need to take the bpc value into
|
|
* consideration.
|
|
*/
|
|
|
|
if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
|
|
coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
|
|
|
|
/*
|
|
* GY/GU and RY/RU should be the other way around according
|
|
* to BSpec, but reality doesn't agree. Just set them up in
|
|
* a way that results in the correct picture.
|
|
*/
|
|
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
|
|
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
|
|
|
|
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
|
|
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
|
|
|
|
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
|
|
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
|
|
|
|
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
|
|
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
|
|
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
|
|
|
|
if (INTEL_INFO(dev)->gen > 6) {
|
|
uint16_t postoff = 0;
|
|
|
|
if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
|
|
postoff = (16 * (1 << 13) / 255) & 0x1fff;
|
|
|
|
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
|
|
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
|
|
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
|
|
|
|
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
|
|
} else {
|
|
uint32_t mode = CSC_MODE_YUV_TO_RGB;
|
|
|
|
if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
|
|
mode |= CSC_BLACK_SCREEN_OFFSET;
|
|
|
|
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
|
|
}
|
|
}
|
|
|
|
static void haswell_set_pipeconf(struct drm_crtc *crtc,
|
|
struct drm_display_mode *adjusted_mode,
|
|
bool dither)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
|
|
uint32_t val;
|
|
|
|
val = I915_READ(PIPECONF(cpu_transcoder));
|
|
|
|
val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
|
|
if (dither)
|
|
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
|
|
|
|
val &= ~PIPECONF_INTERLACE_MASK_HSW;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
|
|
val |= PIPECONF_INTERLACED_ILK;
|
|
else
|
|
val |= PIPECONF_PROGRESSIVE;
|
|
|
|
I915_WRITE(PIPECONF(cpu_transcoder), val);
|
|
POSTING_READ(PIPECONF(cpu_transcoder));
|
|
}
|
|
|
|
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
|
|
struct drm_display_mode *adjusted_mode,
|
|
intel_clock_t *clock,
|
|
bool *has_reduced_clock,
|
|
intel_clock_t *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *intel_encoder;
|
|
int refclk;
|
|
const intel_limit_t *limit;
|
|
bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_SDVO:
|
|
case INTEL_OUTPUT_HDMI:
|
|
is_sdvo = true;
|
|
if (intel_encoder->needs_tv_clock)
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_TVOUT:
|
|
is_tv = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
refclk = ironlake_get_refclk(crtc);
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*/
|
|
limit = intel_limit(crtc, refclk);
|
|
ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
|
|
clock);
|
|
if (!ret)
|
|
return false;
|
|
|
|
if (is_lvds && dev_priv->lvds_downclock_avail) {
|
|
/*
|
|
* Ensure we match the reduced clock's P to the target clock.
|
|
* If the clocks don't match, we can't switch the display clock
|
|
* by using the FP0/FP1. In such case we will disable the LVDS
|
|
* downclock feature.
|
|
*/
|
|
*has_reduced_clock = limit->find_pll(limit, crtc,
|
|
dev_priv->lvds_downclock,
|
|
refclk,
|
|
clock,
|
|
reduced_clock);
|
|
}
|
|
|
|
if (is_sdvo && is_tv)
|
|
i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t temp;
|
|
|
|
temp = I915_READ(SOUTH_CHICKEN1);
|
|
if (temp & FDI_BC_BIFURCATION_SELECT)
|
|
return;
|
|
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
|
|
|
|
temp |= FDI_BC_BIFURCATION_SELECT;
|
|
DRM_DEBUG_KMS("enabling fdi C rx\n");
|
|
I915_WRITE(SOUTH_CHICKEN1, temp);
|
|
POSTING_READ(SOUTH_CHICKEN1);
|
|
}
|
|
|
|
static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *pipe_B_crtc =
|
|
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
|
|
|
|
DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
|
|
intel_crtc->pipe, intel_crtc->fdi_lanes);
|
|
if (intel_crtc->fdi_lanes > 4) {
|
|
DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
|
|
intel_crtc->pipe, intel_crtc->fdi_lanes);
|
|
/* Clamp lanes to avoid programming the hw with bogus values. */
|
|
intel_crtc->fdi_lanes = 4;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (dev_priv->num_pipe == 2)
|
|
return true;
|
|
|
|
switch (intel_crtc->pipe) {
|
|
case PIPE_A:
|
|
return true;
|
|
case PIPE_B:
|
|
if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
|
|
intel_crtc->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
|
|
intel_crtc->pipe, intel_crtc->fdi_lanes);
|
|
/* Clamp lanes to avoid programming the hw with bogus values. */
|
|
intel_crtc->fdi_lanes = 2;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (intel_crtc->fdi_lanes > 2)
|
|
WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
|
|
else
|
|
cpt_enable_fdi_bc_bifurcation(dev);
|
|
|
|
return true;
|
|
case PIPE_C:
|
|
if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
|
|
if (intel_crtc->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
|
|
intel_crtc->pipe, intel_crtc->fdi_lanes);
|
|
/* Clamp lanes to avoid programming the hw with bogus values. */
|
|
intel_crtc->fdi_lanes = 2;
|
|
|
|
return false;
|
|
}
|
|
} else {
|
|
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
|
|
return false;
|
|
}
|
|
|
|
cpt_enable_fdi_bc_bifurcation(dev);
|
|
|
|
return true;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
|
|
{
|
|
/*
|
|
* Account for spread spectrum to avoid
|
|
* oversubscribing the link. Max center spread
|
|
* is 2.5%; use 5% for safety's sake.
|
|
*/
|
|
u32 bps = target_clock * bpp * 21 / 20;
|
|
return bps / (link_bw * 8) + 1;
|
|
}
|
|
|
|
static void ironlake_set_m_n(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
|
|
struct intel_encoder *intel_encoder, *edp_encoder = NULL;
|
|
struct intel_link_m_n m_n = {0};
|
|
int target_clock, pixel_multiplier, lane, link_bw;
|
|
bool is_dp = false, is_cpu_edp = false;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
is_dp = true;
|
|
if (!intel_encoder_is_pch_edp(&intel_encoder->base))
|
|
is_cpu_edp = true;
|
|
edp_encoder = intel_encoder;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* FDI link */
|
|
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
|
|
lane = 0;
|
|
/* CPU eDP doesn't require FDI link, so just set DP M/N
|
|
according to current link config */
|
|
if (is_cpu_edp) {
|
|
intel_edp_link_config(edp_encoder, &lane, &link_bw);
|
|
} else {
|
|
/* FDI is a binary signal running at ~2.7GHz, encoding
|
|
* each output octet as 10 bits. The actual frequency
|
|
* is stored as a divider into a 100MHz clock, and the
|
|
* mode pixel clock is stored in units of 1KHz.
|
|
* Hence the bw of each lane in terms of the mode signal
|
|
* is:
|
|
*/
|
|
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
|
|
}
|
|
|
|
/* [e]DP over FDI requires target mode clock instead of link clock. */
|
|
if (edp_encoder)
|
|
target_clock = intel_edp_target_clock(edp_encoder, mode);
|
|
else if (is_dp)
|
|
target_clock = mode->clock;
|
|
else
|
|
target_clock = adjusted_mode->clock;
|
|
|
|
if (!lane)
|
|
lane = ironlake_get_lanes_required(target_clock, link_bw,
|
|
intel_crtc->bpp);
|
|
|
|
intel_crtc->fdi_lanes = lane;
|
|
|
|
if (pixel_multiplier > 1)
|
|
link_bw *= pixel_multiplier;
|
|
intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
|
|
|
|
I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
|
|
I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
|
|
I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
|
|
I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
|
|
}
|
|
|
|
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
|
|
struct drm_display_mode *adjusted_mode,
|
|
intel_clock_t *clock, u32 fp)
|
|
{
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *intel_encoder;
|
|
uint32_t dpll;
|
|
int factor, pixel_multiplier, num_connectors = 0;
|
|
bool is_lvds = false, is_sdvo = false, is_tv = false;
|
|
bool is_dp = false, is_cpu_edp = false;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_SDVO:
|
|
case INTEL_OUTPUT_HDMI:
|
|
is_sdvo = true;
|
|
if (intel_encoder->needs_tv_clock)
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_TVOUT:
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
is_dp = true;
|
|
if (!intel_encoder_is_pch_edp(&intel_encoder->base))
|
|
is_cpu_edp = true;
|
|
break;
|
|
}
|
|
|
|
num_connectors++;
|
|
}
|
|
|
|
/* Enable autotuning of the PLL clock (if permissible) */
|
|
factor = 21;
|
|
if (is_lvds) {
|
|
if ((intel_panel_use_ssc(dev_priv) &&
|
|
dev_priv->lvds_ssc_freq == 100) ||
|
|
intel_is_dual_link_lvds(dev))
|
|
factor = 25;
|
|
} else if (is_sdvo && is_tv)
|
|
factor = 20;
|
|
|
|
if (clock->m < factor * clock->n)
|
|
fp |= FP_CB_TUNE;
|
|
|
|
dpll = 0;
|
|
|
|
if (is_lvds)
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
if (is_sdvo) {
|
|
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
|
|
if (pixel_multiplier > 1) {
|
|
dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
|
|
}
|
|
dpll |= DPLL_DVO_HIGH_SPEED;
|
|
}
|
|
if (is_dp && !is_cpu_edp)
|
|
dpll |= DPLL_DVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
/* also FPA1 */
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
|
|
switch (clock->p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
|
|
if (is_sdvo && is_tv)
|
|
dpll |= PLL_REF_INPUT_TVCLKINBC;
|
|
else if (is_tv)
|
|
/* XXX: just matching BIOS for now */
|
|
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
|
|
dpll |= 3;
|
|
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
return dpll;
|
|
}
|
|
|
|
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
int x, int y,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
int num_connectors = 0;
|
|
intel_clock_t clock, reduced_clock;
|
|
u32 dpll, fp = 0, fp2 = 0;
|
|
bool ok, has_reduced_clock = false;
|
|
bool is_lvds = false, is_dp = false, is_cpu_edp = false;
|
|
struct intel_encoder *encoder;
|
|
int ret;
|
|
bool dither, fdi_config_ok;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
is_dp = true;
|
|
if (!intel_encoder_is_pch_edp(&encoder->base))
|
|
is_cpu_edp = true;
|
|
break;
|
|
}
|
|
|
|
num_connectors++;
|
|
}
|
|
|
|
WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
|
|
"Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
|
|
|
|
ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
|
|
&has_reduced_clock, &reduced_clock);
|
|
if (!ok) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure that the cursor is valid for the new mode before changing... */
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
/* determine panel color depth */
|
|
dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
|
|
adjusted_mode);
|
|
if (is_lvds && dev_priv->lvds_dither)
|
|
dither = true;
|
|
|
|
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
|
|
if (has_reduced_clock)
|
|
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
|
|
reduced_clock.m2;
|
|
|
|
dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
|
|
|
|
DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
|
|
drm_mode_debug_printmodeline(mode);
|
|
|
|
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
|
|
if (!is_cpu_edp) {
|
|
struct intel_pch_pll *pll;
|
|
|
|
pll = intel_get_pch_pll(intel_crtc, dpll, fp);
|
|
if (pll == NULL) {
|
|
DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
|
|
pipe);
|
|
return -EINVAL;
|
|
}
|
|
} else
|
|
intel_put_pch_pll(intel_crtc);
|
|
|
|
if (is_dp && !is_cpu_edp)
|
|
intel_dp_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_pll_enable)
|
|
encoder->pre_pll_enable(encoder);
|
|
|
|
if (intel_crtc->pch_pll) {
|
|
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(intel_crtc->pch_pll->pll_reg);
|
|
udelay(150);
|
|
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
|
|
}
|
|
|
|
intel_crtc->lowfreq_avail = false;
|
|
if (intel_crtc->pch_pll) {
|
|
if (is_lvds && has_reduced_clock && i915_powersave) {
|
|
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
|
|
intel_crtc->lowfreq_avail = true;
|
|
} else {
|
|
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
|
|
}
|
|
}
|
|
|
|
intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
|
|
|
|
/* Note, this also computes intel_crtc->fdi_lanes which is used below in
|
|
* ironlake_check_fdi_lanes. */
|
|
ironlake_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
|
|
|
|
ironlake_set_pipeconf(crtc, adjusted_mode, dither);
|
|
|
|
intel_wait_for_vblank(dev, pipe);
|
|
|
|
/* Set up the display plane register */
|
|
I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
|
|
POSTING_READ(DSPCNTR(plane));
|
|
|
|
ret = intel_pipe_set_base(crtc, x, y, fb);
|
|
|
|
intel_update_watermarks(dev);
|
|
|
|
intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
|
|
|
|
return fdi_config_ok ? ret : -EINVAL;
|
|
}
|
|
|
|
static void haswell_modeset_global_resources(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool enable = false;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
|
|
if (crtc->pipe != PIPE_A && crtc->base.enabled)
|
|
enable = true;
|
|
/* XXX: Should check for edp transcoder here, but thanks to init
|
|
* sequence that's not yet available. Just in case desktop eDP
|
|
* on PORT D is possible on haswell, too. */
|
|
}
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
if (encoder->type != INTEL_OUTPUT_EDP &&
|
|
encoder->connectors_active)
|
|
enable = true;
|
|
}
|
|
|
|
/* Even the eDP panel fitter is outside the always-on well. */
|
|
if (dev_priv->pch_pf_size)
|
|
enable = true;
|
|
|
|
intel_set_power_well(dev, enable);
|
|
}
|
|
|
|
static int haswell_crtc_mode_set(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
int x, int y,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
int num_connectors = 0;
|
|
bool is_dp = false, is_cpu_edp = false;
|
|
struct intel_encoder *encoder;
|
|
int ret;
|
|
bool dither;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
is_dp = true;
|
|
if (!intel_encoder_is_pch_edp(&encoder->base))
|
|
is_cpu_edp = true;
|
|
break;
|
|
}
|
|
|
|
num_connectors++;
|
|
}
|
|
|
|
/* We are not sure yet this won't happen. */
|
|
WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
|
|
INTEL_PCH_TYPE(dev));
|
|
|
|
WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
|
|
num_connectors, pipe_name(pipe));
|
|
|
|
WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
|
|
(PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
|
|
|
|
WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
|
|
|
|
if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
|
|
return -EINVAL;
|
|
|
|
/* Ensure that the cursor is valid for the new mode before changing... */
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
/* determine panel color depth */
|
|
dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
|
|
adjusted_mode);
|
|
|
|
DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
|
|
drm_mode_debug_printmodeline(mode);
|
|
|
|
if (is_dp && !is_cpu_edp)
|
|
intel_dp_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
intel_crtc->lowfreq_avail = false;
|
|
|
|
intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
|
|
|
|
if (!is_dp || is_cpu_edp)
|
|
ironlake_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
haswell_set_pipeconf(crtc, adjusted_mode, dither);
|
|
|
|
intel_set_pipe_csc(crtc, adjusted_mode);
|
|
|
|
/* Set up the display plane register */
|
|
I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
|
|
POSTING_READ(DSPCNTR(plane));
|
|
|
|
ret = intel_pipe_set_base(crtc, x, y, fb);
|
|
|
|
intel_update_watermarks(dev);
|
|
|
|
intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int intel_crtc_mode_set(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
int x, int y,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_encoder_helper_funcs *encoder_funcs;
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int ret;
|
|
|
|
if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
|
|
intel_crtc->cpu_transcoder = TRANSCODER_EDP;
|
|
else
|
|
intel_crtc->cpu_transcoder = pipe;
|
|
|
|
drm_vblank_pre_modeset(dev, pipe);
|
|
|
|
ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
|
|
x, y, fb);
|
|
drm_vblank_post_modeset(dev, pipe);
|
|
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
|
|
encoder->base.base.id,
|
|
drm_get_encoder_name(&encoder->base),
|
|
mode->base.id, mode->name);
|
|
encoder_funcs = encoder->base.helper_private;
|
|
encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool intel_eld_uptodate(struct drm_connector *connector,
|
|
int reg_eldv, uint32_t bits_eldv,
|
|
int reg_elda, uint32_t bits_elda,
|
|
int reg_edid)
|
|
{
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
uint8_t *eld = connector->eld;
|
|
uint32_t i;
|
|
|
|
i = I915_READ(reg_eldv);
|
|
i &= bits_eldv;
|
|
|
|
if (!eld[0])
|
|
return !i;
|
|
|
|
if (!i)
|
|
return false;
|
|
|
|
i = I915_READ(reg_elda);
|
|
i &= ~bits_elda;
|
|
I915_WRITE(reg_elda, i);
|
|
|
|
for (i = 0; i < eld[2]; i++)
|
|
if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void g4x_write_eld(struct drm_connector *connector,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
uint8_t *eld = connector->eld;
|
|
uint32_t eldv;
|
|
uint32_t len;
|
|
uint32_t i;
|
|
|
|
i = I915_READ(G4X_AUD_VID_DID);
|
|
|
|
if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
|
|
eldv = G4X_ELDV_DEVCL_DEVBLC;
|
|
else
|
|
eldv = G4X_ELDV_DEVCTG;
|
|
|
|
if (intel_eld_uptodate(connector,
|
|
G4X_AUD_CNTL_ST, eldv,
|
|
G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
|
|
G4X_HDMIW_HDMIEDID))
|
|
return;
|
|
|
|
i = I915_READ(G4X_AUD_CNTL_ST);
|
|
i &= ~(eldv | G4X_ELD_ADDR);
|
|
len = (i >> 9) & 0x1f; /* ELD buffer size */
|
|
I915_WRITE(G4X_AUD_CNTL_ST, i);
|
|
|
|
if (!eld[0])
|
|
return;
|
|
|
|
len = min_t(uint8_t, eld[2], len);
|
|
DRM_DEBUG_DRIVER("ELD size %d\n", len);
|
|
for (i = 0; i < len; i++)
|
|
I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
|
|
|
|
i = I915_READ(G4X_AUD_CNTL_ST);
|
|
i |= eldv;
|
|
I915_WRITE(G4X_AUD_CNTL_ST, i);
|
|
}
|
|
|
|
static void haswell_write_eld(struct drm_connector *connector,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
uint8_t *eld = connector->eld;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t eldv;
|
|
uint32_t i;
|
|
int len;
|
|
int pipe = to_intel_crtc(crtc)->pipe;
|
|
int tmp;
|
|
|
|
int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
|
|
int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
|
|
int aud_config = HSW_AUD_CFG(pipe);
|
|
int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
|
|
|
|
|
|
DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
|
|
|
|
/* Audio output enable */
|
|
DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
|
|
tmp = I915_READ(aud_cntrl_st2);
|
|
tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
|
|
I915_WRITE(aud_cntrl_st2, tmp);
|
|
|
|
/* Wait for 1 vertical blank */
|
|
intel_wait_for_vblank(dev, pipe);
|
|
|
|
/* Set ELD valid state */
|
|
tmp = I915_READ(aud_cntrl_st2);
|
|
DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
|
|
tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
|
|
I915_WRITE(aud_cntrl_st2, tmp);
|
|
tmp = I915_READ(aud_cntrl_st2);
|
|
DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
|
|
|
|
/* Enable HDMI mode */
|
|
tmp = I915_READ(aud_config);
|
|
DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
|
|
/* clear N_programing_enable and N_value_index */
|
|
tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
|
|
I915_WRITE(aud_config, tmp);
|
|
|
|
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
|
|
|
|
eldv = AUDIO_ELD_VALID_A << (pipe * 4);
|
|
intel_crtc->eld_vld = true;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
|
|
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
|
|
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
|
|
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
|
|
} else
|
|
I915_WRITE(aud_config, 0);
|
|
|
|
if (intel_eld_uptodate(connector,
|
|
aud_cntrl_st2, eldv,
|
|
aud_cntl_st, IBX_ELD_ADDRESS,
|
|
hdmiw_hdmiedid))
|
|
return;
|
|
|
|
i = I915_READ(aud_cntrl_st2);
|
|
i &= ~eldv;
|
|
I915_WRITE(aud_cntrl_st2, i);
|
|
|
|
if (!eld[0])
|
|
return;
|
|
|
|
i = I915_READ(aud_cntl_st);
|
|
i &= ~IBX_ELD_ADDRESS;
|
|
I915_WRITE(aud_cntl_st, i);
|
|
i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
|
|
DRM_DEBUG_DRIVER("port num:%d\n", i);
|
|
|
|
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
|
|
DRM_DEBUG_DRIVER("ELD size %d\n", len);
|
|
for (i = 0; i < len; i++)
|
|
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
|
|
|
|
i = I915_READ(aud_cntrl_st2);
|
|
i |= eldv;
|
|
I915_WRITE(aud_cntrl_st2, i);
|
|
|
|
}
|
|
|
|
static void ironlake_write_eld(struct drm_connector *connector,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
uint8_t *eld = connector->eld;
|
|
uint32_t eldv;
|
|
uint32_t i;
|
|
int len;
|
|
int hdmiw_hdmiedid;
|
|
int aud_config;
|
|
int aud_cntl_st;
|
|
int aud_cntrl_st2;
|
|
int pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
if (HAS_PCH_IBX(connector->dev)) {
|
|
hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
|
|
aud_config = IBX_AUD_CFG(pipe);
|
|
aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
|
|
aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
|
|
} else {
|
|
hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
|
|
aud_config = CPT_AUD_CFG(pipe);
|
|
aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
|
|
aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
|
|
|
|
i = I915_READ(aud_cntl_st);
|
|
i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
|
|
if (!i) {
|
|
DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
|
|
/* operate blindly on all ports */
|
|
eldv = IBX_ELD_VALIDB;
|
|
eldv |= IBX_ELD_VALIDB << 4;
|
|
eldv |= IBX_ELD_VALIDB << 8;
|
|
} else {
|
|
DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
|
|
eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
|
|
}
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
|
|
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
|
|
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
|
|
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
|
|
} else
|
|
I915_WRITE(aud_config, 0);
|
|
|
|
if (intel_eld_uptodate(connector,
|
|
aud_cntrl_st2, eldv,
|
|
aud_cntl_st, IBX_ELD_ADDRESS,
|
|
hdmiw_hdmiedid))
|
|
return;
|
|
|
|
i = I915_READ(aud_cntrl_st2);
|
|
i &= ~eldv;
|
|
I915_WRITE(aud_cntrl_st2, i);
|
|
|
|
if (!eld[0])
|
|
return;
|
|
|
|
i = I915_READ(aud_cntl_st);
|
|
i &= ~IBX_ELD_ADDRESS;
|
|
I915_WRITE(aud_cntl_st, i);
|
|
|
|
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
|
|
DRM_DEBUG_DRIVER("ELD size %d\n", len);
|
|
for (i = 0; i < len; i++)
|
|
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
|
|
|
|
i = I915_READ(aud_cntrl_st2);
|
|
i |= eldv;
|
|
I915_WRITE(aud_cntrl_st2, i);
|
|
}
|
|
|
|
void intel_write_eld(struct drm_encoder *encoder,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
struct drm_connector *connector;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
connector = drm_select_eld(encoder, mode);
|
|
if (!connector)
|
|
return;
|
|
|
|
DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id,
|
|
drm_get_connector_name(connector),
|
|
connector->encoder->base.id,
|
|
drm_get_encoder_name(connector->encoder));
|
|
|
|
connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
|
|
|
|
if (dev_priv->display.write_eld)
|
|
dev_priv->display.write_eld(connector, crtc);
|
|
}
|
|
|
|
/** Loads the palette/gamma unit for the CRTC with the prepared values */
|
|
void intel_crtc_load_lut(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int palreg = PALETTE(intel_crtc->pipe);
|
|
int i;
|
|
|
|
/* The clocks have to be on to load the palette. */
|
|
if (!crtc->enabled || !intel_crtc->active)
|
|
return;
|
|
|
|
/* use legacy palette for Ironlake */
|
|
if (HAS_PCH_SPLIT(dev))
|
|
palreg = LGC_PALETTE(intel_crtc->pipe);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
I915_WRITE(palreg + 4 * i,
|
|
(intel_crtc->lut_r[i] << 16) |
|
|
(intel_crtc->lut_g[i] << 8) |
|
|
intel_crtc->lut_b[i]);
|
|
}
|
|
}
|
|
|
|
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
bool visible = base != 0;
|
|
u32 cntl;
|
|
|
|
if (intel_crtc->cursor_visible == visible)
|
|
return;
|
|
|
|
cntl = I915_READ(_CURACNTR);
|
|
if (visible) {
|
|
/* On these chipsets we can only modify the base whilst
|
|
* the cursor is disabled.
|
|
*/
|
|
I915_WRITE(_CURABASE, base);
|
|
|
|
cntl &= ~(CURSOR_FORMAT_MASK);
|
|
/* XXX width must be 64, stride 256 => 0x00 << 28 */
|
|
cntl |= CURSOR_ENABLE |
|
|
CURSOR_GAMMA_ENABLE |
|
|
CURSOR_FORMAT_ARGB;
|
|
} else
|
|
cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
|
|
I915_WRITE(_CURACNTR, cntl);
|
|
|
|
intel_crtc->cursor_visible = visible;
|
|
}
|
|
|
|
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
bool visible = base != 0;
|
|
|
|
if (intel_crtc->cursor_visible != visible) {
|
|
uint32_t cntl = I915_READ(CURCNTR(pipe));
|
|
if (base) {
|
|
cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
|
|
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
|
|
cntl |= pipe << 28; /* Connect to correct pipe */
|
|
} else {
|
|
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
|
|
cntl |= CURSOR_MODE_DISABLE;
|
|
}
|
|
I915_WRITE(CURCNTR(pipe), cntl);
|
|
|
|
intel_crtc->cursor_visible = visible;
|
|
}
|
|
/* and commit changes on next vblank */
|
|
I915_WRITE(CURBASE(pipe), base);
|
|
}
|
|
|
|
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
bool visible = base != 0;
|
|
|
|
if (intel_crtc->cursor_visible != visible) {
|
|
uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
|
|
if (base) {
|
|
cntl &= ~CURSOR_MODE;
|
|
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
|
|
} else {
|
|
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
|
|
cntl |= CURSOR_MODE_DISABLE;
|
|
}
|
|
if (IS_HASWELL(dev))
|
|
cntl |= CURSOR_PIPE_CSC_ENABLE;
|
|
I915_WRITE(CURCNTR_IVB(pipe), cntl);
|
|
|
|
intel_crtc->cursor_visible = visible;
|
|
}
|
|
/* and commit changes on next vblank */
|
|
I915_WRITE(CURBASE_IVB(pipe), base);
|
|
}
|
|
|
|
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
|
|
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
|
|
bool on)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int x = intel_crtc->cursor_x;
|
|
int y = intel_crtc->cursor_y;
|
|
u32 base, pos;
|
|
bool visible;
|
|
|
|
pos = 0;
|
|
|
|
if (on && crtc->enabled && crtc->fb) {
|
|
base = intel_crtc->cursor_addr;
|
|
if (x > (int) crtc->fb->width)
|
|
base = 0;
|
|
|
|
if (y > (int) crtc->fb->height)
|
|
base = 0;
|
|
} else
|
|
base = 0;
|
|
|
|
if (x < 0) {
|
|
if (x + intel_crtc->cursor_width < 0)
|
|
base = 0;
|
|
|
|
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
|
|
x = -x;
|
|
}
|
|
pos |= x << CURSOR_X_SHIFT;
|
|
|
|
if (y < 0) {
|
|
if (y + intel_crtc->cursor_height < 0)
|
|
base = 0;
|
|
|
|
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
|
|
y = -y;
|
|
}
|
|
pos |= y << CURSOR_Y_SHIFT;
|
|
|
|
visible = base != 0;
|
|
if (!visible && !intel_crtc->cursor_visible)
|
|
return;
|
|
|
|
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
|
|
I915_WRITE(CURPOS_IVB(pipe), pos);
|
|
ivb_update_cursor(crtc, base);
|
|
} else {
|
|
I915_WRITE(CURPOS(pipe), pos);
|
|
if (IS_845G(dev) || IS_I865G(dev))
|
|
i845_update_cursor(crtc, base);
|
|
else
|
|
i9xx_update_cursor(crtc, base);
|
|
}
|
|
}
|
|
|
|
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
|
|
struct drm_file *file,
|
|
uint32_t handle,
|
|
uint32_t width, uint32_t height)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_i915_gem_object *obj;
|
|
uint32_t addr;
|
|
int ret;
|
|
|
|
/* if we want to turn off the cursor ignore width and height */
|
|
if (!handle) {
|
|
DRM_DEBUG_KMS("cursor off\n");
|
|
addr = 0;
|
|
obj = NULL;
|
|
mutex_lock(&dev->struct_mutex);
|
|
goto finish;
|
|
}
|
|
|
|
/* Currently we only support 64x64 cursors */
|
|
if (width != 64 || height != 64) {
|
|
DRM_ERROR("we currently only support 64x64 cursors\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
|
|
if (&obj->base == NULL)
|
|
return -ENOENT;
|
|
|
|
if (obj->base.size < width * height * 4) {
|
|
DRM_ERROR("buffer is to small\n");
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* we only need to pin inside GTT if cursor is non-phy */
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (!dev_priv->info->cursor_needs_physical) {
|
|
if (obj->tiling_mode) {
|
|
DRM_ERROR("cursor cannot be tiled\n");
|
|
ret = -EINVAL;
|
|
goto fail_locked;
|
|
}
|
|
|
|
ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
|
|
if (ret) {
|
|
DRM_ERROR("failed to move cursor bo into the GTT\n");
|
|
goto fail_locked;
|
|
}
|
|
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret) {
|
|
DRM_ERROR("failed to release fence for cursor");
|
|
goto fail_unpin;
|
|
}
|
|
|
|
addr = obj->gtt_offset;
|
|
} else {
|
|
int align = IS_I830(dev) ? 16 * 1024 : 256;
|
|
ret = i915_gem_attach_phys_object(dev, obj,
|
|
(intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
|
|
align);
|
|
if (ret) {
|
|
DRM_ERROR("failed to attach phys object\n");
|
|
goto fail_locked;
|
|
}
|
|
addr = obj->phys_obj->handle->busaddr;
|
|
}
|
|
|
|
if (IS_GEN2(dev))
|
|
I915_WRITE(CURSIZE, (height << 12) | width);
|
|
|
|
finish:
|
|
if (intel_crtc->cursor_bo) {
|
|
if (dev_priv->info->cursor_needs_physical) {
|
|
if (intel_crtc->cursor_bo != obj)
|
|
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
|
|
} else
|
|
i915_gem_object_unpin(intel_crtc->cursor_bo);
|
|
drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_crtc->cursor_addr = addr;
|
|
intel_crtc->cursor_bo = obj;
|
|
intel_crtc->cursor_width = width;
|
|
intel_crtc->cursor_height = height;
|
|
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
return 0;
|
|
fail_unpin:
|
|
i915_gem_object_unpin(obj);
|
|
fail_locked:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
fail:
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
intel_crtc->cursor_x = x;
|
|
intel_crtc->cursor_y = y;
|
|
|
|
intel_crtc_update_cursor(crtc, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Sets the color ramps on behalf of RandR */
|
|
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
|
|
u16 blue, int regno)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
intel_crtc->lut_r[regno] = red >> 8;
|
|
intel_crtc->lut_g[regno] = green >> 8;
|
|
intel_crtc->lut_b[regno] = blue >> 8;
|
|
}
|
|
|
|
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
|
|
u16 *blue, int regno)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
*red = intel_crtc->lut_r[regno] << 8;
|
|
*green = intel_crtc->lut_g[regno] << 8;
|
|
*blue = intel_crtc->lut_b[regno] << 8;
|
|
}
|
|
|
|
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
|
|
u16 *blue, uint32_t start, uint32_t size)
|
|
{
|
|
int end = (start + size > 256) ? 256 : start + size, i;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
for (i = start; i < end; i++) {
|
|
intel_crtc->lut_r[i] = red[i] >> 8;
|
|
intel_crtc->lut_g[i] = green[i] >> 8;
|
|
intel_crtc->lut_b[i] = blue[i] >> 8;
|
|
}
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
}
|
|
|
|
/**
|
|
* Get a pipe with a simple mode set on it for doing load-based monitor
|
|
* detection.
|
|
*
|
|
* It will be up to the load-detect code to adjust the pipe as appropriate for
|
|
* its requirements. The pipe will be connected to no other encoders.
|
|
*
|
|
* Currently this code will only succeed if there is a pipe with no encoders
|
|
* configured for it. In the future, it could choose to temporarily disable
|
|
* some outputs to free up a pipe for its use.
|
|
*
|
|
* \return crtc, or NULL if no pipes are available.
|
|
*/
|
|
|
|
/* VESA 640x480x72Hz mode to set on the pipe */
|
|
static struct drm_display_mode load_detect_mode = {
|
|
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
|
|
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
|
|
};
|
|
|
|
static struct drm_framebuffer *
|
|
intel_framebuffer_create(struct drm_device *dev,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct intel_framebuffer *intel_fb;
|
|
int ret;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb) {
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
|
|
if (ret) {
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
kfree(intel_fb);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return &intel_fb->base;
|
|
}
|
|
|
|
static u32
|
|
intel_framebuffer_pitch_for_width(int width, int bpp)
|
|
{
|
|
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
|
|
return ALIGN(pitch, 64);
|
|
}
|
|
|
|
static u32
|
|
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
|
|
{
|
|
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
|
|
return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_framebuffer_create_for_mode(struct drm_device *dev,
|
|
struct drm_display_mode *mode,
|
|
int depth, int bpp)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
|
|
|
|
obj = i915_gem_alloc_object(dev,
|
|
intel_framebuffer_size_for_mode(mode, bpp));
|
|
if (obj == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mode_cmd.width = mode->hdisplay;
|
|
mode_cmd.height = mode->vdisplay;
|
|
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
|
|
bpp);
|
|
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
|
|
|
|
return intel_framebuffer_create(dev, &mode_cmd, obj);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
mode_fits_in_fbdev(struct drm_device *dev,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_framebuffer *fb;
|
|
|
|
if (dev_priv->fbdev == NULL)
|
|
return NULL;
|
|
|
|
obj = dev_priv->fbdev->ifb.obj;
|
|
if (obj == NULL)
|
|
return NULL;
|
|
|
|
fb = &dev_priv->fbdev->ifb.base;
|
|
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
|
|
fb->bits_per_pixel))
|
|
return NULL;
|
|
|
|
if (obj->base.size < mode->vdisplay * fb->pitches[0])
|
|
return NULL;
|
|
|
|
return fb;
|
|
}
|
|
|
|
bool intel_get_load_detect_pipe(struct drm_connector *connector,
|
|
struct drm_display_mode *mode,
|
|
struct intel_load_detect_pipe *old)
|
|
{
|
|
struct intel_crtc *intel_crtc;
|
|
struct intel_encoder *intel_encoder =
|
|
intel_attached_encoder(connector);
|
|
struct drm_crtc *possible_crtc;
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = NULL;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_framebuffer *fb;
|
|
int i = -1;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id, drm_get_connector_name(connector),
|
|
encoder->base.id, drm_get_encoder_name(encoder));
|
|
|
|
/*
|
|
* Algorithm gets a little messy:
|
|
*
|
|
* - if the connector already has an assigned crtc, use it (but make
|
|
* sure it's on first)
|
|
*
|
|
* - try to find the first unused crtc that can drive this connector,
|
|
* and use that if we find one
|
|
*/
|
|
|
|
/* See if we already have a CRTC for this connector */
|
|
if (encoder->crtc) {
|
|
crtc = encoder->crtc;
|
|
|
|
mutex_lock(&crtc->mutex);
|
|
|
|
old->dpms_mode = connector->dpms;
|
|
old->load_detect_temp = false;
|
|
|
|
/* Make sure the crtc and connector are running */
|
|
if (connector->dpms != DRM_MODE_DPMS_ON)
|
|
connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find an unused one (if possible) */
|
|
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
|
|
i++;
|
|
if (!(encoder->possible_crtcs & (1 << i)))
|
|
continue;
|
|
if (!possible_crtc->enabled) {
|
|
crtc = possible_crtc;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we didn't find an unused CRTC, don't use any.
|
|
*/
|
|
if (!crtc) {
|
|
DRM_DEBUG_KMS("no pipe available for load-detect\n");
|
|
return false;
|
|
}
|
|
|
|
mutex_lock(&crtc->mutex);
|
|
intel_encoder->new_crtc = to_intel_crtc(crtc);
|
|
to_intel_connector(connector)->new_encoder = intel_encoder;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
old->dpms_mode = connector->dpms;
|
|
old->load_detect_temp = true;
|
|
old->release_fb = NULL;
|
|
|
|
if (!mode)
|
|
mode = &load_detect_mode;
|
|
|
|
/* We need a framebuffer large enough to accommodate all accesses
|
|
* that the plane may generate whilst we perform load detection.
|
|
* We can not rely on the fbcon either being present (we get called
|
|
* during its initialisation to detect all boot displays, or it may
|
|
* not even exist) or that it is large enough to satisfy the
|
|
* requested mode.
|
|
*/
|
|
fb = mode_fits_in_fbdev(dev, mode);
|
|
if (fb == NULL) {
|
|
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
|
|
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
|
|
old->release_fb = fb;
|
|
} else
|
|
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
|
|
if (IS_ERR(fb)) {
|
|
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
|
|
mutex_unlock(&crtc->mutex);
|
|
return false;
|
|
}
|
|
|
|
if (intel_set_mode(crtc, mode, 0, 0, fb)) {
|
|
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
|
|
if (old->release_fb)
|
|
old->release_fb->funcs->destroy(old->release_fb);
|
|
mutex_unlock(&crtc->mutex);
|
|
return false;
|
|
}
|
|
|
|
/* let the connector get through one full cycle before testing */
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
return true;
|
|
}
|
|
|
|
void intel_release_load_detect_pipe(struct drm_connector *connector,
|
|
struct intel_load_detect_pipe *old)
|
|
{
|
|
struct intel_encoder *intel_encoder =
|
|
intel_attached_encoder(connector);
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id, drm_get_connector_name(connector),
|
|
encoder->base.id, drm_get_encoder_name(encoder));
|
|
|
|
if (old->load_detect_temp) {
|
|
to_intel_connector(connector)->new_encoder = NULL;
|
|
intel_encoder->new_crtc = NULL;
|
|
intel_set_mode(crtc, NULL, 0, 0, NULL);
|
|
|
|
if (old->release_fb) {
|
|
drm_framebuffer_unregister_private(old->release_fb);
|
|
drm_framebuffer_unreference(old->release_fb);
|
|
}
|
|
|
|
mutex_unlock(&crtc->mutex);
|
|
return;
|
|
}
|
|
|
|
/* Switch crtc and encoder back off if necessary */
|
|
if (old->dpms_mode != DRM_MODE_DPMS_ON)
|
|
connector->funcs->dpms(connector, old->dpms_mode);
|
|
|
|
mutex_unlock(&crtc->mutex);
|
|
}
|
|
|
|
/* Returns the clock of the currently programmed mode of the given pipe. */
|
|
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 dpll = I915_READ(DPLL(pipe));
|
|
u32 fp;
|
|
intel_clock_t clock;
|
|
|
|
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
|
|
fp = I915_READ(FP0(pipe));
|
|
else
|
|
fp = I915_READ(FP1(pipe));
|
|
|
|
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
|
|
if (IS_PINEVIEW(dev)) {
|
|
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
|
|
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
} else {
|
|
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
|
|
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
}
|
|
|
|
if (!IS_GEN2(dev)) {
|
|
if (IS_PINEVIEW(dev))
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
|
|
else
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
|
|
switch (dpll & DPLL_MODE_MASK) {
|
|
case DPLLB_MODE_DAC_SERIAL:
|
|
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
|
|
5 : 10;
|
|
break;
|
|
case DPLLB_MODE_LVDS:
|
|
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
|
|
7 : 14;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
|
|
"mode\n", (int)(dpll & DPLL_MODE_MASK));
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: Handle the 100Mhz refclk */
|
|
intel_clock(dev, 96000, &clock);
|
|
} else {
|
|
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
|
|
|
|
if (is_lvds) {
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
clock.p2 = 14;
|
|
|
|
if ((dpll & PLL_REF_INPUT_MASK) ==
|
|
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
|
|
/* XXX: might not be 66MHz */
|
|
intel_clock(dev, 66000, &clock);
|
|
} else
|
|
intel_clock(dev, 48000, &clock);
|
|
} else {
|
|
if (dpll & PLL_P1_DIVIDE_BY_TWO)
|
|
clock.p1 = 2;
|
|
else {
|
|
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
|
|
}
|
|
if (dpll & PLL_P2_DIVIDE_BY_4)
|
|
clock.p2 = 4;
|
|
else
|
|
clock.p2 = 2;
|
|
|
|
intel_clock(dev, 48000, &clock);
|
|
}
|
|
}
|
|
|
|
/* XXX: It would be nice to validate the clocks, but we can't reuse
|
|
* i830PllIsValid() because it relies on the xf86_config connector
|
|
* configuration being accurate, which it isn't necessarily.
|
|
*/
|
|
|
|
return clock.dot;
|
|
}
|
|
|
|
/** Returns the currently programmed mode of the given pipe. */
|
|
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
|
|
struct drm_display_mode *mode;
|
|
int htot = I915_READ(HTOTAL(cpu_transcoder));
|
|
int hsync = I915_READ(HSYNC(cpu_transcoder));
|
|
int vtot = I915_READ(VTOTAL(cpu_transcoder));
|
|
int vsync = I915_READ(VSYNC(cpu_transcoder));
|
|
|
|
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
|
|
if (!mode)
|
|
return NULL;
|
|
|
|
mode->clock = intel_crtc_clock_get(dev, crtc);
|
|
mode->hdisplay = (htot & 0xffff) + 1;
|
|
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
|
|
mode->hsync_start = (hsync & 0xffff) + 1;
|
|
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
|
|
mode->vdisplay = (vtot & 0xffff) + 1;
|
|
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
|
|
mode->vsync_start = (vsync & 0xffff) + 1;
|
|
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
|
|
|
|
drm_mode_set_name(mode);
|
|
|
|
return mode;
|
|
}
|
|
|
|
static void intel_increase_pllclock(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int dpll_reg = DPLL(pipe);
|
|
int dpll;
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
return;
|
|
|
|
if (!dev_priv->lvds_downclock_avail)
|
|
return;
|
|
|
|
dpll = I915_READ(dpll_reg);
|
|
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
|
|
DRM_DEBUG_DRIVER("upclocking LVDS\n");
|
|
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
|
|
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
|
|
I915_WRITE(dpll_reg, dpll);
|
|
intel_wait_for_vblank(dev, pipe);
|
|
|
|
dpll = I915_READ(dpll_reg);
|
|
if (dpll & DISPLAY_RATE_SELECT_FPA1)
|
|
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
|
|
}
|
|
}
|
|
|
|
static void intel_decrease_pllclock(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
return;
|
|
|
|
if (!dev_priv->lvds_downclock_avail)
|
|
return;
|
|
|
|
/*
|
|
* Since this is called by a timer, we should never get here in
|
|
* the manual case.
|
|
*/
|
|
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
|
|
int pipe = intel_crtc->pipe;
|
|
int dpll_reg = DPLL(pipe);
|
|
int dpll;
|
|
|
|
DRM_DEBUG_DRIVER("downclocking LVDS\n");
|
|
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
|
|
dpll = I915_READ(dpll_reg);
|
|
dpll |= DISPLAY_RATE_SELECT_FPA1;
|
|
I915_WRITE(dpll_reg, dpll);
|
|
intel_wait_for_vblank(dev, pipe);
|
|
dpll = I915_READ(dpll_reg);
|
|
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
|
|
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
|
|
}
|
|
|
|
}
|
|
|
|
void intel_mark_busy(struct drm_device *dev)
|
|
{
|
|
i915_update_gfx_val(dev->dev_private);
|
|
}
|
|
|
|
void intel_mark_idle(struct drm_device *dev)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
|
|
if (!i915_powersave)
|
|
return;
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
if (!crtc->fb)
|
|
continue;
|
|
|
|
intel_decrease_pllclock(crtc);
|
|
}
|
|
}
|
|
|
|
void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_crtc *crtc;
|
|
|
|
if (!i915_powersave)
|
|
return;
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
if (!crtc->fb)
|
|
continue;
|
|
|
|
if (to_intel_framebuffer(crtc->fb)->obj == obj)
|
|
intel_increase_pllclock(crtc);
|
|
}
|
|
}
|
|
|
|
static void intel_crtc_destroy(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_unpin_work *work;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
work = intel_crtc->unpin_work;
|
|
intel_crtc->unpin_work = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
if (work) {
|
|
cancel_work_sync(&work->work);
|
|
kfree(work);
|
|
}
|
|
|
|
drm_crtc_cleanup(crtc);
|
|
|
|
kfree(intel_crtc);
|
|
}
|
|
|
|
static void intel_unpin_work_fn(struct work_struct *__work)
|
|
{
|
|
struct intel_unpin_work *work =
|
|
container_of(__work, struct intel_unpin_work, work);
|
|
struct drm_device *dev = work->crtc->dev;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(work->old_fb_obj);
|
|
drm_gem_object_unreference(&work->pending_flip_obj->base);
|
|
drm_gem_object_unreference(&work->old_fb_obj->base);
|
|
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
|
|
atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
|
|
|
|
kfree(work);
|
|
}
|
|
|
|
static void do_intel_finish_page_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_unpin_work *work;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long flags;
|
|
|
|
/* Ignore early vblank irqs */
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
work = intel_crtc->unpin_work;
|
|
|
|
/* Ensure we don't miss a work->pending update ... */
|
|
smp_rmb();
|
|
|
|
if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* and that the unpin work is consistent wrt ->pending. */
|
|
smp_rmb();
|
|
|
|
intel_crtc->unpin_work = NULL;
|
|
|
|
if (work->event)
|
|
drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
|
|
|
|
drm_vblank_put(dev, intel_crtc->pipe);
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
obj = work->old_fb_obj;
|
|
|
|
wake_up_all(&dev_priv->pending_flip_queue);
|
|
|
|
queue_work(dev_priv->wq, &work->work);
|
|
|
|
trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
|
|
}
|
|
|
|
void intel_finish_page_flip(struct drm_device *dev, int pipe)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
|
|
do_intel_finish_page_flip(dev, crtc);
|
|
}
|
|
|
|
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
|
|
|
|
do_intel_finish_page_flip(dev, crtc);
|
|
}
|
|
|
|
void intel_prepare_page_flip(struct drm_device *dev, int plane)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
|
|
unsigned long flags;
|
|
|
|
/* NB: An MMIO update of the plane base pointer will also
|
|
* generate a page-flip completion irq, i.e. every modeset
|
|
* is also accompanied by a spurious intel_prepare_page_flip().
|
|
*/
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (intel_crtc->unpin_work)
|
|
atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
|
|
{
|
|
/* Ensure that the work item is consistent when activating it ... */
|
|
smp_wmb();
|
|
atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
|
|
/* and that it is marked active as soon as the irq could fire. */
|
|
smp_wmb();
|
|
}
|
|
|
|
static int intel_gen2_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 flip_mask;
|
|
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
|
|
int ret;
|
|
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
/* Can't queue multiple flips, so wait for the previous
|
|
* one to finish before executing the next.
|
|
*/
|
|
if (intel_crtc->plane)
|
|
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
|
|
else
|
|
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
|
|
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
|
|
intel_ring_emit(ring, 0); /* aux display base address, unused */
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
intel_unpin_fb_obj(obj);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int intel_gen3_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 flip_mask;
|
|
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
|
|
int ret;
|
|
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
if (intel_crtc->plane)
|
|
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
|
|
else
|
|
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
|
|
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
intel_unpin_fb_obj(obj);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int intel_gen4_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t pf, pipesrc;
|
|
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
|
|
int ret;
|
|
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
/* i965+ uses the linear or tiled offsets from the
|
|
* Display Registers (which do not change across a page-flip)
|
|
* so we need only reprogram the base address.
|
|
*/
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring,
|
|
(obj->gtt_offset + intel_crtc->dspaddr_offset) |
|
|
obj->tiling_mode);
|
|
|
|
/* XXX Enabling the panel-fitter across page-flip is so far
|
|
* untested on non-native modes, so ignore it for now.
|
|
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
|
|
*/
|
|
pf = 0;
|
|
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
|
|
intel_ring_emit(ring, pf | pipesrc);
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
intel_unpin_fb_obj(obj);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int intel_gen6_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
|
|
uint32_t pf, pipesrc;
|
|
int ret;
|
|
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
|
|
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
|
|
|
|
/* Contrary to the suggestions in the documentation,
|
|
* "Enable Panel Fitter" does not seem to be required when page
|
|
* flipping with a non-native mode, and worse causes a normal
|
|
* modeset to fail.
|
|
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
|
|
*/
|
|
pf = 0;
|
|
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
|
|
intel_ring_emit(ring, pf | pipesrc);
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
intel_unpin_fb_obj(obj);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* On gen7 we currently use the blit ring because (in early silicon at least)
|
|
* the render ring doesn't give us interrpts for page flip completion, which
|
|
* means clients will hang after the first flip is queued. Fortunately the
|
|
* blit ring generates interrupts properly, so use it instead.
|
|
*/
|
|
static int intel_gen7_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
|
|
uint32_t plane_bit = 0;
|
|
int ret;
|
|
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
|
|
if (ret)
|
|
goto err;
|
|
|
|
switch(intel_crtc->plane) {
|
|
case PLANE_A:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
|
|
break;
|
|
case PLANE_B:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
|
|
break;
|
|
case PLANE_C:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "unknown plane in flip command\n");
|
|
ret = -ENODEV;
|
|
goto err_unpin;
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
|
|
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
|
|
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
|
|
intel_ring_emit(ring, (MI_NOOP));
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
intel_unpin_fb_obj(obj);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int intel_default_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int intel_crtc_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_unpin_work *work;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/* Can't change pixel format via MI display flips. */
|
|
if (fb->pixel_format != crtc->fb->pixel_format)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* TILEOFF/LINOFF registers can't be changed via MI display flips.
|
|
* Note that pitch changes could also affect these register.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen > 3 &&
|
|
(fb->offsets[0] != crtc->fb->offsets[0] ||
|
|
fb->pitches[0] != crtc->fb->pitches[0]))
|
|
return -EINVAL;
|
|
|
|
work = kzalloc(sizeof *work, GFP_KERNEL);
|
|
if (work == NULL)
|
|
return -ENOMEM;
|
|
|
|
work->event = event;
|
|
work->crtc = crtc;
|
|
intel_fb = to_intel_framebuffer(crtc->fb);
|
|
work->old_fb_obj = intel_fb->obj;
|
|
INIT_WORK(&work->work, intel_unpin_work_fn);
|
|
|
|
ret = drm_vblank_get(dev, intel_crtc->pipe);
|
|
if (ret)
|
|
goto free_work;
|
|
|
|
/* We borrow the event spin lock for protecting unpin_work */
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (intel_crtc->unpin_work) {
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
kfree(work);
|
|
drm_vblank_put(dev, intel_crtc->pipe);
|
|
|
|
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
|
|
return -EBUSY;
|
|
}
|
|
intel_crtc->unpin_work = work;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
intel_fb = to_intel_framebuffer(fb);
|
|
obj = intel_fb->obj;
|
|
|
|
if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
|
|
flush_workqueue(dev_priv->wq);
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto cleanup;
|
|
|
|
/* Reference the objects for the scheduled work. */
|
|
drm_gem_object_reference(&work->old_fb_obj->base);
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
crtc->fb = fb;
|
|
|
|
work->pending_flip_obj = obj;
|
|
|
|
work->enable_stall_check = true;
|
|
|
|
atomic_inc(&intel_crtc->unpin_work_count);
|
|
intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
|
|
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
|
|
if (ret)
|
|
goto cleanup_pending;
|
|
|
|
intel_disable_fbc(dev);
|
|
intel_mark_fb_busy(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
trace_i915_flip_request(intel_crtc->plane, obj);
|
|
|
|
return 0;
|
|
|
|
cleanup_pending:
|
|
atomic_dec(&intel_crtc->unpin_work_count);
|
|
drm_gem_object_unreference(&work->old_fb_obj->base);
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
cleanup:
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
intel_crtc->unpin_work = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
drm_vblank_put(dev, intel_crtc->pipe);
|
|
free_work:
|
|
kfree(work);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct drm_crtc_helper_funcs intel_helper_funcs = {
|
|
.mode_set_base_atomic = intel_pipe_set_base_atomic,
|
|
.load_lut = intel_crtc_load_lut,
|
|
};
|
|
|
|
bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_encoder *other_encoder;
|
|
struct drm_crtc *crtc = &encoder->new_crtc->base;
|
|
|
|
if (WARN_ON(!crtc))
|
|
return false;
|
|
|
|
list_for_each_entry(other_encoder,
|
|
&crtc->dev->mode_config.encoder_list,
|
|
base.head) {
|
|
|
|
if (&other_encoder->new_crtc->base != crtc ||
|
|
encoder == other_encoder)
|
|
continue;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev;
|
|
struct drm_crtc *tmp;
|
|
int crtc_mask = 1;
|
|
|
|
WARN(!crtc, "checking null crtc?\n");
|
|
|
|
dev = crtc->dev;
|
|
|
|
list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
|
|
if (tmp == crtc)
|
|
break;
|
|
crtc_mask <<= 1;
|
|
}
|
|
|
|
if (encoder->possible_crtcs & crtc_mask)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* intel_modeset_update_staged_output_state
|
|
*
|
|
* Updates the staged output configuration state, e.g. after we've read out the
|
|
* current hw state.
|
|
*/
|
|
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
connector->new_encoder =
|
|
to_intel_encoder(connector->base.encoder);
|
|
}
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
encoder->new_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_modeset_commit_output_state
|
|
*
|
|
* This function copies the stage display pipe configuration to the real one.
|
|
*/
|
|
static void intel_modeset_commit_output_state(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
connector->base.encoder = &connector->new_encoder->base;
|
|
}
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
encoder->base.crtc = &encoder->new_crtc->base;
|
|
}
|
|
}
|
|
|
|
static struct drm_display_mode *
|
|
intel_modeset_adjusted_mode(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_display_mode *adjusted_mode;
|
|
struct drm_encoder_helper_funcs *encoder_funcs;
|
|
struct intel_encoder *encoder;
|
|
|
|
adjusted_mode = drm_mode_duplicate(dev, mode);
|
|
if (!adjusted_mode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* Pass our mode to the connectors and the CRTC to give them a chance to
|
|
* adjust it according to limitations or connector properties, and also
|
|
* a chance to reject the mode entirely.
|
|
*/
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
|
|
if (&encoder->new_crtc->base != crtc)
|
|
continue;
|
|
encoder_funcs = encoder->base.helper_private;
|
|
if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
|
|
adjusted_mode))) {
|
|
DRM_DEBUG_KMS("Encoder fixup failed\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
|
|
DRM_DEBUG_KMS("CRTC fixup failed\n");
|
|
goto fail;
|
|
}
|
|
DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
|
|
|
|
return adjusted_mode;
|
|
fail:
|
|
drm_mode_destroy(dev, adjusted_mode);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
|
|
* simplicity we use the crtc's pipe number (because it's easier to obtain). */
|
|
static void
|
|
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
|
|
unsigned *prepare_pipes, unsigned *disable_pipes)
|
|
{
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
struct drm_crtc *tmp_crtc;
|
|
|
|
*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
|
|
|
|
/* Check which crtcs have changed outputs connected to them, these need
|
|
* to be part of the prepare_pipes mask. We don't (yet) support global
|
|
* modeset across multiple crtcs, so modeset_pipes will only have one
|
|
* bit set at most. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->base.encoder == &connector->new_encoder->base)
|
|
continue;
|
|
|
|
if (connector->base.encoder) {
|
|
tmp_crtc = connector->base.encoder->crtc;
|
|
|
|
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
|
|
}
|
|
|
|
if (connector->new_encoder)
|
|
*prepare_pipes |=
|
|
1 << connector->new_encoder->new_crtc->pipe;
|
|
}
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
if (encoder->base.crtc == &encoder->new_crtc->base)
|
|
continue;
|
|
|
|
if (encoder->base.crtc) {
|
|
tmp_crtc = encoder->base.crtc;
|
|
|
|
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
|
|
}
|
|
|
|
if (encoder->new_crtc)
|
|
*prepare_pipes |= 1 << encoder->new_crtc->pipe;
|
|
}
|
|
|
|
/* Check for any pipes that will be fully disabled ... */
|
|
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
|
|
base.head) {
|
|
bool used = false;
|
|
|
|
/* Don't try to disable disabled crtcs. */
|
|
if (!intel_crtc->base.enabled)
|
|
continue;
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
if (encoder->new_crtc == intel_crtc)
|
|
used = true;
|
|
}
|
|
|
|
if (!used)
|
|
*disable_pipes |= 1 << intel_crtc->pipe;
|
|
}
|
|
|
|
|
|
/* set_mode is also used to update properties on life display pipes. */
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
if (crtc->enabled)
|
|
*prepare_pipes |= 1 << intel_crtc->pipe;
|
|
|
|
/* We only support modeset on one single crtc, hence we need to do that
|
|
* only for the passed in crtc iff we change anything else than just
|
|
* disable crtcs.
|
|
*
|
|
* This is actually not true, to be fully compatible with the old crtc
|
|
* helper we automatically disable _any_ output (i.e. doesn't need to be
|
|
* connected to the crtc we're modesetting on) if it's disconnected.
|
|
* Which is a rather nutty api (since changed the output configuration
|
|
* without userspace's explicit request can lead to confusion), but
|
|
* alas. Hence we currently need to modeset on all pipes we prepare. */
|
|
if (*prepare_pipes)
|
|
*modeset_pipes = *prepare_pipes;
|
|
|
|
/* ... and mask these out. */
|
|
*modeset_pipes &= ~(*disable_pipes);
|
|
*prepare_pipes &= ~(*disable_pipes);
|
|
}
|
|
|
|
static bool intel_crtc_in_use(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_encoder *encoder;
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
|
|
if (encoder->crtc == crtc)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
|
|
{
|
|
struct intel_encoder *intel_encoder;
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_connector *connector;
|
|
|
|
list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
if (!intel_encoder->base.crtc)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
|
|
|
|
if (prepare_pipes & (1 << intel_crtc->pipe))
|
|
intel_encoder->connectors_active = false;
|
|
}
|
|
|
|
intel_modeset_commit_output_state(dev);
|
|
|
|
/* Update computed state. */
|
|
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
|
|
base.head) {
|
|
intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
|
|
}
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
if (!connector->encoder || !connector->encoder->crtc)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(connector->encoder->crtc);
|
|
|
|
if (prepare_pipes & (1 << intel_crtc->pipe)) {
|
|
struct drm_property *dpms_property =
|
|
dev->mode_config.dpms_property;
|
|
|
|
connector->dpms = DRM_MODE_DPMS_ON;
|
|
drm_object_property_set_value(&connector->base,
|
|
dpms_property,
|
|
DRM_MODE_DPMS_ON);
|
|
|
|
intel_encoder = to_intel_encoder(connector->encoder);
|
|
intel_encoder->connectors_active = true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
|
|
list_for_each_entry((intel_crtc), \
|
|
&(dev)->mode_config.crtc_list, \
|
|
base.head) \
|
|
if (mask & (1 <<(intel_crtc)->pipe)) \
|
|
|
|
void
|
|
intel_modeset_check_state(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
/* This also checks the encoder/connector hw state with the
|
|
* ->get_hw_state callbacks. */
|
|
intel_connector_check_state(connector);
|
|
|
|
WARN(&connector->new_encoder->base != connector->base.encoder,
|
|
"connector's staged encoder doesn't match current encoder\n");
|
|
}
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
bool enabled = false;
|
|
bool active = false;
|
|
enum pipe pipe, tracked_pipe;
|
|
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
|
|
encoder->base.base.id,
|
|
drm_get_encoder_name(&encoder->base));
|
|
|
|
WARN(&encoder->new_crtc->base != encoder->base.crtc,
|
|
"encoder's stage crtc doesn't match current crtc\n");
|
|
WARN(encoder->connectors_active && !encoder->base.crtc,
|
|
"encoder's active_connectors set, but no crtc\n");
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->base.encoder != &encoder->base)
|
|
continue;
|
|
enabled = true;
|
|
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
|
|
active = true;
|
|
}
|
|
WARN(!!encoder->base.crtc != enabled,
|
|
"encoder's enabled state mismatch "
|
|
"(expected %i, found %i)\n",
|
|
!!encoder->base.crtc, enabled);
|
|
WARN(active && !encoder->base.crtc,
|
|
"active encoder with no crtc\n");
|
|
|
|
WARN(encoder->connectors_active != active,
|
|
"encoder's computed active state doesn't match tracked active state "
|
|
"(expected %i, found %i)\n", active, encoder->connectors_active);
|
|
|
|
active = encoder->get_hw_state(encoder, &pipe);
|
|
WARN(active != encoder->connectors_active,
|
|
"encoder's hw state doesn't match sw tracking "
|
|
"(expected %i, found %i)\n",
|
|
encoder->connectors_active, active);
|
|
|
|
if (!encoder->base.crtc)
|
|
continue;
|
|
|
|
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
|
|
WARN(active && pipe != tracked_pipe,
|
|
"active encoder's pipe doesn't match"
|
|
"(expected %i, found %i)\n",
|
|
tracked_pipe, pipe);
|
|
|
|
}
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list,
|
|
base.head) {
|
|
bool enabled = false;
|
|
bool active = false;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d]\n",
|
|
crtc->base.base.id);
|
|
|
|
WARN(crtc->active && !crtc->base.enabled,
|
|
"active crtc, but not enabled in sw tracking\n");
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
if (encoder->base.crtc != &crtc->base)
|
|
continue;
|
|
enabled = true;
|
|
if (encoder->connectors_active)
|
|
active = true;
|
|
}
|
|
WARN(active != crtc->active,
|
|
"crtc's computed active state doesn't match tracked active state "
|
|
"(expected %i, found %i)\n", active, crtc->active);
|
|
WARN(enabled != crtc->base.enabled,
|
|
"crtc's computed enabled state doesn't match tracked enabled state "
|
|
"(expected %i, found %i)\n", enabled, crtc->base.enabled);
|
|
|
|
assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
|
|
}
|
|
}
|
|
|
|
int intel_set_mode(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
int x, int y, struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
|
|
struct intel_crtc *intel_crtc;
|
|
unsigned disable_pipes, prepare_pipes, modeset_pipes;
|
|
int ret = 0;
|
|
|
|
saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
|
|
if (!saved_mode)
|
|
return -ENOMEM;
|
|
saved_hwmode = saved_mode + 1;
|
|
|
|
intel_modeset_affected_pipes(crtc, &modeset_pipes,
|
|
&prepare_pipes, &disable_pipes);
|
|
|
|
DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
|
|
modeset_pipes, prepare_pipes, disable_pipes);
|
|
|
|
for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
|
|
intel_crtc_disable(&intel_crtc->base);
|
|
|
|
*saved_hwmode = crtc->hwmode;
|
|
*saved_mode = crtc->mode;
|
|
|
|
/* Hack: Because we don't (yet) support global modeset on multiple
|
|
* crtcs, we don't keep track of the new mode for more than one crtc.
|
|
* Hence simply check whether any bit is set in modeset_pipes in all the
|
|
* pieces of code that are not yet converted to deal with mutliple crtcs
|
|
* changing their mode at the same time. */
|
|
adjusted_mode = NULL;
|
|
if (modeset_pipes) {
|
|
adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
|
|
if (IS_ERR(adjusted_mode)) {
|
|
ret = PTR_ERR(adjusted_mode);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
|
|
if (intel_crtc->base.enabled)
|
|
dev_priv->display.crtc_disable(&intel_crtc->base);
|
|
}
|
|
|
|
/* crtc->mode is already used by the ->mode_set callbacks, hence we need
|
|
* to set it here already despite that we pass it down the callchain.
|
|
*/
|
|
if (modeset_pipes)
|
|
crtc->mode = *mode;
|
|
|
|
/* Only after disabling all output pipelines that will be changed can we
|
|
* update the the output configuration. */
|
|
intel_modeset_update_state(dev, prepare_pipes);
|
|
|
|
if (dev_priv->display.modeset_global_resources)
|
|
dev_priv->display.modeset_global_resources(dev);
|
|
|
|
/* Set up the DPLL and any encoders state that needs to adjust or depend
|
|
* on the DPLL.
|
|
*/
|
|
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
|
|
ret = intel_crtc_mode_set(&intel_crtc->base,
|
|
mode, adjusted_mode,
|
|
x, y, fb);
|
|
if (ret)
|
|
goto done;
|
|
}
|
|
|
|
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
|
|
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
|
|
dev_priv->display.crtc_enable(&intel_crtc->base);
|
|
|
|
if (modeset_pipes) {
|
|
/* Store real post-adjustment hardware mode. */
|
|
crtc->hwmode = *adjusted_mode;
|
|
|
|
/* Calculate and store various constants which
|
|
* are later needed by vblank and swap-completion
|
|
* timestamping. They are derived from true hwmode.
|
|
*/
|
|
drm_calc_timestamping_constants(crtc);
|
|
}
|
|
|
|
/* FIXME: add subpixel order */
|
|
done:
|
|
drm_mode_destroy(dev, adjusted_mode);
|
|
if (ret && crtc->enabled) {
|
|
crtc->hwmode = *saved_hwmode;
|
|
crtc->mode = *saved_mode;
|
|
} else {
|
|
intel_modeset_check_state(dev);
|
|
}
|
|
|
|
out:
|
|
kfree(saved_mode);
|
|
return ret;
|
|
}
|
|
|
|
void intel_crtc_restore_mode(struct drm_crtc *crtc)
|
|
{
|
|
intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
|
|
}
|
|
|
|
#undef for_each_intel_crtc_masked
|
|
|
|
static void intel_set_config_free(struct intel_set_config *config)
|
|
{
|
|
if (!config)
|
|
return;
|
|
|
|
kfree(config->save_connector_encoders);
|
|
kfree(config->save_encoder_crtcs);
|
|
kfree(config);
|
|
}
|
|
|
|
static int intel_set_config_save_state(struct drm_device *dev,
|
|
struct intel_set_config *config)
|
|
{
|
|
struct drm_encoder *encoder;
|
|
struct drm_connector *connector;
|
|
int count;
|
|
|
|
config->save_encoder_crtcs =
|
|
kcalloc(dev->mode_config.num_encoder,
|
|
sizeof(struct drm_crtc *), GFP_KERNEL);
|
|
if (!config->save_encoder_crtcs)
|
|
return -ENOMEM;
|
|
|
|
config->save_connector_encoders =
|
|
kcalloc(dev->mode_config.num_connector,
|
|
sizeof(struct drm_encoder *), GFP_KERNEL);
|
|
if (!config->save_connector_encoders)
|
|
return -ENOMEM;
|
|
|
|
/* Copy data. Note that driver private data is not affected.
|
|
* Should anything bad happen only the expected state is
|
|
* restored, not the drivers personal bookkeeping.
|
|
*/
|
|
count = 0;
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
|
|
config->save_encoder_crtcs[count++] = encoder->crtc;
|
|
}
|
|
|
|
count = 0;
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
config->save_connector_encoders[count++] = connector->encoder;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_set_config_restore_state(struct drm_device *dev,
|
|
struct intel_set_config *config)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
int count;
|
|
|
|
count = 0;
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
|
|
encoder->new_crtc =
|
|
to_intel_crtc(config->save_encoder_crtcs[count++]);
|
|
}
|
|
|
|
count = 0;
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
|
|
connector->new_encoder =
|
|
to_intel_encoder(config->save_connector_encoders[count++]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
|
|
struct intel_set_config *config)
|
|
{
|
|
|
|
/* We should be able to check here if the fb has the same properties
|
|
* and then just flip_or_move it */
|
|
if (set->crtc->fb != set->fb) {
|
|
/* If we have no fb then treat it as a full mode set */
|
|
if (set->crtc->fb == NULL) {
|
|
DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
|
|
config->mode_changed = true;
|
|
} else if (set->fb == NULL) {
|
|
config->mode_changed = true;
|
|
} else if (set->fb->depth != set->crtc->fb->depth) {
|
|
config->mode_changed = true;
|
|
} else if (set->fb->bits_per_pixel !=
|
|
set->crtc->fb->bits_per_pixel) {
|
|
config->mode_changed = true;
|
|
} else
|
|
config->fb_changed = true;
|
|
}
|
|
|
|
if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
|
|
config->fb_changed = true;
|
|
|
|
if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
|
|
DRM_DEBUG_KMS("modes are different, full mode set\n");
|
|
drm_mode_debug_printmodeline(&set->crtc->mode);
|
|
drm_mode_debug_printmodeline(set->mode);
|
|
config->mode_changed = true;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_modeset_stage_output_state(struct drm_device *dev,
|
|
struct drm_mode_set *set,
|
|
struct intel_set_config *config)
|
|
{
|
|
struct drm_crtc *new_crtc;
|
|
struct intel_connector *connector;
|
|
struct intel_encoder *encoder;
|
|
int count, ro;
|
|
|
|
/* The upper layers ensure that we either disable a crtc or have a list
|
|
* of connectors. For paranoia, double-check this. */
|
|
WARN_ON(!set->fb && (set->num_connectors != 0));
|
|
WARN_ON(set->fb && (set->num_connectors == 0));
|
|
|
|
count = 0;
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
/* Otherwise traverse passed in connector list and get encoders
|
|
* for them. */
|
|
for (ro = 0; ro < set->num_connectors; ro++) {
|
|
if (set->connectors[ro] == &connector->base) {
|
|
connector->new_encoder = connector->encoder;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we disable the crtc, disable all its connectors. Also, if
|
|
* the connector is on the changing crtc but not on the new
|
|
* connector list, disable it. */
|
|
if ((!set->fb || ro == set->num_connectors) &&
|
|
connector->base.encoder &&
|
|
connector->base.encoder->crtc == set->crtc) {
|
|
connector->new_encoder = NULL;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
|
|
connector->base.base.id,
|
|
drm_get_connector_name(&connector->base));
|
|
}
|
|
|
|
|
|
if (&connector->new_encoder->base != connector->base.encoder) {
|
|
DRM_DEBUG_KMS("encoder changed, full mode switch\n");
|
|
config->mode_changed = true;
|
|
}
|
|
}
|
|
/* connector->new_encoder is now updated for all connectors. */
|
|
|
|
/* Update crtc of enabled connectors. */
|
|
count = 0;
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (!connector->new_encoder)
|
|
continue;
|
|
|
|
new_crtc = connector->new_encoder->base.crtc;
|
|
|
|
for (ro = 0; ro < set->num_connectors; ro++) {
|
|
if (set->connectors[ro] == &connector->base)
|
|
new_crtc = set->crtc;
|
|
}
|
|
|
|
/* Make sure the new CRTC will work with the encoder */
|
|
if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
|
|
new_crtc)) {
|
|
return -EINVAL;
|
|
}
|
|
connector->encoder->new_crtc = to_intel_crtc(new_crtc);
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
|
|
connector->base.base.id,
|
|
drm_get_connector_name(&connector->base),
|
|
new_crtc->base.id);
|
|
}
|
|
|
|
/* Check for any encoders that needs to be disabled. */
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->new_encoder == encoder) {
|
|
WARN_ON(!connector->new_encoder->new_crtc);
|
|
|
|
goto next_encoder;
|
|
}
|
|
}
|
|
encoder->new_crtc = NULL;
|
|
next_encoder:
|
|
/* Only now check for crtc changes so we don't miss encoders
|
|
* that will be disabled. */
|
|
if (&encoder->new_crtc->base != encoder->base.crtc) {
|
|
DRM_DEBUG_KMS("crtc changed, full mode switch\n");
|
|
config->mode_changed = true;
|
|
}
|
|
}
|
|
/* Now we've also updated encoder->new_crtc for all encoders. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_crtc_set_config(struct drm_mode_set *set)
|
|
{
|
|
struct drm_device *dev;
|
|
struct drm_mode_set save_set;
|
|
struct intel_set_config *config;
|
|
int ret;
|
|
|
|
BUG_ON(!set);
|
|
BUG_ON(!set->crtc);
|
|
BUG_ON(!set->crtc->helper_private);
|
|
|
|
/* Enforce sane interface api - has been abused by the fb helper. */
|
|
BUG_ON(!set->mode && set->fb);
|
|
BUG_ON(set->fb && set->num_connectors == 0);
|
|
|
|
if (set->fb) {
|
|
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
|
|
set->crtc->base.id, set->fb->base.id,
|
|
(int)set->num_connectors, set->x, set->y);
|
|
} else {
|
|
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
|
|
}
|
|
|
|
dev = set->crtc->dev;
|
|
|
|
ret = -ENOMEM;
|
|
config = kzalloc(sizeof(*config), GFP_KERNEL);
|
|
if (!config)
|
|
goto out_config;
|
|
|
|
ret = intel_set_config_save_state(dev, config);
|
|
if (ret)
|
|
goto out_config;
|
|
|
|
save_set.crtc = set->crtc;
|
|
save_set.mode = &set->crtc->mode;
|
|
save_set.x = set->crtc->x;
|
|
save_set.y = set->crtc->y;
|
|
save_set.fb = set->crtc->fb;
|
|
|
|
/* Compute whether we need a full modeset, only an fb base update or no
|
|
* change at all. In the future we might also check whether only the
|
|
* mode changed, e.g. for LVDS where we only change the panel fitter in
|
|
* such cases. */
|
|
intel_set_config_compute_mode_changes(set, config);
|
|
|
|
ret = intel_modeset_stage_output_state(dev, set, config);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
if (config->mode_changed) {
|
|
if (set->mode) {
|
|
DRM_DEBUG_KMS("attempting to set mode from"
|
|
" userspace\n");
|
|
drm_mode_debug_printmodeline(set->mode);
|
|
}
|
|
|
|
ret = intel_set_mode(set->crtc, set->mode,
|
|
set->x, set->y, set->fb);
|
|
if (ret) {
|
|
DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
|
|
set->crtc->base.id, ret);
|
|
goto fail;
|
|
}
|
|
} else if (config->fb_changed) {
|
|
ret = intel_pipe_set_base(set->crtc,
|
|
set->x, set->y, set->fb);
|
|
}
|
|
|
|
intel_set_config_free(config);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
intel_set_config_restore_state(dev, config);
|
|
|
|
/* Try to restore the config */
|
|
if (config->mode_changed &&
|
|
intel_set_mode(save_set.crtc, save_set.mode,
|
|
save_set.x, save_set.y, save_set.fb))
|
|
DRM_ERROR("failed to restore config after modeset failure\n");
|
|
|
|
out_config:
|
|
intel_set_config_free(config);
|
|
return ret;
|
|
}
|
|
|
|
static const struct drm_crtc_funcs intel_crtc_funcs = {
|
|
.cursor_set = intel_crtc_cursor_set,
|
|
.cursor_move = intel_crtc_cursor_move,
|
|
.gamma_set = intel_crtc_gamma_set,
|
|
.set_config = intel_crtc_set_config,
|
|
.destroy = intel_crtc_destroy,
|
|
.page_flip = intel_crtc_page_flip,
|
|
};
|
|
|
|
static void intel_cpu_pll_init(struct drm_device *dev)
|
|
{
|
|
if (HAS_DDI(dev))
|
|
intel_ddi_pll_init(dev);
|
|
}
|
|
|
|
static void intel_pch_pll_init(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
if (dev_priv->num_pch_pll == 0) {
|
|
DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < dev_priv->num_pch_pll; i++) {
|
|
dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
|
|
dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
|
|
dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
|
|
}
|
|
}
|
|
|
|
static void intel_crtc_init(struct drm_device *dev, int pipe)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc;
|
|
int i;
|
|
|
|
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
|
|
|
|
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
|
|
for (i = 0; i < 256; i++) {
|
|
intel_crtc->lut_r[i] = i;
|
|
intel_crtc->lut_g[i] = i;
|
|
intel_crtc->lut_b[i] = i;
|
|
}
|
|
|
|
/* Swap pipes & planes for FBC on pre-965 */
|
|
intel_crtc->pipe = pipe;
|
|
intel_crtc->plane = pipe;
|
|
intel_crtc->cpu_transcoder = pipe;
|
|
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
|
|
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
|
|
intel_crtc->plane = !pipe;
|
|
}
|
|
|
|
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
|
|
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
|
|
|
|
intel_crtc->bpp = 24; /* default for pre-Ironlake */
|
|
|
|
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
|
|
}
|
|
|
|
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
|
|
struct drm_mode_object *drmmode_obj;
|
|
struct intel_crtc *crtc;
|
|
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return -ENODEV;
|
|
|
|
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
|
|
DRM_MODE_OBJECT_CRTC);
|
|
|
|
if (!drmmode_obj) {
|
|
DRM_ERROR("no such CRTC id\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
|
|
pipe_from_crtc_id->pipe = crtc->pipe;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_encoder_clones(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct intel_encoder *source_encoder;
|
|
int index_mask = 0;
|
|
int entry = 0;
|
|
|
|
list_for_each_entry(source_encoder,
|
|
&dev->mode_config.encoder_list, base.head) {
|
|
|
|
if (encoder == source_encoder)
|
|
index_mask |= (1 << entry);
|
|
|
|
/* Intel hw has only one MUX where enocoders could be cloned. */
|
|
if (encoder->cloneable && source_encoder->cloneable)
|
|
index_mask |= (1 << entry);
|
|
|
|
entry++;
|
|
}
|
|
|
|
return index_mask;
|
|
}
|
|
|
|
static bool has_edp_a(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!IS_MOBILE(dev))
|
|
return false;
|
|
|
|
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
|
|
return false;
|
|
|
|
if (IS_GEN5(dev) &&
|
|
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_setup_outputs(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *encoder;
|
|
bool dpd_is_edp = false;
|
|
bool has_lvds;
|
|
|
|
has_lvds = intel_lvds_init(dev);
|
|
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
|
|
/* disable the panel fitter on everything but LVDS */
|
|
I915_WRITE(PFIT_CONTROL, 0);
|
|
}
|
|
|
|
if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
|
|
intel_crt_init(dev);
|
|
|
|
if (HAS_DDI(dev)) {
|
|
int found;
|
|
|
|
/* Haswell uses DDI functions to detect digital outputs */
|
|
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
|
|
/* DDI A only supports eDP */
|
|
if (found)
|
|
intel_ddi_init(dev, PORT_A);
|
|
|
|
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
|
|
* register */
|
|
found = I915_READ(SFUSE_STRAP);
|
|
|
|
if (found & SFUSE_STRAP_DDIB_DETECTED)
|
|
intel_ddi_init(dev, PORT_B);
|
|
if (found & SFUSE_STRAP_DDIC_DETECTED)
|
|
intel_ddi_init(dev, PORT_C);
|
|
if (found & SFUSE_STRAP_DDID_DETECTED)
|
|
intel_ddi_init(dev, PORT_D);
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
int found;
|
|
dpd_is_edp = intel_dpd_is_edp(dev);
|
|
|
|
if (has_edp_a(dev))
|
|
intel_dp_init(dev, DP_A, PORT_A);
|
|
|
|
if (I915_READ(HDMIB) & PORT_DETECTED) {
|
|
/* PCH SDVOB multiplex with HDMIB */
|
|
found = intel_sdvo_init(dev, PCH_SDVOB, true);
|
|
if (!found)
|
|
intel_hdmi_init(dev, HDMIB, PORT_B);
|
|
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
|
|
intel_dp_init(dev, PCH_DP_B, PORT_B);
|
|
}
|
|
|
|
if (I915_READ(HDMIC) & PORT_DETECTED)
|
|
intel_hdmi_init(dev, HDMIC, PORT_C);
|
|
|
|
if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
|
|
intel_hdmi_init(dev, HDMID, PORT_D);
|
|
|
|
if (I915_READ(PCH_DP_C) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_C, PORT_C);
|
|
|
|
if (I915_READ(PCH_DP_D) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_D, PORT_D);
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
/* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
|
|
if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
|
|
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
|
|
|
|
if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) {
|
|
intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B);
|
|
if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
|
|
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
|
|
}
|
|
|
|
if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED)
|
|
intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C);
|
|
|
|
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
|
|
bool found = false;
|
|
|
|
if (I915_READ(SDVOB) & SDVO_DETECTED) {
|
|
DRM_DEBUG_KMS("probing SDVOB\n");
|
|
found = intel_sdvo_init(dev, SDVOB, true);
|
|
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
|
|
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
|
|
intel_hdmi_init(dev, SDVOB, PORT_B);
|
|
}
|
|
|
|
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
|
|
DRM_DEBUG_KMS("probing DP_B\n");
|
|
intel_dp_init(dev, DP_B, PORT_B);
|
|
}
|
|
}
|
|
|
|
/* Before G4X SDVOC doesn't have its own detect register */
|
|
|
|
if (I915_READ(SDVOB) & SDVO_DETECTED) {
|
|
DRM_DEBUG_KMS("probing SDVOC\n");
|
|
found = intel_sdvo_init(dev, SDVOC, false);
|
|
}
|
|
|
|
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
|
|
|
|
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
|
|
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
|
|
intel_hdmi_init(dev, SDVOC, PORT_C);
|
|
}
|
|
if (SUPPORTS_INTEGRATED_DP(dev)) {
|
|
DRM_DEBUG_KMS("probing DP_C\n");
|
|
intel_dp_init(dev, DP_C, PORT_C);
|
|
}
|
|
}
|
|
|
|
if (SUPPORTS_INTEGRATED_DP(dev) &&
|
|
(I915_READ(DP_D) & DP_DETECTED)) {
|
|
DRM_DEBUG_KMS("probing DP_D\n");
|
|
intel_dp_init(dev, DP_D, PORT_D);
|
|
}
|
|
} else if (IS_GEN2(dev))
|
|
intel_dvo_init(dev);
|
|
|
|
if (SUPPORTS_TV(dev))
|
|
intel_tv_init(dev);
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
|
|
encoder->base.possible_crtcs = encoder->crtc_mask;
|
|
encoder->base.possible_clones =
|
|
intel_encoder_clones(encoder);
|
|
}
|
|
|
|
intel_init_pch_refclk(dev);
|
|
|
|
drm_helper_move_panel_connectors_to_head(dev);
|
|
}
|
|
|
|
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
|
|
{
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
|
|
drm_framebuffer_cleanup(fb);
|
|
drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
|
|
|
|
kfree(intel_fb);
|
|
}
|
|
|
|
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
|
|
struct drm_file *file,
|
|
unsigned int *handle)
|
|
{
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_i915_gem_object *obj = intel_fb->obj;
|
|
|
|
return drm_gem_handle_create(file, &obj->base, handle);
|
|
}
|
|
|
|
static const struct drm_framebuffer_funcs intel_fb_funcs = {
|
|
.destroy = intel_user_framebuffer_destroy,
|
|
.create_handle = intel_user_framebuffer_create_handle,
|
|
};
|
|
|
|
int intel_framebuffer_init(struct drm_device *dev,
|
|
struct intel_framebuffer *intel_fb,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
if (obj->tiling_mode == I915_TILING_Y) {
|
|
DRM_DEBUG("hardware does not support tiling Y\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mode_cmd->pitches[0] & 63) {
|
|
DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
|
|
mode_cmd->pitches[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* FIXME <= Gen4 stride limits are bit unclear */
|
|
if (mode_cmd->pitches[0] > 32768) {
|
|
DRM_DEBUG("pitch (%d) must be at less than 32768\n",
|
|
mode_cmd->pitches[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE &&
|
|
mode_cmd->pitches[0] != obj->stride) {
|
|
DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
|
|
mode_cmd->pitches[0], obj->stride);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reject formats not supported by any plane early. */
|
|
switch (mode_cmd->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
case DRM_FORMAT_RGB565:
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
case DRM_FORMAT_ARGB1555:
|
|
if (INTEL_INFO(dev)->gen > 3) {
|
|
DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_YUYV:
|
|
case DRM_FORMAT_UYVY:
|
|
case DRM_FORMAT_YVYU:
|
|
case DRM_FORMAT_VYUY:
|
|
if (INTEL_INFO(dev)->gen < 5) {
|
|
DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
|
|
if (mode_cmd->offsets[0] != 0)
|
|
return -EINVAL;
|
|
|
|
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
|
|
intel_fb->obj = obj;
|
|
|
|
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
|
|
if (ret) {
|
|
DRM_ERROR("framebuffer init failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_user_framebuffer_create(struct drm_device *dev,
|
|
struct drm_file *filp,
|
|
struct drm_mode_fb_cmd2 *mode_cmd)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
|
|
mode_cmd->handles[0]));
|
|
if (&obj->base == NULL)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
return intel_framebuffer_create(dev, mode_cmd, obj);
|
|
}
|
|
|
|
static const struct drm_mode_config_funcs intel_mode_funcs = {
|
|
.fb_create = intel_user_framebuffer_create,
|
|
.output_poll_changed = intel_fb_output_poll_changed,
|
|
};
|
|
|
|
/* Set up chip specific display functions */
|
|
static void intel_init_display(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* We always want a DPMS function */
|
|
if (HAS_DDI(dev)) {
|
|
dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
|
|
dev_priv->display.crtc_enable = haswell_crtc_enable;
|
|
dev_priv->display.crtc_disable = haswell_crtc_disable;
|
|
dev_priv->display.off = haswell_crtc_off;
|
|
dev_priv->display.update_plane = ironlake_update_plane;
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
|
|
dev_priv->display.crtc_enable = ironlake_crtc_enable;
|
|
dev_priv->display.crtc_disable = ironlake_crtc_disable;
|
|
dev_priv->display.off = ironlake_crtc_off;
|
|
dev_priv->display.update_plane = ironlake_update_plane;
|
|
} else {
|
|
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
|
|
dev_priv->display.crtc_enable = i9xx_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
dev_priv->display.off = i9xx_crtc_off;
|
|
dev_priv->display.update_plane = i9xx_update_plane;
|
|
}
|
|
|
|
/* Returns the core display clock speed */
|
|
if (IS_VALLEYVIEW(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
valleyview_get_display_clock_speed;
|
|
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i945_get_display_clock_speed;
|
|
else if (IS_I915G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915_get_display_clock_speed;
|
|
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i9xx_misc_get_display_clock_speed;
|
|
else if (IS_I915GM(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915gm_get_display_clock_speed;
|
|
else if (IS_I865G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i865_get_display_clock_speed;
|
|
else if (IS_I85X(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i855_get_display_clock_speed;
|
|
else /* 852, 830 */
|
|
dev_priv->display.get_display_clock_speed =
|
|
i830_get_display_clock_speed;
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
if (IS_GEN5(dev)) {
|
|
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
|
|
dev_priv->display.write_eld = ironlake_write_eld;
|
|
} else if (IS_GEN6(dev)) {
|
|
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
|
|
dev_priv->display.write_eld = ironlake_write_eld;
|
|
} else if (IS_IVYBRIDGE(dev)) {
|
|
/* FIXME: detect B0+ stepping and use auto training */
|
|
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
|
|
dev_priv->display.write_eld = ironlake_write_eld;
|
|
dev_priv->display.modeset_global_resources =
|
|
ivb_modeset_global_resources;
|
|
} else if (IS_HASWELL(dev)) {
|
|
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
|
|
dev_priv->display.write_eld = haswell_write_eld;
|
|
dev_priv->display.modeset_global_resources =
|
|
haswell_modeset_global_resources;
|
|
}
|
|
} else if (IS_G4X(dev)) {
|
|
dev_priv->display.write_eld = g4x_write_eld;
|
|
}
|
|
|
|
/* Default just returns -ENODEV to indicate unsupported */
|
|
dev_priv->display.queue_flip = intel_default_queue_flip;
|
|
|
|
switch (INTEL_INFO(dev)->gen) {
|
|
case 2:
|
|
dev_priv->display.queue_flip = intel_gen2_queue_flip;
|
|
break;
|
|
|
|
case 3:
|
|
dev_priv->display.queue_flip = intel_gen3_queue_flip;
|
|
break;
|
|
|
|
case 4:
|
|
case 5:
|
|
dev_priv->display.queue_flip = intel_gen4_queue_flip;
|
|
break;
|
|
|
|
case 6:
|
|
dev_priv->display.queue_flip = intel_gen6_queue_flip;
|
|
break;
|
|
case 7:
|
|
dev_priv->display.queue_flip = intel_gen7_queue_flip;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
|
|
* resume, or other times. This quirk makes sure that's the case for
|
|
* affected systems.
|
|
*/
|
|
static void quirk_pipea_force(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
|
|
DRM_INFO("applying pipe a force quirk\n");
|
|
}
|
|
|
|
/*
|
|
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
|
|
*/
|
|
static void quirk_ssc_force_disable(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
|
|
DRM_INFO("applying lvds SSC disable quirk\n");
|
|
}
|
|
|
|
/*
|
|
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
|
|
* brightness value
|
|
*/
|
|
static void quirk_invert_brightness(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
|
|
DRM_INFO("applying inverted panel brightness quirk\n");
|
|
}
|
|
|
|
struct intel_quirk {
|
|
int device;
|
|
int subsystem_vendor;
|
|
int subsystem_device;
|
|
void (*hook)(struct drm_device *dev);
|
|
};
|
|
|
|
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
|
|
struct intel_dmi_quirk {
|
|
void (*hook)(struct drm_device *dev);
|
|
const struct dmi_system_id (*dmi_id_list)[];
|
|
};
|
|
|
|
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
|
|
{
|
|
DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
|
|
return 1;
|
|
}
|
|
|
|
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
|
|
{
|
|
.dmi_id_list = &(const struct dmi_system_id[]) {
|
|
{
|
|
.callback = intel_dmi_reverse_brightness,
|
|
.ident = "NCR Corporation",
|
|
.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, ""),
|
|
},
|
|
},
|
|
{ } /* terminating entry */
|
|
},
|
|
.hook = quirk_invert_brightness,
|
|
},
|
|
};
|
|
|
|
static struct intel_quirk intel_quirks[] = {
|
|
/* HP Mini needs pipe A force quirk (LP: #322104) */
|
|
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
|
|
|
|
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
|
|
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
|
|
|
|
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
|
|
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
|
|
|
|
/* 830/845 need to leave pipe A & dpll A up */
|
|
{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
|
|
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
|
|
|
|
/* Lenovo U160 cannot use SSC on LVDS */
|
|
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
|
|
|
|
/* Sony Vaio Y cannot use SSC on LVDS */
|
|
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
|
|
|
|
/* Acer Aspire 5734Z must invert backlight brightness */
|
|
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
|
|
|
|
/* Acer/eMachines G725 */
|
|
{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
|
|
|
|
/* Acer/eMachines e725 */
|
|
{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
|
|
|
|
/* Acer/Packard Bell NCL20 */
|
|
{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
|
|
|
|
/* Acer Aspire 4736Z */
|
|
{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
|
|
};
|
|
|
|
static void intel_init_quirks(struct drm_device *dev)
|
|
{
|
|
struct pci_dev *d = dev->pdev;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
|
|
struct intel_quirk *q = &intel_quirks[i];
|
|
|
|
if (d->device == q->device &&
|
|
(d->subsystem_vendor == q->subsystem_vendor ||
|
|
q->subsystem_vendor == PCI_ANY_ID) &&
|
|
(d->subsystem_device == q->subsystem_device ||
|
|
q->subsystem_device == PCI_ANY_ID))
|
|
q->hook(dev);
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
|
|
if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
|
|
intel_dmi_quirks[i].hook(dev);
|
|
}
|
|
}
|
|
|
|
/* Disable the VGA plane that we never use */
|
|
static void i915_disable_vga(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u8 sr1;
|
|
u32 vga_reg = i915_vgacntrl_reg(dev);
|
|
|
|
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
|
|
outb(SR01, VGA_SR_INDEX);
|
|
sr1 = inb(VGA_SR_DATA);
|
|
outb(sr1 | 1<<5, VGA_SR_DATA);
|
|
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
|
|
udelay(300);
|
|
|
|
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
|
|
POSTING_READ(vga_reg);
|
|
}
|
|
|
|
void intel_modeset_init_hw(struct drm_device *dev)
|
|
{
|
|
intel_init_power_well(dev);
|
|
|
|
intel_prepare_ddi(dev);
|
|
|
|
intel_init_clock_gating(dev);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_enable_gt_powersave(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
void intel_modeset_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i, ret;
|
|
|
|
drm_mode_config_init(dev);
|
|
|
|
dev->mode_config.min_width = 0;
|
|
dev->mode_config.min_height = 0;
|
|
|
|
dev->mode_config.preferred_depth = 24;
|
|
dev->mode_config.prefer_shadow = 1;
|
|
|
|
dev->mode_config.funcs = &intel_mode_funcs;
|
|
|
|
intel_init_quirks(dev);
|
|
|
|
intel_init_pm(dev);
|
|
|
|
intel_init_display(dev);
|
|
|
|
if (IS_GEN2(dev)) {
|
|
dev->mode_config.max_width = 2048;
|
|
dev->mode_config.max_height = 2048;
|
|
} else if (IS_GEN3(dev)) {
|
|
dev->mode_config.max_width = 4096;
|
|
dev->mode_config.max_height = 4096;
|
|
} else {
|
|
dev->mode_config.max_width = 8192;
|
|
dev->mode_config.max_height = 8192;
|
|
}
|
|
dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
|
|
|
|
DRM_DEBUG_KMS("%d display pipe%s available.\n",
|
|
dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
|
|
|
|
for (i = 0; i < dev_priv->num_pipe; i++) {
|
|
intel_crtc_init(dev, i);
|
|
ret = intel_plane_init(dev, i);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
|
|
}
|
|
|
|
intel_cpu_pll_init(dev);
|
|
intel_pch_pll_init(dev);
|
|
|
|
/* Just disable it once at startup */
|
|
i915_disable_vga(dev);
|
|
intel_setup_outputs(dev);
|
|
|
|
/* Just in case the BIOS is doing something questionable. */
|
|
intel_disable_fbc(dev);
|
|
}
|
|
|
|
static void
|
|
intel_connector_break_all_links(struct intel_connector *connector)
|
|
{
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
connector->encoder->connectors_active = false;
|
|
connector->encoder->base.crtc = NULL;
|
|
}
|
|
|
|
static void intel_enable_pipe_a(struct drm_device *dev)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct drm_connector *crt = NULL;
|
|
struct intel_load_detect_pipe load_detect_temp;
|
|
|
|
/* We can't just switch on the pipe A, we need to set things up with a
|
|
* proper mode and output configuration. As a gross hack, enable pipe A
|
|
* by enabling the load detect pipe once. */
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
|
|
crt = &connector->base;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!crt)
|
|
return;
|
|
|
|
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
|
|
intel_release_load_detect_pipe(crt, &load_detect_temp);
|
|
|
|
|
|
}
|
|
|
|
static bool
|
|
intel_check_plane_mapping(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
|
|
u32 reg, val;
|
|
|
|
if (dev_priv->num_pipe == 1)
|
|
return true;
|
|
|
|
reg = DSPCNTR(!crtc->plane);
|
|
val = I915_READ(reg);
|
|
|
|
if ((val & DISPLAY_PLANE_ENABLE) &&
|
|
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_sanitize_crtc(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg;
|
|
|
|
/* Clear any frame start delays used for debugging left by the BIOS */
|
|
reg = PIPECONF(crtc->cpu_transcoder);
|
|
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
|
|
|
|
/* We need to sanitize the plane -> pipe mapping first because this will
|
|
* disable the crtc (and hence change the state) if it is wrong. Note
|
|
* that gen4+ has a fixed plane -> pipe mapping. */
|
|
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
|
|
struct intel_connector *connector;
|
|
bool plane;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
|
|
crtc->base.base.id);
|
|
|
|
/* Pipe has the wrong plane attached and the plane is active.
|
|
* Temporarily change the plane mapping and disable everything
|
|
* ... */
|
|
plane = crtc->plane;
|
|
crtc->plane = !plane;
|
|
dev_priv->display.crtc_disable(&crtc->base);
|
|
crtc->plane = plane;
|
|
|
|
/* ... and break all links. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->encoder->base.crtc != &crtc->base)
|
|
continue;
|
|
|
|
intel_connector_break_all_links(connector);
|
|
}
|
|
|
|
WARN_ON(crtc->active);
|
|
crtc->base.enabled = false;
|
|
}
|
|
|
|
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
|
|
crtc->pipe == PIPE_A && !crtc->active) {
|
|
/* BIOS forgot to enable pipe A, this mostly happens after
|
|
* resume. Force-enable the pipe to fix this, the update_dpms
|
|
* call below we restore the pipe to the right state, but leave
|
|
* the required bits on. */
|
|
intel_enable_pipe_a(dev);
|
|
}
|
|
|
|
/* Adjust the state of the output pipe according to whether we
|
|
* have active connectors/encoders. */
|
|
intel_crtc_update_dpms(&crtc->base);
|
|
|
|
if (crtc->active != crtc->base.enabled) {
|
|
struct intel_encoder *encoder;
|
|
|
|
/* This can happen either due to bugs in the get_hw_state
|
|
* functions or because the pipe is force-enabled due to the
|
|
* pipe A quirk. */
|
|
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
|
|
crtc->base.base.id,
|
|
crtc->base.enabled ? "enabled" : "disabled",
|
|
crtc->active ? "enabled" : "disabled");
|
|
|
|
crtc->base.enabled = crtc->active;
|
|
|
|
/* Because we only establish the connector -> encoder ->
|
|
* crtc links if something is active, this means the
|
|
* crtc is now deactivated. Break the links. connector
|
|
* -> encoder links are only establish when things are
|
|
* actually up, hence no need to break them. */
|
|
WARN_ON(crtc->active);
|
|
|
|
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
|
|
WARN_ON(encoder->connectors_active);
|
|
encoder->base.crtc = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_sanitize_encoder(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
/* We need to check both for a crtc link (meaning that the
|
|
* encoder is active and trying to read from a pipe) and the
|
|
* pipe itself being active. */
|
|
bool has_active_crtc = encoder->base.crtc &&
|
|
to_intel_crtc(encoder->base.crtc)->active;
|
|
|
|
if (encoder->connectors_active && !has_active_crtc) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
|
|
encoder->base.base.id,
|
|
drm_get_encoder_name(&encoder->base));
|
|
|
|
/* Connector is active, but has no active pipe. This is
|
|
* fallout from our resume register restoring. Disable
|
|
* the encoder manually again. */
|
|
if (encoder->base.crtc) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
|
|
encoder->base.base.id,
|
|
drm_get_encoder_name(&encoder->base));
|
|
encoder->disable(encoder);
|
|
}
|
|
|
|
/* Inconsistent output/port/pipe state happens presumably due to
|
|
* a bug in one of the get_hw_state functions. Or someplace else
|
|
* in our code, like the register restore mess on resume. Clamp
|
|
* things to off as a safer default. */
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->encoder != encoder)
|
|
continue;
|
|
|
|
intel_connector_break_all_links(connector);
|
|
}
|
|
}
|
|
/* Enabled encoders without active connectors will be fixed in
|
|
* the crtc fixup. */
|
|
}
|
|
|
|
void i915_redisable_vga(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 vga_reg = i915_vgacntrl_reg(dev);
|
|
|
|
if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
|
|
DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
|
|
i915_disable_vga(dev);
|
|
}
|
|
}
|
|
|
|
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
|
|
* and i915 state tracking structures. */
|
|
void intel_modeset_setup_hw_state(struct drm_device *dev,
|
|
bool force_restore)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe;
|
|
u32 tmp;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
if (HAS_DDI(dev)) {
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
|
|
|
|
if (tmp & TRANS_DDI_FUNC_ENABLE) {
|
|
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
|
|
case TRANS_DDI_EDP_INPUT_A_ON:
|
|
case TRANS_DDI_EDP_INPUT_A_ONOFF:
|
|
pipe = PIPE_A;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_B_ONOFF:
|
|
pipe = PIPE_B;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_C_ONOFF:
|
|
pipe = PIPE_C;
|
|
break;
|
|
}
|
|
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
crtc->cpu_transcoder = TRANSCODER_EDP;
|
|
|
|
DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
|
|
pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
for_each_pipe(pipe) {
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
|
|
tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
|
|
if (tmp & PIPECONF_ENABLE)
|
|
crtc->active = true;
|
|
else
|
|
crtc->active = false;
|
|
|
|
crtc->base.enabled = crtc->active;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
|
|
crtc->base.base.id,
|
|
crtc->active ? "enabled" : "disabled");
|
|
}
|
|
|
|
if (HAS_DDI(dev))
|
|
intel_ddi_setup_hw_pll_state(dev);
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
pipe = 0;
|
|
|
|
if (encoder->get_hw_state(encoder, &pipe)) {
|
|
encoder->base.crtc =
|
|
dev_priv->pipe_to_crtc_mapping[pipe];
|
|
} else {
|
|
encoder->base.crtc = NULL;
|
|
}
|
|
|
|
encoder->connectors_active = false;
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
|
|
encoder->base.base.id,
|
|
drm_get_encoder_name(&encoder->base),
|
|
encoder->base.crtc ? "enabled" : "disabled",
|
|
pipe);
|
|
}
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->get_hw_state(connector)) {
|
|
connector->base.dpms = DRM_MODE_DPMS_ON;
|
|
connector->encoder->connectors_active = true;
|
|
connector->base.encoder = &connector->encoder->base;
|
|
} else {
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
}
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
|
|
connector->base.base.id,
|
|
drm_get_connector_name(&connector->base),
|
|
connector->base.encoder ? "enabled" : "disabled");
|
|
}
|
|
|
|
/* HW state is read out, now we need to sanitize this mess. */
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
|
|
base.head) {
|
|
intel_sanitize_encoder(encoder);
|
|
}
|
|
|
|
for_each_pipe(pipe) {
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
intel_sanitize_crtc(crtc);
|
|
}
|
|
|
|
if (force_restore) {
|
|
for_each_pipe(pipe) {
|
|
intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
}
|
|
|
|
i915_redisable_vga(dev);
|
|
} else {
|
|
intel_modeset_update_staged_output_state(dev);
|
|
}
|
|
|
|
intel_modeset_check_state(dev);
|
|
|
|
drm_mode_config_reset(dev);
|
|
}
|
|
|
|
void intel_modeset_gem_init(struct drm_device *dev)
|
|
{
|
|
intel_modeset_init_hw(dev);
|
|
|
|
intel_setup_overlay(dev);
|
|
|
|
intel_modeset_setup_hw_state(dev, false);
|
|
}
|
|
|
|
void intel_modeset_cleanup(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc *intel_crtc;
|
|
|
|
drm_kms_helper_poll_fini(dev);
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
intel_unregister_dsm_handler();
|
|
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
/* Skip inactive CRTCs */
|
|
if (!crtc->fb)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
intel_increase_pllclock(crtc);
|
|
}
|
|
|
|
intel_disable_fbc(dev);
|
|
|
|
intel_disable_gt_powersave(dev);
|
|
|
|
ironlake_teardown_rc6(dev);
|
|
|
|
if (IS_VALLEYVIEW(dev))
|
|
vlv_init_dpio(dev);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/* Disable the irq before mode object teardown, for the irq might
|
|
* enqueue unpin/hotplug work. */
|
|
drm_irq_uninstall(dev);
|
|
cancel_work_sync(&dev_priv->hotplug_work);
|
|
cancel_work_sync(&dev_priv->rps.work);
|
|
|
|
/* flush any delayed tasks or pending work */
|
|
flush_scheduled_work();
|
|
|
|
drm_mode_config_cleanup(dev);
|
|
|
|
intel_cleanup_overlay(dev);
|
|
}
|
|
|
|
/*
|
|
* Return which encoder is currently attached for connector.
|
|
*/
|
|
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
|
|
{
|
|
return &intel_attached_encoder(connector)->base;
|
|
}
|
|
|
|
void intel_connector_attach_encoder(struct intel_connector *connector,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
connector->encoder = encoder;
|
|
drm_mode_connector_attach_encoder(&connector->base,
|
|
&encoder->base);
|
|
}
|
|
|
|
/*
|
|
* set vga decode state - true == enable VGA decode
|
|
*/
|
|
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u16 gmch_ctrl;
|
|
|
|
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
|
|
if (state)
|
|
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
|
|
else
|
|
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
|
|
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
#include <linux/seq_file.h>
|
|
|
|
struct intel_display_error_state {
|
|
struct intel_cursor_error_state {
|
|
u32 control;
|
|
u32 position;
|
|
u32 base;
|
|
u32 size;
|
|
} cursor[I915_MAX_PIPES];
|
|
|
|
struct intel_pipe_error_state {
|
|
u32 conf;
|
|
u32 source;
|
|
|
|
u32 htotal;
|
|
u32 hblank;
|
|
u32 hsync;
|
|
u32 vtotal;
|
|
u32 vblank;
|
|
u32 vsync;
|
|
} pipe[I915_MAX_PIPES];
|
|
|
|
struct intel_plane_error_state {
|
|
u32 control;
|
|
u32 stride;
|
|
u32 size;
|
|
u32 pos;
|
|
u32 addr;
|
|
u32 surface;
|
|
u32 tile_offset;
|
|
} plane[I915_MAX_PIPES];
|
|
};
|
|
|
|
struct intel_display_error_state *
|
|
intel_display_capture_error_state(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_display_error_state *error;
|
|
enum transcoder cpu_transcoder;
|
|
int i;
|
|
|
|
error = kmalloc(sizeof(*error), GFP_ATOMIC);
|
|
if (error == NULL)
|
|
return NULL;
|
|
|
|
for_each_pipe(i) {
|
|
cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
|
|
|
|
error->cursor[i].control = I915_READ(CURCNTR(i));
|
|
error->cursor[i].position = I915_READ(CURPOS(i));
|
|
error->cursor[i].base = I915_READ(CURBASE(i));
|
|
|
|
error->plane[i].control = I915_READ(DSPCNTR(i));
|
|
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
|
|
error->plane[i].size = I915_READ(DSPSIZE(i));
|
|
error->plane[i].pos = I915_READ(DSPPOS(i));
|
|
error->plane[i].addr = I915_READ(DSPADDR(i));
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
error->plane[i].surface = I915_READ(DSPSURF(i));
|
|
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
|
|
}
|
|
|
|
error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
|
|
error->pipe[i].source = I915_READ(PIPESRC(i));
|
|
error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
|
|
error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
|
|
error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
|
|
error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
|
|
error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
|
|
error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
intel_display_print_error_state(struct seq_file *m,
|
|
struct drm_device *dev,
|
|
struct intel_display_error_state *error)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
|
|
for_each_pipe(i) {
|
|
seq_printf(m, "Pipe [%d]:\n", i);
|
|
seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
|
|
seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
|
|
seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
|
|
seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
|
|
seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
|
|
seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
|
|
seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
|
|
seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
|
|
|
|
seq_printf(m, "Plane [%d]:\n", i);
|
|
seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
|
|
seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
|
|
seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
|
|
seq_printf(m, " POS: %08x\n", error->plane[i].pos);
|
|
seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
|
|
seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
|
|
}
|
|
|
|
seq_printf(m, "Cursor [%d]:\n", i);
|
|
seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
|
|
seq_printf(m, " POS: %08x\n", error->cursor[i].position);
|
|
seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
|
|
}
|
|
}
|
|
#endif
|