forked from Minki/linux
de69185573
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
716 lines
24 KiB
C
716 lines
24 KiB
C
/*
|
|
* Copyright 2003 NVIDIA, Corporation
|
|
* Copyright 2006 Dave Airlie
|
|
* Copyright 2007 Maarten Maathuis
|
|
* Copyright 2007-2009 Stuart Bennett
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "drm_crtc_helper.h"
|
|
|
|
#include "nouveau_drv.h"
|
|
#include "nouveau_encoder.h"
|
|
#include "nouveau_connector.h"
|
|
#include "nouveau_crtc.h"
|
|
#include "nouveau_hw.h"
|
|
#include "nvreg.h"
|
|
|
|
#include "i2c/sil164.h"
|
|
|
|
#define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \
|
|
NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \
|
|
NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
|
|
#define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \
|
|
NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \
|
|
NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
|
|
|
|
static inline bool is_fpc_off(uint32_t fpc)
|
|
{
|
|
return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
|
|
FP_TG_CONTROL_OFF);
|
|
}
|
|
|
|
int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_entry *dcbent)
|
|
{
|
|
/* special case of nv_read_tmds to find crtc associated with an output.
|
|
* this does not give a correct answer for off-chip dvi, but there's no
|
|
* use for such an answer anyway
|
|
*/
|
|
int ramdac = (dcbent->or & OUTPUT_C) >> 2;
|
|
|
|
NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
|
|
NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
|
|
return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
|
|
}
|
|
|
|
void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_entry *dcbent,
|
|
int head, bool dl)
|
|
{
|
|
/* The BIOS scripts don't do this for us, sadly
|
|
* Luckily we do know the values ;-)
|
|
*
|
|
* head < 0 indicates we wish to force a setting with the overrideval
|
|
* (for VT restore etc.)
|
|
*/
|
|
|
|
int ramdac = (dcbent->or & OUTPUT_C) >> 2;
|
|
uint8_t tmds04 = 0x80;
|
|
|
|
if (head != ramdac)
|
|
tmds04 = 0x88;
|
|
|
|
if (dcbent->type == OUTPUT_LVDS)
|
|
tmds04 |= 0x01;
|
|
|
|
nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
|
|
|
|
if (dl) /* dual link */
|
|
nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
|
|
}
|
|
|
|
void nv04_dfp_disable(struct drm_device *dev, int head)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg;
|
|
|
|
if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
|
|
FP_TG_CONTROL_ON) {
|
|
/* digital remnants must be cleaned before new crtc
|
|
* values programmed. delay is time for the vga stuff
|
|
* to realise it's in control again
|
|
*/
|
|
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
|
|
FP_TG_CONTROL_OFF);
|
|
msleep(50);
|
|
}
|
|
/* don't inadvertently turn it on when state written later */
|
|
crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
|
|
crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
|
|
~NV_CIO_CRE_LCD_ROUTE_MASK;
|
|
}
|
|
|
|
void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc;
|
|
struct nouveau_crtc *nv_crtc;
|
|
uint32_t *fpc;
|
|
|
|
if (mode == DRM_MODE_DPMS_ON) {
|
|
nv_crtc = nouveau_crtc(encoder->crtc);
|
|
fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control;
|
|
|
|
if (is_fpc_off(*fpc)) {
|
|
/* using saved value is ok, as (is_digital && dpms_on &&
|
|
* fp_control==OFF) is (at present) *only* true when
|
|
* fpc's most recent change was by below "off" code
|
|
*/
|
|
*fpc = nv_crtc->dpms_saved_fp_control;
|
|
}
|
|
|
|
nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
|
|
NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
|
|
} else {
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
nv_crtc = nouveau_crtc(crtc);
|
|
fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control;
|
|
|
|
nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
|
|
if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
|
|
nv_crtc->dpms_saved_fp_control = *fpc;
|
|
/* cut the FP output */
|
|
*fpc &= ~FP_TG_CONTROL_ON;
|
|
*fpc |= FP_TG_CONTROL_OFF;
|
|
NVWriteRAMDAC(dev, nv_crtc->index,
|
|
NV_PRAMDAC_FP_TG_CONTROL, *fpc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb;
|
|
struct drm_encoder *slave;
|
|
|
|
if (dcb->type != OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
|
|
return NULL;
|
|
|
|
/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
|
|
* TMDS transmitters at the same I2C address, in the same I2C
|
|
* bus. This can still work because in that case one of them is
|
|
* always hard-wired to a reasonable configuration using straps,
|
|
* and the other one needs to be programmed.
|
|
*
|
|
* I don't think there's a way to know which is which, even the
|
|
* blob programs the one exposed via I2C for *both* heads, so
|
|
* let's do the same.
|
|
*/
|
|
list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
|
|
struct dcb_entry *slave_dcb = nouveau_encoder(slave)->dcb;
|
|
|
|
if (slave_dcb->type == OUTPUT_TMDS && get_slave_funcs(slave) &&
|
|
slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
|
|
return slave;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
|
|
|
|
if (!nv_connector->native_mode ||
|
|
nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
|
|
mode->hdisplay > nv_connector->native_mode->hdisplay ||
|
|
mode->vdisplay > nv_connector->native_mode->vdisplay) {
|
|
nv_encoder->mode = *adjusted_mode;
|
|
|
|
} else {
|
|
nv_encoder->mode = *nv_connector->native_mode;
|
|
adjusted_mode->clock = nv_connector->native_mode->clock;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
|
|
struct nouveau_encoder *nv_encoder, int head)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv04_mode_state *state = &dev_priv->mode_reg;
|
|
uint32_t bits1618 = nv_encoder->dcb->or & OUTPUT_A ? 0x10000 : 0x40000;
|
|
|
|
if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
|
|
return;
|
|
|
|
/* SEL_CLK is only used on the primary ramdac
|
|
* It toggles spread spectrum PLL output and sets the bindings of PLLs
|
|
* to heads on digital outputs
|
|
*/
|
|
if (head)
|
|
state->sel_clk |= bits1618;
|
|
else
|
|
state->sel_clk &= ~bits1618;
|
|
|
|
/* nv30:
|
|
* bit 0 NVClk spread spectrum on/off
|
|
* bit 2 MemClk spread spectrum on/off
|
|
* bit 4 PixClk1 spread spectrum on/off toggle
|
|
* bit 6 PixClk2 spread spectrum on/off toggle
|
|
*
|
|
* nv40 (observations from bios behaviour and mmio traces):
|
|
* bits 4&6 as for nv30
|
|
* bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6;
|
|
* maybe a different spread mode
|
|
* bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
|
|
* The logic behind turning spread spectrum on/off in the first place,
|
|
* and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
|
|
* entry has the necessary info)
|
|
*/
|
|
if (nv_encoder->dcb->type == OUTPUT_LVDS && dev_priv->saved_reg.sel_clk & 0xf0) {
|
|
int shift = (dev_priv->saved_reg.sel_clk & 0x50) ? 0 : 1;
|
|
|
|
state->sel_clk &= ~0xf0;
|
|
state->sel_clk |= (head ? 0x40 : 0x10) << shift;
|
|
}
|
|
}
|
|
|
|
static void nv04_dfp_prepare(struct drm_encoder *encoder)
|
|
{
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
struct drm_encoder_helper_funcs *helper = encoder->helper_private;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int head = nouveau_crtc(encoder->crtc)->index;
|
|
struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg;
|
|
uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
|
|
uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
|
|
|
|
helper->dpms(encoder, DRM_MODE_DPMS_OFF);
|
|
|
|
nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
|
|
|
|
*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
|
|
|
|
if (nv_two_heads(dev)) {
|
|
if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
|
|
*cr_lcd |= head ? 0x0 : 0x8;
|
|
else {
|
|
*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
|
|
if (nv_encoder->dcb->type == OUTPUT_LVDS)
|
|
*cr_lcd |= 0x30;
|
|
if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
|
|
/* avoid being connected to both crtcs */
|
|
*cr_lcd_oth &= ~0x30;
|
|
NVWriteVgaCrtc(dev, head ^ 1,
|
|
NV_CIO_CRE_LCD__INDEX,
|
|
*cr_lcd_oth);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void nv04_dfp_mode_set(struct drm_encoder *encoder,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
|
|
struct nv04_crtc_reg *regp = &dev_priv->mode_reg.crtc_reg[nv_crtc->index];
|
|
struct nv04_crtc_reg *savep = &dev_priv->saved_reg.crtc_reg[nv_crtc->index];
|
|
struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
struct drm_display_mode *output_mode = &nv_encoder->mode;
|
|
struct drm_connector *connector = &nv_connector->base;
|
|
uint32_t mode_ratio, panel_ratio;
|
|
|
|
NV_DEBUG_KMS(dev, "Output mode on CRTC %d:\n", nv_crtc->index);
|
|
drm_mode_debug_printmodeline(output_mode);
|
|
|
|
/* Initialize the FP registers in this CRTC. */
|
|
regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
|
|
regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
|
|
if (!nv_gf4_disp_arch(dev) ||
|
|
(output_mode->hsync_start - output_mode->hdisplay) >=
|
|
dev_priv->vbios.digital_min_front_porch)
|
|
regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
|
|
else
|
|
regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - dev_priv->vbios.digital_min_front_porch - 1;
|
|
regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
|
|
regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
|
|
regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
|
|
regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
|
|
|
|
regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
|
|
regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
|
|
regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
|
|
regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
|
|
regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
|
|
regp->fp_vert_regs[FP_VALID_START] = 0;
|
|
regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
|
|
|
|
/* bit26: a bit seen on some g7x, no as yet discernable purpose */
|
|
regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
|
|
(savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
|
|
/* Deal with vsync/hsync polarity */
|
|
/* LVDS screens do set this, but modes with +ve syncs are very rare */
|
|
if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
|
|
if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
|
|
/* panel scaling first, as native would get set otherwise */
|
|
if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
|
|
nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */
|
|
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
|
|
else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
|
|
adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
|
|
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
|
|
else /* gpu needs to scale */
|
|
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
|
|
if (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
|
|
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
|
|
if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
|
|
output_mode->clock > 165000)
|
|
regp->fp_control |= (2 << 24);
|
|
if (nv_encoder->dcb->type == OUTPUT_LVDS) {
|
|
bool duallink, dummy;
|
|
|
|
nouveau_bios_parse_lvds_table(dev, output_mode->clock,
|
|
&duallink, &dummy);
|
|
if (duallink)
|
|
regp->fp_control |= (8 << 28);
|
|
} else
|
|
if (output_mode->clock > 165000)
|
|
regp->fp_control |= (8 << 28);
|
|
|
|
regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
|
|
NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
|
|
NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
|
|
NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
|
|
NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
|
|
NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
|
|
NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
|
|
|
|
/* We want automatic scaling */
|
|
regp->fp_debug_1 = 0;
|
|
/* This can override HTOTAL and VTOTAL */
|
|
regp->fp_debug_2 = 0;
|
|
|
|
/* Use 20.12 fixed point format to avoid floats */
|
|
mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
|
|
panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
|
|
/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
|
|
* get treated the same as SCALE_FULLSCREEN */
|
|
if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
|
|
mode_ratio != panel_ratio) {
|
|
uint32_t diff, scale;
|
|
bool divide_by_2 = nv_gf4_disp_arch(dev);
|
|
|
|
if (mode_ratio < panel_ratio) {
|
|
/* vertical needs to expand to glass size (automatic)
|
|
* horizontal needs to be scaled at vertical scale factor
|
|
* to maintain aspect */
|
|
|
|
scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
|
|
regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
|
|
XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
|
|
|
|
/* restrict area of screen used, horizontally */
|
|
diff = output_mode->hdisplay -
|
|
output_mode->vdisplay * mode_ratio / (1 << 12);
|
|
regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
|
|
regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
|
|
}
|
|
|
|
if (mode_ratio > panel_ratio) {
|
|
/* horizontal needs to expand to glass size (automatic)
|
|
* vertical needs to be scaled at horizontal scale factor
|
|
* to maintain aspect */
|
|
|
|
scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
|
|
regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
|
|
XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
|
|
|
|
/* restrict area of screen used, vertically */
|
|
diff = output_mode->vdisplay -
|
|
(1 << 12) * output_mode->hdisplay / mode_ratio;
|
|
regp->fp_vert_regs[FP_VALID_START] += diff / 2;
|
|
regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
|
|
}
|
|
}
|
|
|
|
/* Output property. */
|
|
if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
|
|
(nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
|
|
encoder->crtc->fb->depth > connector->display_info.bpc * 3)) {
|
|
if (dev_priv->chipset == 0x11)
|
|
regp->dither = savep->dither | 0x00010000;
|
|
else {
|
|
int i;
|
|
regp->dither = savep->dither | 0x00000001;
|
|
for (i = 0; i < 3; i++) {
|
|
regp->dither_regs[i] = 0xe4e4e4e4;
|
|
regp->dither_regs[i + 3] = 0x44444444;
|
|
}
|
|
}
|
|
} else {
|
|
if (dev_priv->chipset != 0x11) {
|
|
/* reset them */
|
|
int i;
|
|
for (i = 0; i < 3; i++) {
|
|
regp->dither_regs[i] = savep->dither_regs[i];
|
|
regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
|
|
}
|
|
}
|
|
regp->dither = savep->dither;
|
|
}
|
|
|
|
regp->fp_margin_color = 0;
|
|
}
|
|
|
|
static void nv04_dfp_commit(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct drm_encoder_helper_funcs *helper = encoder->helper_private;
|
|
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
struct dcb_entry *dcbe = nv_encoder->dcb;
|
|
int head = nouveau_crtc(encoder->crtc)->index;
|
|
struct drm_encoder *slave_encoder;
|
|
|
|
if (dcbe->type == OUTPUT_TMDS)
|
|
run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
|
|
else if (dcbe->type == OUTPUT_LVDS)
|
|
call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
|
|
|
|
/* update fp_control state for any changes made by scripts,
|
|
* so correct value is written at DPMS on */
|
|
dev_priv->mode_reg.crtc_reg[head].fp_control =
|
|
NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
|
|
|
|
/* This could use refinement for flatpanels, but it should work this way */
|
|
if (dev_priv->chipset < 0x44)
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
|
|
else
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
|
|
|
|
/* Init external transmitters */
|
|
slave_encoder = get_tmds_slave(encoder);
|
|
if (slave_encoder)
|
|
get_slave_funcs(slave_encoder)->mode_set(
|
|
slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
|
|
|
|
helper->dpms(encoder, DRM_MODE_DPMS_ON);
|
|
|
|
NV_INFO(dev, "Output %s is running on CRTC %d using output %c\n",
|
|
drm_get_connector_name(&nouveau_encoder_connector_get(nv_encoder)->base),
|
|
nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
|
|
}
|
|
|
|
static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
|
|
{
|
|
#ifdef __powerpc__
|
|
struct drm_device *dev = encoder->dev;
|
|
|
|
/* BIOS scripts usually take care of the backlight, thanks
|
|
* Apple for your consistency.
|
|
*/
|
|
if (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
|
|
dev->pci_device == 0x0329) {
|
|
if (mode == DRM_MODE_DPMS_ON) {
|
|
nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 0, 1 << 31);
|
|
nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 1);
|
|
} else {
|
|
nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
|
|
nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 0);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline bool is_powersaving_dpms(int mode)
|
|
{
|
|
return (mode != DRM_MODE_DPMS_ON);
|
|
}
|
|
|
|
static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
|
|
|
|
if (nv_encoder->last_dpms == mode)
|
|
return;
|
|
nv_encoder->last_dpms = mode;
|
|
|
|
NV_INFO(dev, "Setting dpms mode %d on lvds encoder (output %d)\n",
|
|
mode, nv_encoder->dcb->index);
|
|
|
|
if (was_powersaving && is_powersaving_dpms(mode))
|
|
return;
|
|
|
|
if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
|
|
/* when removing an output, crtc may not be set, but PANEL_OFF
|
|
* must still be run
|
|
*/
|
|
int head = crtc ? nouveau_crtc(crtc)->index :
|
|
nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
|
|
|
|
if (mode == DRM_MODE_DPMS_ON) {
|
|
call_lvds_script(dev, nv_encoder->dcb, head,
|
|
LVDS_PANEL_ON, nv_encoder->mode.clock);
|
|
} else
|
|
/* pxclk of 0 is fine for PANEL_OFF, and for a
|
|
* disconnected LVDS encoder there is no native_mode
|
|
*/
|
|
call_lvds_script(dev, nv_encoder->dcb, head,
|
|
LVDS_PANEL_OFF, 0);
|
|
}
|
|
|
|
nv04_dfp_update_backlight(encoder, mode);
|
|
nv04_dfp_update_fp_control(encoder, mode);
|
|
|
|
if (mode == DRM_MODE_DPMS_ON)
|
|
nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
|
|
else {
|
|
dev_priv->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
|
|
dev_priv->mode_reg.sel_clk &= ~0xf0;
|
|
}
|
|
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, dev_priv->mode_reg.sel_clk);
|
|
}
|
|
|
|
static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
|
|
if (nv_encoder->last_dpms == mode)
|
|
return;
|
|
nv_encoder->last_dpms = mode;
|
|
|
|
NV_INFO(dev, "Setting dpms mode %d on tmds encoder (output %d)\n",
|
|
mode, nv_encoder->dcb->index);
|
|
|
|
nv04_dfp_update_backlight(encoder, mode);
|
|
nv04_dfp_update_fp_control(encoder, mode);
|
|
}
|
|
|
|
static void nv04_dfp_save(struct drm_encoder *encoder)
|
|
{
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
struct drm_device *dev = encoder->dev;
|
|
|
|
if (nv_two_heads(dev))
|
|
nv_encoder->restore.head =
|
|
nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
|
|
}
|
|
|
|
static void nv04_dfp_restore(struct drm_encoder *encoder)
|
|
{
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int head = nv_encoder->restore.head;
|
|
|
|
if (nv_encoder->dcb->type == OUTPUT_LVDS) {
|
|
struct nouveau_connector *connector =
|
|
nouveau_encoder_connector_get(nv_encoder);
|
|
|
|
if (connector && connector->native_mode)
|
|
call_lvds_script(dev, nv_encoder->dcb, head,
|
|
LVDS_PANEL_ON,
|
|
connector->native_mode->clock);
|
|
|
|
} else if (nv_encoder->dcb->type == OUTPUT_TMDS) {
|
|
int clock = nouveau_hw_pllvals_to_clk
|
|
(&dev_priv->saved_reg.crtc_reg[head].pllvals);
|
|
|
|
run_tmds_table(dev, nv_encoder->dcb, head, clock);
|
|
}
|
|
|
|
nv_encoder->last_dpms = NV_DPMS_CLEARED;
|
|
}
|
|
|
|
static void nv04_dfp_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
|
|
|
|
NV_DEBUG_KMS(encoder->dev, "\n");
|
|
|
|
if (get_slave_funcs(encoder))
|
|
get_slave_funcs(encoder)->destroy(encoder);
|
|
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(nv_encoder);
|
|
}
|
|
|
|
static void nv04_tmds_slave_init(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->dev;
|
|
struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb;
|
|
struct nouveau_i2c_chan *i2c = nouveau_i2c_find(dev, 2);
|
|
struct i2c_board_info info[] = {
|
|
{
|
|
.type = "sil164",
|
|
.addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
|
|
.platform_data = &(struct sil164_encoder_params) {
|
|
SIL164_INPUT_EDGE_RISING
|
|
}
|
|
},
|
|
{ }
|
|
};
|
|
int type;
|
|
|
|
if (!nv_gf4_disp_arch(dev) || !i2c ||
|
|
get_tmds_slave(encoder))
|
|
return;
|
|
|
|
type = nouveau_i2c_identify(dev, "TMDS transmitter", info, NULL, 2);
|
|
if (type < 0)
|
|
return;
|
|
|
|
drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
|
|
&i2c->adapter, &info[type]);
|
|
}
|
|
|
|
static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
|
|
.dpms = nv04_lvds_dpms,
|
|
.save = nv04_dfp_save,
|
|
.restore = nv04_dfp_restore,
|
|
.mode_fixup = nv04_dfp_mode_fixup,
|
|
.prepare = nv04_dfp_prepare,
|
|
.commit = nv04_dfp_commit,
|
|
.mode_set = nv04_dfp_mode_set,
|
|
.detect = NULL,
|
|
};
|
|
|
|
static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
|
|
.dpms = nv04_tmds_dpms,
|
|
.save = nv04_dfp_save,
|
|
.restore = nv04_dfp_restore,
|
|
.mode_fixup = nv04_dfp_mode_fixup,
|
|
.prepare = nv04_dfp_prepare,
|
|
.commit = nv04_dfp_commit,
|
|
.mode_set = nv04_dfp_mode_set,
|
|
.detect = NULL,
|
|
};
|
|
|
|
static const struct drm_encoder_funcs nv04_dfp_funcs = {
|
|
.destroy = nv04_dfp_destroy,
|
|
};
|
|
|
|
int
|
|
nv04_dfp_create(struct drm_connector *connector, struct dcb_entry *entry)
|
|
{
|
|
const struct drm_encoder_helper_funcs *helper;
|
|
struct nouveau_encoder *nv_encoder = NULL;
|
|
struct drm_encoder *encoder;
|
|
int type;
|
|
|
|
switch (entry->type) {
|
|
case OUTPUT_TMDS:
|
|
type = DRM_MODE_ENCODER_TMDS;
|
|
helper = &nv04_tmds_helper_funcs;
|
|
break;
|
|
case OUTPUT_LVDS:
|
|
type = DRM_MODE_ENCODER_LVDS;
|
|
helper = &nv04_lvds_helper_funcs;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
|
|
if (!nv_encoder)
|
|
return -ENOMEM;
|
|
|
|
encoder = to_drm_encoder(nv_encoder);
|
|
|
|
nv_encoder->dcb = entry;
|
|
nv_encoder->or = ffs(entry->or) - 1;
|
|
|
|
drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type);
|
|
drm_encoder_helper_add(encoder, helper);
|
|
|
|
encoder->possible_crtcs = entry->heads;
|
|
encoder->possible_clones = 0;
|
|
|
|
if (entry->type == OUTPUT_TMDS &&
|
|
entry->location != DCB_LOC_ON_CHIP)
|
|
nv04_tmds_slave_init(encoder);
|
|
|
|
drm_mode_connector_attach_encoder(connector, encoder);
|
|
return 0;
|
|
}
|