c33ce98443
Before this commit we were only calling efi_parse_options() from make_boot_params(), but make_boot_params() only gets called if the kernel gets booted directly as an EFI executable. So when booted through e.g. grub we ended up not parsing the commandline in the boot code. This makes the drivers/firmware/efi/libstub code ignore the "quiet" commandline argument resulting in the following message being printed: "EFI stub: UEFI Secure Boot is enabled." Despite the quiet request. This commits adds an extra call to efi_parse_options() to efi_main() to make sure that the options are always processed. This fixes quiet not working. This also fixes the libstub code ignoring nokaslr and efi=nochunk. Reported-by: Peter Robinson <pbrobinson@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
918 lines
23 KiB
C
918 lines
23 KiB
C
/* -----------------------------------------------------------------------
|
|
*
|
|
* Copyright 2011 Intel Corporation; author Matt Fleming
|
|
*
|
|
* This file is part of the Linux kernel, and is made available under
|
|
* the terms of the GNU General Public License version 2.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/efi.h>
|
|
#include <asm/e820/types.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
|
|
#include "../string.h"
|
|
#include "eboot.h"
|
|
|
|
static efi_system_table_t *sys_table;
|
|
|
|
static struct efi_config *efi_early;
|
|
|
|
__pure const struct efi_config *__efi_early(void)
|
|
{
|
|
return efi_early;
|
|
}
|
|
|
|
#define BOOT_SERVICES(bits) \
|
|
static void setup_boot_services##bits(struct efi_config *c) \
|
|
{ \
|
|
efi_system_table_##bits##_t *table; \
|
|
\
|
|
table = (typeof(table))sys_table; \
|
|
\
|
|
c->runtime_services = table->runtime; \
|
|
c->boot_services = table->boottime; \
|
|
c->text_output = table->con_out; \
|
|
}
|
|
BOOT_SERVICES(32);
|
|
BOOT_SERVICES(64);
|
|
|
|
void efi_char16_printk(efi_system_table_t *table, efi_char16_t *str)
|
|
{
|
|
efi_call_proto(efi_simple_text_output_protocol, output_string,
|
|
efi_early->text_output, str);
|
|
}
|
|
|
|
static efi_status_t
|
|
preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
|
|
{
|
|
struct pci_setup_rom *rom = NULL;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
uint64_t romsize;
|
|
void *romimage;
|
|
|
|
/*
|
|
* Some firmware images contain EFI function pointers at the place where
|
|
* the romimage and romsize fields are supposed to be. Typically the EFI
|
|
* code is mapped at high addresses, translating to an unrealistically
|
|
* large romsize. The UEFI spec limits the size of option ROMs to 16
|
|
* MiB so we reject any ROMs over 16 MiB in size to catch this.
|
|
*/
|
|
romimage = (void *)(unsigned long)efi_table_attr(efi_pci_io_protocol,
|
|
romimage, pci);
|
|
romsize = efi_table_attr(efi_pci_io_protocol, romsize, pci);
|
|
if (!romimage || !romsize || romsize > SZ_16M)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
size = romsize + sizeof(*rom);
|
|
|
|
status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to allocate memory for 'rom'\n");
|
|
return status;
|
|
}
|
|
|
|
memset(rom, 0, sizeof(*rom));
|
|
|
|
rom->data.type = SETUP_PCI;
|
|
rom->data.len = size - sizeof(struct setup_data);
|
|
rom->data.next = 0;
|
|
rom->pcilen = pci->romsize;
|
|
*__rom = rom;
|
|
|
|
status = efi_call_proto(efi_pci_io_protocol, pci.read, pci,
|
|
EfiPciIoWidthUint16, PCI_VENDOR_ID, 1,
|
|
&rom->vendor);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to read rom->vendor\n");
|
|
goto free_struct;
|
|
}
|
|
|
|
status = efi_call_proto(efi_pci_io_protocol, pci.read, pci,
|
|
EfiPciIoWidthUint16, PCI_DEVICE_ID, 1,
|
|
&rom->devid);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to read rom->devid\n");
|
|
goto free_struct;
|
|
}
|
|
|
|
status = efi_call_proto(efi_pci_io_protocol, get_location, pci,
|
|
&rom->segment, &rom->bus, &rom->device,
|
|
&rom->function);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_struct;
|
|
|
|
memcpy(rom->romdata, romimage, romsize);
|
|
return status;
|
|
|
|
free_struct:
|
|
efi_call_early(free_pool, rom);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* There's no way to return an informative status from this function,
|
|
* because any analysis (and printing of error messages) needs to be
|
|
* done directly at the EFI function call-site.
|
|
*
|
|
* For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
|
|
* just didn't find any PCI devices, but there's no way to tell outside
|
|
* the context of the call.
|
|
*/
|
|
static void setup_efi_pci(struct boot_params *params)
|
|
{
|
|
efi_status_t status;
|
|
void **pci_handle = NULL;
|
|
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
unsigned long size = 0;
|
|
unsigned long nr_pci;
|
|
struct setup_data *data;
|
|
int i;
|
|
|
|
status = efi_call_early(locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL,
|
|
&pci_proto, NULL, &size, pci_handle);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
status = efi_call_early(allocate_pool,
|
|
EFI_LOADER_DATA,
|
|
size, (void **)&pci_handle);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to allocate memory for 'pci_handle'\n");
|
|
return;
|
|
}
|
|
|
|
status = efi_call_early(locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
|
|
NULL, &size, pci_handle);
|
|
}
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
|
|
nr_pci = size / (efi_is_64bit() ? sizeof(u64) : sizeof(u32));
|
|
for (i = 0; i < nr_pci; i++) {
|
|
efi_pci_io_protocol_t *pci = NULL;
|
|
struct pci_setup_rom *rom;
|
|
|
|
status = efi_call_early(handle_protocol,
|
|
efi_is_64bit() ? ((u64 *)pci_handle)[i]
|
|
: ((u32 *)pci_handle)[i],
|
|
&pci_proto, (void **)&pci);
|
|
if (status != EFI_SUCCESS || !pci)
|
|
continue;
|
|
|
|
status = preserve_pci_rom_image(pci, &rom);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
if (data)
|
|
data->next = (unsigned long)rom;
|
|
else
|
|
params->hdr.setup_data = (unsigned long)rom;
|
|
|
|
data = (struct setup_data *)rom;
|
|
}
|
|
|
|
free_handle:
|
|
efi_call_early(free_pool, pci_handle);
|
|
}
|
|
|
|
static void retrieve_apple_device_properties(struct boot_params *boot_params)
|
|
{
|
|
efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
|
|
struct setup_data *data, *new;
|
|
efi_status_t status;
|
|
u32 size = 0;
|
|
void *p;
|
|
|
|
status = efi_call_early(locate_protocol, &guid, NULL, &p);
|
|
if (status != EFI_SUCCESS)
|
|
return;
|
|
|
|
if (efi_table_attr(apple_properties_protocol, version, p) != 0x10000) {
|
|
efi_printk(sys_table, "Unsupported properties proto version\n");
|
|
return;
|
|
}
|
|
|
|
efi_call_proto(apple_properties_protocol, get_all, p, NULL, &size);
|
|
if (!size)
|
|
return;
|
|
|
|
do {
|
|
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
|
|
size + sizeof(struct setup_data), &new);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to allocate memory for 'properties'\n");
|
|
return;
|
|
}
|
|
|
|
status = efi_call_proto(apple_properties_protocol, get_all, p,
|
|
new->data, &size);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
efi_call_early(free_pool, new);
|
|
} while (status == EFI_BUFFER_TOO_SMALL);
|
|
|
|
new->type = SETUP_APPLE_PROPERTIES;
|
|
new->len = size;
|
|
new->next = 0;
|
|
|
|
data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
|
|
if (!data) {
|
|
boot_params->hdr.setup_data = (unsigned long)new;
|
|
} else {
|
|
while (data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
data->next = (unsigned long)new;
|
|
}
|
|
}
|
|
|
|
static const efi_char16_t apple[] = L"Apple";
|
|
|
|
static void setup_quirks(struct boot_params *boot_params)
|
|
{
|
|
efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
|
|
efi_table_attr(efi_system_table, fw_vendor, sys_table);
|
|
|
|
if (!memcmp(fw_vendor, apple, sizeof(apple))) {
|
|
if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
|
|
retrieve_apple_device_properties(boot_params);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we have Universal Graphics Adapter (UGA) protocol
|
|
*/
|
|
static efi_status_t
|
|
setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
|
|
{
|
|
efi_status_t status;
|
|
u32 width, height;
|
|
void **uga_handle = NULL;
|
|
efi_uga_draw_protocol_t *uga = NULL, *first_uga;
|
|
unsigned long nr_ugas;
|
|
int i;
|
|
|
|
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
|
|
size, (void **)&uga_handle);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_early(locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL,
|
|
uga_proto, NULL, &size, uga_handle);
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
height = 0;
|
|
width = 0;
|
|
|
|
first_uga = NULL;
|
|
nr_ugas = size / (efi_is_64bit() ? sizeof(u64) : sizeof(u32));
|
|
for (i = 0; i < nr_ugas; i++) {
|
|
efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
u32 w, h, depth, refresh;
|
|
void *pciio;
|
|
unsigned long handle = efi_is_64bit() ? ((u64 *)uga_handle)[i]
|
|
: ((u32 *)uga_handle)[i];
|
|
|
|
status = efi_call_early(handle_protocol, handle,
|
|
uga_proto, (void **)&uga);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
pciio = NULL;
|
|
efi_call_early(handle_protocol, handle, &pciio_proto, &pciio);
|
|
|
|
status = efi_call_proto(efi_uga_draw_protocol, get_mode, uga,
|
|
&w, &h, &depth, &refresh);
|
|
if (status == EFI_SUCCESS && (!first_uga || pciio)) {
|
|
width = w;
|
|
height = h;
|
|
|
|
/*
|
|
* Once we've found a UGA supporting PCIIO,
|
|
* don't bother looking any further.
|
|
*/
|
|
if (pciio)
|
|
break;
|
|
|
|
first_uga = uga;
|
|
}
|
|
}
|
|
|
|
if (!width && !height)
|
|
goto free_handle;
|
|
|
|
/* EFI framebuffer */
|
|
si->orig_video_isVGA = VIDEO_TYPE_EFI;
|
|
|
|
si->lfb_depth = 32;
|
|
si->lfb_width = width;
|
|
si->lfb_height = height;
|
|
|
|
si->red_size = 8;
|
|
si->red_pos = 16;
|
|
si->green_size = 8;
|
|
si->green_pos = 8;
|
|
si->blue_size = 8;
|
|
si->blue_pos = 0;
|
|
si->rsvd_size = 8;
|
|
si->rsvd_pos = 24;
|
|
|
|
free_handle:
|
|
efi_call_early(free_pool, uga_handle);
|
|
|
|
return status;
|
|
}
|
|
|
|
void setup_graphics(struct boot_params *boot_params)
|
|
{
|
|
efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
|
|
struct screen_info *si;
|
|
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
void **gop_handle = NULL;
|
|
void **uga_handle = NULL;
|
|
|
|
si = &boot_params->screen_info;
|
|
memset(si, 0, sizeof(*si));
|
|
|
|
size = 0;
|
|
status = efi_call_early(locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL,
|
|
&graphics_proto, NULL, &size, gop_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
status = efi_setup_gop(NULL, si, &graphics_proto, size);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
size = 0;
|
|
status = efi_call_early(locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL,
|
|
&uga_proto, NULL, &size, uga_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
setup_uga(si, &uga_proto, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Because the x86 boot code expects to be passed a boot_params we
|
|
* need to create one ourselves (usually the bootloader would create
|
|
* one for us).
|
|
*
|
|
* The caller is responsible for filling out ->code32_start in the
|
|
* returned boot_params.
|
|
*/
|
|
struct boot_params *make_boot_params(struct efi_config *c)
|
|
{
|
|
struct boot_params *boot_params;
|
|
struct apm_bios_info *bi;
|
|
struct setup_header *hdr;
|
|
efi_loaded_image_t *image;
|
|
void *options, *handle;
|
|
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
|
|
int options_size = 0;
|
|
efi_status_t status;
|
|
char *cmdline_ptr;
|
|
u16 *s2;
|
|
u8 *s1;
|
|
int i;
|
|
unsigned long ramdisk_addr;
|
|
unsigned long ramdisk_size;
|
|
|
|
efi_early = c;
|
|
sys_table = (efi_system_table_t *)(unsigned long)efi_early->table;
|
|
handle = (void *)(unsigned long)efi_early->image_handle;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
return NULL;
|
|
|
|
if (efi_is_64bit())
|
|
setup_boot_services64(efi_early);
|
|
else
|
|
setup_boot_services32(efi_early);
|
|
|
|
status = efi_call_early(handle_protocol, handle,
|
|
&proto, (void *)&image);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
|
|
return NULL;
|
|
}
|
|
|
|
status = efi_low_alloc(sys_table, 0x4000, 1,
|
|
(unsigned long *)&boot_params);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to allocate lowmem for boot params\n");
|
|
return NULL;
|
|
}
|
|
|
|
memset(boot_params, 0x0, 0x4000);
|
|
|
|
hdr = &boot_params->hdr;
|
|
bi = &boot_params->apm_bios_info;
|
|
|
|
/* Copy the second sector to boot_params */
|
|
memcpy(&hdr->jump, image->image_base + 512, 512);
|
|
|
|
/*
|
|
* Fill out some of the header fields ourselves because the
|
|
* EFI firmware loader doesn't load the first sector.
|
|
*/
|
|
hdr->root_flags = 1;
|
|
hdr->vid_mode = 0xffff;
|
|
hdr->boot_flag = 0xAA55;
|
|
|
|
hdr->type_of_loader = 0x21;
|
|
|
|
/* Convert unicode cmdline to ascii */
|
|
cmdline_ptr = efi_convert_cmdline(sys_table, image, &options_size);
|
|
if (!cmdline_ptr)
|
|
goto fail;
|
|
|
|
hdr->cmd_line_ptr = (unsigned long)cmdline_ptr;
|
|
/* Fill in upper bits of command line address, NOP on 32 bit */
|
|
boot_params->ext_cmd_line_ptr = (u64)(unsigned long)cmdline_ptr >> 32;
|
|
|
|
hdr->ramdisk_image = 0;
|
|
hdr->ramdisk_size = 0;
|
|
|
|
/* Clear APM BIOS info */
|
|
memset(bi, 0, sizeof(*bi));
|
|
|
|
status = efi_parse_options(cmdline_ptr);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail2;
|
|
|
|
status = handle_cmdline_files(sys_table, image,
|
|
(char *)(unsigned long)hdr->cmd_line_ptr,
|
|
"initrd=", hdr->initrd_addr_max,
|
|
&ramdisk_addr, &ramdisk_size);
|
|
|
|
if (status != EFI_SUCCESS &&
|
|
hdr->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G) {
|
|
efi_printk(sys_table, "Trying to load files to higher address\n");
|
|
status = handle_cmdline_files(sys_table, image,
|
|
(char *)(unsigned long)hdr->cmd_line_ptr,
|
|
"initrd=", -1UL,
|
|
&ramdisk_addr, &ramdisk_size);
|
|
}
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto fail2;
|
|
hdr->ramdisk_image = ramdisk_addr & 0xffffffff;
|
|
hdr->ramdisk_size = ramdisk_size & 0xffffffff;
|
|
boot_params->ext_ramdisk_image = (u64)ramdisk_addr >> 32;
|
|
boot_params->ext_ramdisk_size = (u64)ramdisk_size >> 32;
|
|
|
|
return boot_params;
|
|
|
|
fail2:
|
|
efi_free(sys_table, options_size, hdr->cmd_line_ptr);
|
|
fail:
|
|
efi_free(sys_table, 0x4000, (unsigned long)boot_params);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void add_e820ext(struct boot_params *params,
|
|
struct setup_data *e820ext, u32 nr_entries)
|
|
{
|
|
struct setup_data *data;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
|
|
e820ext->type = SETUP_E820_EXT;
|
|
e820ext->len = nr_entries * sizeof(struct boot_e820_entry);
|
|
e820ext->next = 0;
|
|
|
|
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
|
|
if (data)
|
|
data->next = (unsigned long)e820ext;
|
|
else
|
|
params->hdr.setup_data = (unsigned long)e820ext;
|
|
}
|
|
|
|
static efi_status_t
|
|
setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
|
|
{
|
|
struct boot_e820_entry *entry = params->e820_table;
|
|
struct efi_info *efi = ¶ms->efi_info;
|
|
struct boot_e820_entry *prev = NULL;
|
|
u32 nr_entries;
|
|
u32 nr_desc;
|
|
int i;
|
|
|
|
nr_entries = 0;
|
|
nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
|
|
|
|
for (i = 0; i < nr_desc; i++) {
|
|
efi_memory_desc_t *d;
|
|
unsigned int e820_type = 0;
|
|
unsigned long m = efi->efi_memmap;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
m |= (u64)efi->efi_memmap_hi << 32;
|
|
#endif
|
|
|
|
d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
|
|
switch (d->type) {
|
|
case EFI_RESERVED_TYPE:
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
case EFI_MEMORY_MAPPED_IO:
|
|
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
|
|
case EFI_PAL_CODE:
|
|
e820_type = E820_TYPE_RESERVED;
|
|
break;
|
|
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_TYPE_UNUSABLE;
|
|
break;
|
|
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_TYPE_ACPI;
|
|
break;
|
|
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
e820_type = E820_TYPE_RAM;
|
|
break;
|
|
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_TYPE_NVS;
|
|
break;
|
|
|
|
case EFI_PERSISTENT_MEMORY:
|
|
e820_type = E820_TYPE_PMEM;
|
|
break;
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/* Merge adjacent mappings */
|
|
if (prev && prev->type == e820_type &&
|
|
(prev->addr + prev->size) == d->phys_addr) {
|
|
prev->size += d->num_pages << 12;
|
|
continue;
|
|
}
|
|
|
|
if (nr_entries == ARRAY_SIZE(params->e820_table)) {
|
|
u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
|
|
sizeof(struct setup_data);
|
|
|
|
if (!e820ext || e820ext_size < need)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
/* boot_params map full, switch to e820 extended */
|
|
entry = (struct boot_e820_entry *)e820ext->data;
|
|
}
|
|
|
|
entry->addr = d->phys_addr;
|
|
entry->size = d->num_pages << PAGE_SHIFT;
|
|
entry->type = e820_type;
|
|
prev = entry++;
|
|
nr_entries++;
|
|
}
|
|
|
|
if (nr_entries > ARRAY_SIZE(params->e820_table)) {
|
|
u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
|
|
|
|
add_e820ext(params, e820ext, nr_e820ext);
|
|
nr_entries -= nr_e820ext;
|
|
}
|
|
|
|
params->e820_entries = (u8)nr_entries;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
|
|
u32 *e820ext_size)
|
|
{
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
|
|
size = sizeof(struct setup_data) +
|
|
sizeof(struct e820_entry) * nr_desc;
|
|
|
|
if (*e820ext) {
|
|
efi_call_early(free_pool, *e820ext);
|
|
*e820ext = NULL;
|
|
*e820ext_size = 0;
|
|
}
|
|
|
|
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
|
|
size, (void **)e820ext);
|
|
if (status == EFI_SUCCESS)
|
|
*e820ext_size = size;
|
|
|
|
return status;
|
|
}
|
|
|
|
struct exit_boot_struct {
|
|
struct boot_params *boot_params;
|
|
struct efi_info *efi;
|
|
struct setup_data *e820ext;
|
|
__u32 e820ext_size;
|
|
};
|
|
|
|
static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
|
|
struct efi_boot_memmap *map,
|
|
void *priv)
|
|
{
|
|
static bool first = true;
|
|
const char *signature;
|
|
__u32 nr_desc;
|
|
efi_status_t status;
|
|
struct exit_boot_struct *p = priv;
|
|
|
|
if (first) {
|
|
nr_desc = *map->buff_size / *map->desc_size;
|
|
if (nr_desc > ARRAY_SIZE(p->boot_params->e820_table)) {
|
|
u32 nr_e820ext = nr_desc -
|
|
ARRAY_SIZE(p->boot_params->e820_table);
|
|
|
|
status = alloc_e820ext(nr_e820ext, &p->e820ext,
|
|
&p->e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
}
|
|
first = false;
|
|
}
|
|
|
|
signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
|
|
: EFI32_LOADER_SIGNATURE;
|
|
memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
|
|
|
|
p->efi->efi_systab = (unsigned long)sys_table_arg;
|
|
p->efi->efi_memdesc_size = *map->desc_size;
|
|
p->efi->efi_memdesc_version = *map->desc_ver;
|
|
p->efi->efi_memmap = (unsigned long)*map->map;
|
|
p->efi->efi_memmap_size = *map->map_size;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
p->efi->efi_systab_hi = (unsigned long)sys_table_arg >> 32;
|
|
p->efi->efi_memmap_hi = (unsigned long)*map->map >> 32;
|
|
#endif
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
|
|
{
|
|
unsigned long map_sz, key, desc_size, buff_size;
|
|
efi_memory_desc_t *mem_map;
|
|
struct setup_data *e820ext;
|
|
__u32 e820ext_size;
|
|
efi_status_t status;
|
|
__u32 desc_version;
|
|
struct efi_boot_memmap map;
|
|
struct exit_boot_struct priv;
|
|
|
|
map.map = &mem_map;
|
|
map.map_size = &map_sz;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = &desc_version;
|
|
map.key_ptr = &key;
|
|
map.buff_size = &buff_size;
|
|
priv.boot_params = boot_params;
|
|
priv.efi = &boot_params->efi_info;
|
|
priv.e820ext = NULL;
|
|
priv.e820ext_size = 0;
|
|
|
|
/* Might as well exit boot services now */
|
|
status = efi_exit_boot_services(sys_table, handle, &map, &priv,
|
|
exit_boot_func);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
e820ext = priv.e820ext;
|
|
e820ext_size = priv.e820ext_size;
|
|
|
|
/* Historic? */
|
|
boot_params->alt_mem_k = 32 * 1024;
|
|
|
|
status = setup_e820(boot_params, e820ext, e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* On success we return a pointer to a boot_params structure, and NULL
|
|
* on failure.
|
|
*/
|
|
struct boot_params *
|
|
efi_main(struct efi_config *c, struct boot_params *boot_params)
|
|
{
|
|
struct desc_ptr *gdt = NULL;
|
|
efi_loaded_image_t *image;
|
|
struct setup_header *hdr = &boot_params->hdr;
|
|
efi_status_t status;
|
|
struct desc_struct *desc;
|
|
void *handle;
|
|
efi_system_table_t *_table;
|
|
unsigned long cmdline_paddr;
|
|
|
|
efi_early = c;
|
|
|
|
_table = (efi_system_table_t *)(unsigned long)efi_early->table;
|
|
handle = (void *)(unsigned long)efi_early->image_handle;
|
|
|
|
sys_table = _table;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
goto fail;
|
|
|
|
if (efi_is_64bit())
|
|
setup_boot_services64(efi_early);
|
|
else
|
|
setup_boot_services32(efi_early);
|
|
|
|
/*
|
|
* make_boot_params() may have been called before efi_main(), in which
|
|
* case this is the second time we parse the cmdline. This is ok,
|
|
* parsing the cmdline multiple times does not have side-effects.
|
|
*/
|
|
cmdline_paddr = ((u64)hdr->cmd_line_ptr |
|
|
((u64)boot_params->ext_cmd_line_ptr << 32));
|
|
efi_parse_options((char *)cmdline_paddr);
|
|
|
|
/*
|
|
* If the boot loader gave us a value for secure_boot then we use that,
|
|
* otherwise we ask the BIOS.
|
|
*/
|
|
if (boot_params->secure_boot == efi_secureboot_mode_unset)
|
|
boot_params->secure_boot = efi_get_secureboot(sys_table);
|
|
|
|
/* Ask the firmware to clear memory on unclean shutdown */
|
|
efi_enable_reset_attack_mitigation(sys_table);
|
|
efi_retrieve_tpm2_eventlog(sys_table);
|
|
|
|
setup_graphics(boot_params);
|
|
|
|
setup_efi_pci(boot_params);
|
|
|
|
setup_quirks(boot_params);
|
|
|
|
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
|
|
sizeof(*gdt), (void **)&gdt);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to allocate memory for 'gdt' structure\n");
|
|
goto fail;
|
|
}
|
|
|
|
gdt->size = 0x800;
|
|
status = efi_low_alloc(sys_table, gdt->size, 8,
|
|
(unsigned long *)&gdt->address);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "Failed to allocate memory for 'gdt'\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* If the kernel isn't already loaded at the preferred load
|
|
* address, relocate it.
|
|
*/
|
|
if (hdr->pref_address != hdr->code32_start) {
|
|
unsigned long bzimage_addr = hdr->code32_start;
|
|
status = efi_relocate_kernel(sys_table, &bzimage_addr,
|
|
hdr->init_size, hdr->init_size,
|
|
hdr->pref_address,
|
|
hdr->kernel_alignment);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "efi_relocate_kernel() failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
hdr->pref_address = hdr->code32_start;
|
|
hdr->code32_start = bzimage_addr;
|
|
}
|
|
|
|
status = exit_boot(boot_params, handle);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk(sys_table, "exit_boot() failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
memset((char *)gdt->address, 0x0, gdt->size);
|
|
desc = (struct desc_struct *)gdt->address;
|
|
|
|
/* The first GDT is a dummy. */
|
|
desc++;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
/* __KERNEL32_CS */
|
|
desc->limit0 = 0xffff;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ;
|
|
desc->s = DESC_TYPE_CODE_DATA;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit1 = 0xf;
|
|
desc->avl = 0;
|
|
desc->l = 0;
|
|
desc->d = SEG_OP_SIZE_32BIT;
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
|
|
desc++;
|
|
} else {
|
|
/* Second entry is unused on 32-bit */
|
|
desc++;
|
|
}
|
|
|
|
/* __KERNEL_CS */
|
|
desc->limit0 = 0xffff;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ;
|
|
desc->s = DESC_TYPE_CODE_DATA;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit1 = 0xf;
|
|
desc->avl = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
desc->l = 1;
|
|
desc->d = 0;
|
|
} else {
|
|
desc->l = 0;
|
|
desc->d = SEG_OP_SIZE_32BIT;
|
|
}
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
desc++;
|
|
|
|
/* __KERNEL_DS */
|
|
desc->limit0 = 0xffff;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE;
|
|
desc->s = DESC_TYPE_CODE_DATA;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit1 = 0xf;
|
|
desc->avl = 0;
|
|
desc->l = 0;
|
|
desc->d = SEG_OP_SIZE_32BIT;
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
desc++;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_64)) {
|
|
/* Task segment value */
|
|
desc->limit0 = 0x0000;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_TSS;
|
|
desc->s = 0;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit1 = 0x0;
|
|
desc->avl = 0;
|
|
desc->l = 0;
|
|
desc->d = 0;
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
desc++;
|
|
}
|
|
|
|
asm volatile("cli");
|
|
asm volatile ("lgdt %0" : : "m" (*gdt));
|
|
|
|
return boot_params;
|
|
fail:
|
|
efi_printk(sys_table, "efi_main() failed!\n");
|
|
|
|
return NULL;
|
|
}
|