30bb981185
Analyzing large early boot allocations unveiled the logical package id
storage as a prominent memory waste. Since commit 1f12e32f4c
("x86/topology: Create logical package id") every 64-bit system allocates a
128k array to convert logical package ids.
This happens because the array is sized for MAX_LOCAL_APIC which is always
32k on 64bit systems, and it needs 4 bytes for each entry.
This is fairly wasteful, especially for the common case of having only one
socket, which uses exactly 4 byte out of 128K.
There is no user of the package id map which is performance critical, so
the lookup is not required to be O(1). Store the logical processor id in
cpu_data and use a loop based lookup.
To keep the mapping stable accross cpu hotplug operations, add a flag to
cpu_data which is set when the CPU is brought up the first time. When the
flag is set, then cpu_data is not reinitialized by copying boot_cpu_data on
subsequent bringups.
[ tglx: Rename the flag to 'initialized', use proper pointers instead of
repeated cpu_data(x) evaluation and massage changelog. ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: He Chen <he.chen@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Piotr Luc <piotr.luc@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arvind Yadav <arvind.yadav.cs@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20171114124257.22013-3-prarit@redhat.com
951 lines
23 KiB
C
951 lines
23 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_PROCESSOR_H
|
|
#define _ASM_X86_PROCESSOR_H
|
|
|
|
#include <asm/processor-flags.h>
|
|
|
|
/* Forward declaration, a strange C thing */
|
|
struct task_struct;
|
|
struct mm_struct;
|
|
struct vm86;
|
|
|
|
#include <asm/math_emu.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/types.h>
|
|
#include <uapi/asm/sigcontext.h>
|
|
#include <asm/current.h>
|
|
#include <asm/cpufeatures.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc_defs.h>
|
|
#include <asm/nops.h>
|
|
#include <asm/special_insns.h>
|
|
#include <asm/fpu/types.h>
|
|
#include <asm/unwind_hints.h>
|
|
|
|
#include <linux/personality.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/err.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
/*
|
|
* We handle most unaligned accesses in hardware. On the other hand
|
|
* unaligned DMA can be quite expensive on some Nehalem processors.
|
|
*
|
|
* Based on this we disable the IP header alignment in network drivers.
|
|
*/
|
|
#define NET_IP_ALIGN 0
|
|
|
|
#define HBP_NUM 4
|
|
/*
|
|
* Default implementation of macro that returns current
|
|
* instruction pointer ("program counter").
|
|
*/
|
|
static inline void *current_text_addr(void)
|
|
{
|
|
void *pc;
|
|
|
|
asm volatile("mov $1f, %0; 1:":"=r" (pc));
|
|
|
|
return pc;
|
|
}
|
|
|
|
/*
|
|
* These alignment constraints are for performance in the vSMP case,
|
|
* but in the task_struct case we must also meet hardware imposed
|
|
* alignment requirements of the FPU state:
|
|
*/
|
|
#ifdef CONFIG_X86_VSMP
|
|
# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
|
|
# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
|
|
#else
|
|
# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
|
|
# define ARCH_MIN_MMSTRUCT_ALIGN 0
|
|
#endif
|
|
|
|
enum tlb_infos {
|
|
ENTRIES,
|
|
NR_INFO
|
|
};
|
|
|
|
extern u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
/*
|
|
* CPU type and hardware bug flags. Kept separately for each CPU.
|
|
* Members of this structure are referenced in head_32.S, so think twice
|
|
* before touching them. [mj]
|
|
*/
|
|
|
|
struct cpuinfo_x86 {
|
|
__u8 x86; /* CPU family */
|
|
__u8 x86_vendor; /* CPU vendor */
|
|
__u8 x86_model;
|
|
__u8 x86_mask;
|
|
#ifdef CONFIG_X86_64
|
|
/* Number of 4K pages in DTLB/ITLB combined(in pages): */
|
|
int x86_tlbsize;
|
|
#endif
|
|
__u8 x86_virt_bits;
|
|
__u8 x86_phys_bits;
|
|
/* CPUID returned core id bits: */
|
|
__u8 x86_coreid_bits;
|
|
__u8 cu_id;
|
|
/* Max extended CPUID function supported: */
|
|
__u32 extended_cpuid_level;
|
|
/* Maximum supported CPUID level, -1=no CPUID: */
|
|
int cpuid_level;
|
|
__u32 x86_capability[NCAPINTS + NBUGINTS];
|
|
char x86_vendor_id[16];
|
|
char x86_model_id[64];
|
|
/* in KB - valid for CPUS which support this call: */
|
|
int x86_cache_size;
|
|
int x86_cache_alignment; /* In bytes */
|
|
/* Cache QoS architectural values: */
|
|
int x86_cache_max_rmid; /* max index */
|
|
int x86_cache_occ_scale; /* scale to bytes */
|
|
int x86_power;
|
|
unsigned long loops_per_jiffy;
|
|
/* cpuid returned max cores value: */
|
|
u16 x86_max_cores;
|
|
u16 apicid;
|
|
u16 initial_apicid;
|
|
u16 x86_clflush_size;
|
|
/* number of cores as seen by the OS: */
|
|
u16 booted_cores;
|
|
/* Physical processor id: */
|
|
u16 phys_proc_id;
|
|
/* Logical processor id: */
|
|
u16 logical_proc_id;
|
|
/* Core id: */
|
|
u16 cpu_core_id;
|
|
/* Index into per_cpu list: */
|
|
u16 cpu_index;
|
|
u32 microcode;
|
|
unsigned initialized : 1;
|
|
} __randomize_layout;
|
|
|
|
struct cpuid_regs {
|
|
u32 eax, ebx, ecx, edx;
|
|
};
|
|
|
|
enum cpuid_regs_idx {
|
|
CPUID_EAX = 0,
|
|
CPUID_EBX,
|
|
CPUID_ECX,
|
|
CPUID_EDX,
|
|
};
|
|
|
|
#define X86_VENDOR_INTEL 0
|
|
#define X86_VENDOR_CYRIX 1
|
|
#define X86_VENDOR_AMD 2
|
|
#define X86_VENDOR_UMC 3
|
|
#define X86_VENDOR_CENTAUR 5
|
|
#define X86_VENDOR_TRANSMETA 7
|
|
#define X86_VENDOR_NSC 8
|
|
#define X86_VENDOR_NUM 9
|
|
|
|
#define X86_VENDOR_UNKNOWN 0xff
|
|
|
|
/*
|
|
* capabilities of CPUs
|
|
*/
|
|
extern struct cpuinfo_x86 boot_cpu_data;
|
|
extern struct cpuinfo_x86 new_cpu_data;
|
|
|
|
extern struct tss_struct doublefault_tss;
|
|
extern __u32 cpu_caps_cleared[NCAPINTS];
|
|
extern __u32 cpu_caps_set[NCAPINTS];
|
|
|
|
#ifdef CONFIG_SMP
|
|
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
|
|
#define cpu_data(cpu) per_cpu(cpu_info, cpu)
|
|
#else
|
|
#define cpu_info boot_cpu_data
|
|
#define cpu_data(cpu) boot_cpu_data
|
|
#endif
|
|
|
|
extern const struct seq_operations cpuinfo_op;
|
|
|
|
#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
|
|
|
|
extern void cpu_detect(struct cpuinfo_x86 *c);
|
|
|
|
extern void early_cpu_init(void);
|
|
extern void identify_boot_cpu(void);
|
|
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
|
|
extern void print_cpu_info(struct cpuinfo_x86 *);
|
|
void print_cpu_msr(struct cpuinfo_x86 *);
|
|
extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
|
|
extern u32 get_scattered_cpuid_leaf(unsigned int level,
|
|
unsigned int sub_leaf,
|
|
enum cpuid_regs_idx reg);
|
|
extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
|
|
extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
|
|
|
|
extern void detect_extended_topology(struct cpuinfo_x86 *c);
|
|
extern void detect_ht(struct cpuinfo_x86 *c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
extern int have_cpuid_p(void);
|
|
#else
|
|
static inline int have_cpuid_p(void)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
/* ecx is often an input as well as an output. */
|
|
asm volatile("cpuid"
|
|
: "=a" (*eax),
|
|
"=b" (*ebx),
|
|
"=c" (*ecx),
|
|
"=d" (*edx)
|
|
: "0" (*eax), "2" (*ecx)
|
|
: "memory");
|
|
}
|
|
|
|
#define native_cpuid_reg(reg) \
|
|
static inline unsigned int native_cpuid_##reg(unsigned int op) \
|
|
{ \
|
|
unsigned int eax = op, ebx, ecx = 0, edx; \
|
|
\
|
|
native_cpuid(&eax, &ebx, &ecx, &edx); \
|
|
\
|
|
return reg; \
|
|
}
|
|
|
|
/*
|
|
* Native CPUID functions returning a single datum.
|
|
*/
|
|
native_cpuid_reg(eax)
|
|
native_cpuid_reg(ebx)
|
|
native_cpuid_reg(ecx)
|
|
native_cpuid_reg(edx)
|
|
|
|
/*
|
|
* Friendlier CR3 helpers.
|
|
*/
|
|
static inline unsigned long read_cr3_pa(void)
|
|
{
|
|
return __read_cr3() & CR3_ADDR_MASK;
|
|
}
|
|
|
|
static inline unsigned long native_read_cr3_pa(void)
|
|
{
|
|
return __native_read_cr3() & CR3_ADDR_MASK;
|
|
}
|
|
|
|
static inline void load_cr3(pgd_t *pgdir)
|
|
{
|
|
write_cr3(__sme_pa(pgdir));
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* This is the TSS defined by the hardware. */
|
|
struct x86_hw_tss {
|
|
unsigned short back_link, __blh;
|
|
unsigned long sp0;
|
|
unsigned short ss0, __ss0h;
|
|
unsigned long sp1;
|
|
|
|
/*
|
|
* We don't use ring 1, so ss1 is a convenient scratch space in
|
|
* the same cacheline as sp0. We use ss1 to cache the value in
|
|
* MSR_IA32_SYSENTER_CS. When we context switch
|
|
* MSR_IA32_SYSENTER_CS, we first check if the new value being
|
|
* written matches ss1, and, if it's not, then we wrmsr the new
|
|
* value and update ss1.
|
|
*
|
|
* The only reason we context switch MSR_IA32_SYSENTER_CS is
|
|
* that we set it to zero in vm86 tasks to avoid corrupting the
|
|
* stack if we were to go through the sysenter path from vm86
|
|
* mode.
|
|
*/
|
|
unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
|
|
|
|
unsigned short __ss1h;
|
|
unsigned long sp2;
|
|
unsigned short ss2, __ss2h;
|
|
unsigned long __cr3;
|
|
unsigned long ip;
|
|
unsigned long flags;
|
|
unsigned long ax;
|
|
unsigned long cx;
|
|
unsigned long dx;
|
|
unsigned long bx;
|
|
unsigned long sp;
|
|
unsigned long bp;
|
|
unsigned long si;
|
|
unsigned long di;
|
|
unsigned short es, __esh;
|
|
unsigned short cs, __csh;
|
|
unsigned short ss, __ssh;
|
|
unsigned short ds, __dsh;
|
|
unsigned short fs, __fsh;
|
|
unsigned short gs, __gsh;
|
|
unsigned short ldt, __ldth;
|
|
unsigned short trace;
|
|
unsigned short io_bitmap_base;
|
|
|
|
} __attribute__((packed));
|
|
#else
|
|
struct x86_hw_tss {
|
|
u32 reserved1;
|
|
u64 sp0;
|
|
u64 sp1;
|
|
u64 sp2;
|
|
u64 reserved2;
|
|
u64 ist[7];
|
|
u32 reserved3;
|
|
u32 reserved4;
|
|
u16 reserved5;
|
|
u16 io_bitmap_base;
|
|
|
|
} __attribute__((packed));
|
|
#endif
|
|
|
|
/*
|
|
* IO-bitmap sizes:
|
|
*/
|
|
#define IO_BITMAP_BITS 65536
|
|
#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
|
|
#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
|
|
#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
|
|
#define INVALID_IO_BITMAP_OFFSET 0x8000
|
|
|
|
struct tss_struct {
|
|
/*
|
|
* The hardware state:
|
|
*/
|
|
struct x86_hw_tss x86_tss;
|
|
|
|
/*
|
|
* The extra 1 is there because the CPU will access an
|
|
* additional byte beyond the end of the IO permission
|
|
* bitmap. The extra byte must be all 1 bits, and must
|
|
* be within the limit.
|
|
*/
|
|
unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Space for the temporary SYSENTER stack.
|
|
*/
|
|
unsigned long SYSENTER_stack_canary;
|
|
unsigned long SYSENTER_stack[64];
|
|
#endif
|
|
|
|
} ____cacheline_aligned;
|
|
|
|
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
|
|
|
|
/*
|
|
* sizeof(unsigned long) coming from an extra "long" at the end
|
|
* of the iobitmap.
|
|
*
|
|
* -1? seg base+limit should be pointing to the address of the
|
|
* last valid byte
|
|
*/
|
|
#define __KERNEL_TSS_LIMIT \
|
|
(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
|
|
|
|
#ifdef CONFIG_X86_32
|
|
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
|
|
#endif
|
|
|
|
/*
|
|
* Save the original ist values for checking stack pointers during debugging
|
|
*/
|
|
struct orig_ist {
|
|
unsigned long ist[7];
|
|
};
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DECLARE_PER_CPU(struct orig_ist, orig_ist);
|
|
|
|
union irq_stack_union {
|
|
char irq_stack[IRQ_STACK_SIZE];
|
|
/*
|
|
* GCC hardcodes the stack canary as %gs:40. Since the
|
|
* irq_stack is the object at %gs:0, we reserve the bottom
|
|
* 48 bytes of the irq stack for the canary.
|
|
*/
|
|
struct {
|
|
char gs_base[40];
|
|
unsigned long stack_canary;
|
|
};
|
|
};
|
|
|
|
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
|
|
DECLARE_INIT_PER_CPU(irq_stack_union);
|
|
|
|
DECLARE_PER_CPU(char *, irq_stack_ptr);
|
|
DECLARE_PER_CPU(unsigned int, irq_count);
|
|
extern asmlinkage void ignore_sysret(void);
|
|
#else /* X86_64 */
|
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
|
/*
|
|
* Make sure stack canary segment base is cached-aligned:
|
|
* "For Intel Atom processors, avoid non zero segment base address
|
|
* that is not aligned to cache line boundary at all cost."
|
|
* (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
|
|
*/
|
|
struct stack_canary {
|
|
char __pad[20]; /* canary at %gs:20 */
|
|
unsigned long canary;
|
|
};
|
|
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
|
|
#endif
|
|
/*
|
|
* per-CPU IRQ handling stacks
|
|
*/
|
|
struct irq_stack {
|
|
u32 stack[THREAD_SIZE/sizeof(u32)];
|
|
} __aligned(THREAD_SIZE);
|
|
|
|
DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
|
|
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
|
|
#endif /* X86_64 */
|
|
|
|
extern unsigned int fpu_kernel_xstate_size;
|
|
extern unsigned int fpu_user_xstate_size;
|
|
|
|
struct perf_event;
|
|
|
|
typedef struct {
|
|
unsigned long seg;
|
|
} mm_segment_t;
|
|
|
|
struct thread_struct {
|
|
/* Cached TLS descriptors: */
|
|
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long sp0;
|
|
#endif
|
|
unsigned long sp;
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long sysenter_cs;
|
|
#else
|
|
unsigned short es;
|
|
unsigned short ds;
|
|
unsigned short fsindex;
|
|
unsigned short gsindex;
|
|
#endif
|
|
|
|
u32 status; /* thread synchronous flags */
|
|
|
|
#ifdef CONFIG_X86_64
|
|
unsigned long fsbase;
|
|
unsigned long gsbase;
|
|
#else
|
|
/*
|
|
* XXX: this could presumably be unsigned short. Alternatively,
|
|
* 32-bit kernels could be taught to use fsindex instead.
|
|
*/
|
|
unsigned long fs;
|
|
unsigned long gs;
|
|
#endif
|
|
|
|
/* Save middle states of ptrace breakpoints */
|
|
struct perf_event *ptrace_bps[HBP_NUM];
|
|
/* Debug status used for traps, single steps, etc... */
|
|
unsigned long debugreg6;
|
|
/* Keep track of the exact dr7 value set by the user */
|
|
unsigned long ptrace_dr7;
|
|
/* Fault info: */
|
|
unsigned long cr2;
|
|
unsigned long trap_nr;
|
|
unsigned long error_code;
|
|
#ifdef CONFIG_VM86
|
|
/* Virtual 86 mode info */
|
|
struct vm86 *vm86;
|
|
#endif
|
|
/* IO permissions: */
|
|
unsigned long *io_bitmap_ptr;
|
|
unsigned long iopl;
|
|
/* Max allowed port in the bitmap, in bytes: */
|
|
unsigned io_bitmap_max;
|
|
|
|
mm_segment_t addr_limit;
|
|
|
|
unsigned int sig_on_uaccess_err:1;
|
|
unsigned int uaccess_err:1; /* uaccess failed */
|
|
|
|
/* Floating point and extended processor state */
|
|
struct fpu fpu;
|
|
/*
|
|
* WARNING: 'fpu' is dynamically-sized. It *MUST* be at
|
|
* the end.
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* Thread-synchronous status.
|
|
*
|
|
* This is different from the flags in that nobody else
|
|
* ever touches our thread-synchronous status, so we don't
|
|
* have to worry about atomic accesses.
|
|
*/
|
|
#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
|
|
|
|
/*
|
|
* Set IOPL bits in EFLAGS from given mask
|
|
*/
|
|
static inline void native_set_iopl_mask(unsigned mask)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
unsigned int reg;
|
|
|
|
asm volatile ("pushfl;"
|
|
"popl %0;"
|
|
"andl %1, %0;"
|
|
"orl %2, %0;"
|
|
"pushl %0;"
|
|
"popfl"
|
|
: "=&r" (reg)
|
|
: "i" (~X86_EFLAGS_IOPL), "r" (mask));
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
native_load_sp0(unsigned long sp0)
|
|
{
|
|
this_cpu_write(cpu_tss.x86_tss.sp0, sp0);
|
|
}
|
|
|
|
static inline void native_swapgs(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
asm volatile("swapgs" ::: "memory");
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long current_top_of_stack(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
|
|
#else
|
|
/* sp0 on x86_32 is special in and around vm86 mode. */
|
|
return this_cpu_read_stable(cpu_current_top_of_stack);
|
|
#endif
|
|
}
|
|
|
|
static inline bool on_thread_stack(void)
|
|
{
|
|
return (unsigned long)(current_top_of_stack() -
|
|
current_stack_pointer) < THREAD_SIZE;
|
|
}
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
#include <asm/paravirt.h>
|
|
#else
|
|
#define __cpuid native_cpuid
|
|
|
|
static inline void load_sp0(unsigned long sp0)
|
|
{
|
|
native_load_sp0(sp0);
|
|
}
|
|
|
|
#define set_iopl_mask native_set_iopl_mask
|
|
#endif /* CONFIG_PARAVIRT */
|
|
|
|
/* Free all resources held by a thread. */
|
|
extern void release_thread(struct task_struct *);
|
|
|
|
unsigned long get_wchan(struct task_struct *p);
|
|
|
|
/*
|
|
* Generic CPUID function
|
|
* clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
|
|
* resulting in stale register contents being returned.
|
|
*/
|
|
static inline void cpuid(unsigned int op,
|
|
unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
*eax = op;
|
|
*ecx = 0;
|
|
__cpuid(eax, ebx, ecx, edx);
|
|
}
|
|
|
|
/* Some CPUID calls want 'count' to be placed in ecx */
|
|
static inline void cpuid_count(unsigned int op, int count,
|
|
unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
*eax = op;
|
|
*ecx = count;
|
|
__cpuid(eax, ebx, ecx, edx);
|
|
}
|
|
|
|
/*
|
|
* CPUID functions returning a single datum
|
|
*/
|
|
static inline unsigned int cpuid_eax(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return eax;
|
|
}
|
|
|
|
static inline unsigned int cpuid_ebx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return ebx;
|
|
}
|
|
|
|
static inline unsigned int cpuid_ecx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return ecx;
|
|
}
|
|
|
|
static inline unsigned int cpuid_edx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return edx;
|
|
}
|
|
|
|
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
|
|
static __always_inline void rep_nop(void)
|
|
{
|
|
asm volatile("rep; nop" ::: "memory");
|
|
}
|
|
|
|
static __always_inline void cpu_relax(void)
|
|
{
|
|
rep_nop();
|
|
}
|
|
|
|
/*
|
|
* This function forces the icache and prefetched instruction stream to
|
|
* catch up with reality in two very specific cases:
|
|
*
|
|
* a) Text was modified using one virtual address and is about to be executed
|
|
* from the same physical page at a different virtual address.
|
|
*
|
|
* b) Text was modified on a different CPU, may subsequently be
|
|
* executed on this CPU, and you want to make sure the new version
|
|
* gets executed. This generally means you're calling this in a IPI.
|
|
*
|
|
* If you're calling this for a different reason, you're probably doing
|
|
* it wrong.
|
|
*/
|
|
static inline void sync_core(void)
|
|
{
|
|
/*
|
|
* There are quite a few ways to do this. IRET-to-self is nice
|
|
* because it works on every CPU, at any CPL (so it's compatible
|
|
* with paravirtualization), and it never exits to a hypervisor.
|
|
* The only down sides are that it's a bit slow (it seems to be
|
|
* a bit more than 2x slower than the fastest options) and that
|
|
* it unmasks NMIs. The "push %cs" is needed because, in
|
|
* paravirtual environments, __KERNEL_CS may not be a valid CS
|
|
* value when we do IRET directly.
|
|
*
|
|
* In case NMI unmasking or performance ever becomes a problem,
|
|
* the next best option appears to be MOV-to-CR2 and an
|
|
* unconditional jump. That sequence also works on all CPUs,
|
|
* but it will fault at CPL3 (i.e. Xen PV).
|
|
*
|
|
* CPUID is the conventional way, but it's nasty: it doesn't
|
|
* exist on some 486-like CPUs, and it usually exits to a
|
|
* hypervisor.
|
|
*
|
|
* Like all of Linux's memory ordering operations, this is a
|
|
* compiler barrier as well.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
asm volatile (
|
|
"pushfl\n\t"
|
|
"pushl %%cs\n\t"
|
|
"pushl $1f\n\t"
|
|
"iret\n\t"
|
|
"1:"
|
|
: ASM_CALL_CONSTRAINT : : "memory");
|
|
#else
|
|
unsigned int tmp;
|
|
|
|
asm volatile (
|
|
UNWIND_HINT_SAVE
|
|
"mov %%ss, %0\n\t"
|
|
"pushq %q0\n\t"
|
|
"pushq %%rsp\n\t"
|
|
"addq $8, (%%rsp)\n\t"
|
|
"pushfq\n\t"
|
|
"mov %%cs, %0\n\t"
|
|
"pushq %q0\n\t"
|
|
"pushq $1f\n\t"
|
|
"iretq\n\t"
|
|
UNWIND_HINT_RESTORE
|
|
"1:"
|
|
: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
|
|
#endif
|
|
}
|
|
|
|
extern void select_idle_routine(const struct cpuinfo_x86 *c);
|
|
extern void amd_e400_c1e_apic_setup(void);
|
|
|
|
extern unsigned long boot_option_idle_override;
|
|
|
|
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
|
|
IDLE_POLL};
|
|
|
|
extern void enable_sep_cpu(void);
|
|
extern int sysenter_setup(void);
|
|
|
|
extern void early_trap_init(void);
|
|
void early_trap_pf_init(void);
|
|
|
|
/* Defined in head.S */
|
|
extern struct desc_ptr early_gdt_descr;
|
|
|
|
extern void cpu_set_gdt(int);
|
|
extern void switch_to_new_gdt(int);
|
|
extern void load_direct_gdt(int);
|
|
extern void load_fixmap_gdt(int);
|
|
extern void load_percpu_segment(int);
|
|
extern void cpu_init(void);
|
|
|
|
static inline unsigned long get_debugctlmsr(void)
|
|
{
|
|
unsigned long debugctlmsr = 0;
|
|
|
|
#ifndef CONFIG_X86_DEBUGCTLMSR
|
|
if (boot_cpu_data.x86 < 6)
|
|
return 0;
|
|
#endif
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
|
|
|
|
return debugctlmsr;
|
|
}
|
|
|
|
static inline void update_debugctlmsr(unsigned long debugctlmsr)
|
|
{
|
|
#ifndef CONFIG_X86_DEBUGCTLMSR
|
|
if (boot_cpu_data.x86 < 6)
|
|
return;
|
|
#endif
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
|
|
}
|
|
|
|
extern void set_task_blockstep(struct task_struct *task, bool on);
|
|
|
|
/* Boot loader type from the setup header: */
|
|
extern int bootloader_type;
|
|
extern int bootloader_version;
|
|
|
|
extern char ignore_fpu_irq;
|
|
|
|
#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
|
|
#define ARCH_HAS_PREFETCHW
|
|
#define ARCH_HAS_SPINLOCK_PREFETCH
|
|
|
|
#ifdef CONFIG_X86_32
|
|
# define BASE_PREFETCH ""
|
|
# define ARCH_HAS_PREFETCH
|
|
#else
|
|
# define BASE_PREFETCH "prefetcht0 %P1"
|
|
#endif
|
|
|
|
/*
|
|
* Prefetch instructions for Pentium III (+) and AMD Athlon (+)
|
|
*
|
|
* It's not worth to care about 3dnow prefetches for the K6
|
|
* because they are microcoded there and very slow.
|
|
*/
|
|
static inline void prefetch(const void *x)
|
|
{
|
|
alternative_input(BASE_PREFETCH, "prefetchnta %P1",
|
|
X86_FEATURE_XMM,
|
|
"m" (*(const char *)x));
|
|
}
|
|
|
|
/*
|
|
* 3dnow prefetch to get an exclusive cache line.
|
|
* Useful for spinlocks to avoid one state transition in the
|
|
* cache coherency protocol:
|
|
*/
|
|
static inline void prefetchw(const void *x)
|
|
{
|
|
alternative_input(BASE_PREFETCH, "prefetchw %P1",
|
|
X86_FEATURE_3DNOWPREFETCH,
|
|
"m" (*(const char *)x));
|
|
}
|
|
|
|
static inline void spin_lock_prefetch(const void *x)
|
|
{
|
|
prefetchw(x);
|
|
}
|
|
|
|
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
|
|
TOP_OF_KERNEL_STACK_PADDING)
|
|
|
|
#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
|
|
|
|
#define task_pt_regs(task) \
|
|
({ \
|
|
unsigned long __ptr = (unsigned long)task_stack_page(task); \
|
|
__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
|
|
((struct pt_regs *)__ptr) - 1; \
|
|
})
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* User space process size: 3GB (default).
|
|
*/
|
|
#define IA32_PAGE_OFFSET PAGE_OFFSET
|
|
#define TASK_SIZE PAGE_OFFSET
|
|
#define TASK_SIZE_LOW TASK_SIZE
|
|
#define TASK_SIZE_MAX TASK_SIZE
|
|
#define DEFAULT_MAP_WINDOW TASK_SIZE
|
|
#define STACK_TOP TASK_SIZE
|
|
#define STACK_TOP_MAX STACK_TOP
|
|
|
|
#define INIT_THREAD { \
|
|
.sp0 = TOP_OF_INIT_STACK, \
|
|
.sysenter_cs = __KERNEL_CS, \
|
|
.io_bitmap_ptr = NULL, \
|
|
.addr_limit = KERNEL_DS, \
|
|
}
|
|
|
|
#define KSTK_ESP(task) (task_pt_regs(task)->sp)
|
|
|
|
#else
|
|
/*
|
|
* User space process size. 47bits minus one guard page. The guard
|
|
* page is necessary on Intel CPUs: if a SYSCALL instruction is at
|
|
* the highest possible canonical userspace address, then that
|
|
* syscall will enter the kernel with a non-canonical return
|
|
* address, and SYSRET will explode dangerously. We avoid this
|
|
* particular problem by preventing anything from being mapped
|
|
* at the maximum canonical address.
|
|
*/
|
|
#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
|
|
|
|
#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
|
|
|
|
/* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
|
|
0xc0000000 : 0xFFFFe000)
|
|
|
|
#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
|
|
IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
|
|
#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
|
|
IA32_PAGE_OFFSET : TASK_SIZE_MAX)
|
|
#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
|
|
IA32_PAGE_OFFSET : TASK_SIZE_MAX)
|
|
|
|
#define STACK_TOP TASK_SIZE_LOW
|
|
#define STACK_TOP_MAX TASK_SIZE_MAX
|
|
|
|
#define INIT_THREAD { \
|
|
.addr_limit = KERNEL_DS, \
|
|
}
|
|
|
|
extern unsigned long KSTK_ESP(struct task_struct *task);
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
|
|
unsigned long new_sp);
|
|
|
|
/*
|
|
* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
|
|
#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
|
|
|
|
#define KSTK_EIP(task) (task_pt_regs(task)->ip)
|
|
|
|
/* Get/set a process' ability to use the timestamp counter instruction */
|
|
#define GET_TSC_CTL(adr) get_tsc_mode((adr))
|
|
#define SET_TSC_CTL(val) set_tsc_mode((val))
|
|
|
|
extern int get_tsc_mode(unsigned long adr);
|
|
extern int set_tsc_mode(unsigned int val);
|
|
|
|
DECLARE_PER_CPU(u64, msr_misc_features_shadow);
|
|
|
|
/* Register/unregister a process' MPX related resource */
|
|
#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
|
|
#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
|
|
|
|
#ifdef CONFIG_X86_INTEL_MPX
|
|
extern int mpx_enable_management(void);
|
|
extern int mpx_disable_management(void);
|
|
#else
|
|
static inline int mpx_enable_management(void)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
static inline int mpx_disable_management(void)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_X86_INTEL_MPX */
|
|
|
|
#ifdef CONFIG_CPU_SUP_AMD
|
|
extern u16 amd_get_nb_id(int cpu);
|
|
extern u32 amd_get_nodes_per_socket(void);
|
|
#else
|
|
static inline u16 amd_get_nb_id(int cpu) { return 0; }
|
|
static inline u32 amd_get_nodes_per_socket(void) { return 0; }
|
|
#endif
|
|
|
|
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
|
|
{
|
|
uint32_t base, eax, signature[3];
|
|
|
|
for (base = 0x40000000; base < 0x40010000; base += 0x100) {
|
|
cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
|
|
|
|
if (!memcmp(sig, signature, 12) &&
|
|
(leaves == 0 || ((eax - base) >= leaves)))
|
|
return base;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern unsigned long arch_align_stack(unsigned long sp);
|
|
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
|
|
|
|
void default_idle(void);
|
|
#ifdef CONFIG_XEN
|
|
bool xen_set_default_idle(void);
|
|
#else
|
|
#define xen_set_default_idle 0
|
|
#endif
|
|
|
|
void stop_this_cpu(void *dummy);
|
|
void df_debug(struct pt_regs *regs, long error_code);
|
|
#endif /* _ASM_X86_PROCESSOR_H */
|