linux/drivers/pnp/pnpacpi/rsparser.c
Bjorn Helgaas dbed12da5b [ACPI] PNPACPI IRQ workaround for HP workstations
Move pcibios_penalize_isa_irq() to pnpacpi_parse_allocated_irqresource().
Previously we passed the GSI, not the IRQ, and we did it even if parsing
the IRQ resource failed.

Parse IRQ descriptors that contain multiple interrupts.  This violates the
spec (in _CRS, only one interrupt per descriptor is allowed), but some
firmware, e.g., HP rx7620 and rx8620 descriptions of HPET, has this bug.

Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Adam Belay <ambx1@neo.rr.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-03 00:42:56 -04:00

842 lines
22 KiB
C

/*
* pnpacpi -- PnP ACPI driver
*
* Copyright (c) 2004 Matthieu Castet <castet.matthieu@free.fr>
* Copyright (c) 2004 Li Shaohua <shaohua.li@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include "pnpacpi.h"
#ifdef CONFIG_IA64
#define valid_IRQ(i) (1)
#else
#define valid_IRQ(i) (((i) != 0) && ((i) != 2))
#endif
/*
* Allocated Resources
*/
static int irq_flags(int edge_level, int active_high_low)
{
int flag;
if (edge_level == ACPI_LEVEL_SENSITIVE) {
if(active_high_low == ACPI_ACTIVE_LOW)
flag = IORESOURCE_IRQ_LOWLEVEL;
else
flag = IORESOURCE_IRQ_HIGHLEVEL;
}
else {
if(active_high_low == ACPI_ACTIVE_LOW)
flag = IORESOURCE_IRQ_LOWEDGE;
else
flag = IORESOURCE_IRQ_HIGHEDGE;
}
return flag;
}
static void decode_irq_flags(int flag, int *edge_level, int *active_high_low)
{
switch (flag) {
case IORESOURCE_IRQ_LOWLEVEL:
*edge_level = ACPI_LEVEL_SENSITIVE;
*active_high_low = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHLEVEL:
*edge_level = ACPI_LEVEL_SENSITIVE;
*active_high_low = ACPI_ACTIVE_HIGH;
break;
case IORESOURCE_IRQ_LOWEDGE:
*edge_level = ACPI_EDGE_SENSITIVE;
*active_high_low = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHEDGE:
*edge_level = ACPI_EDGE_SENSITIVE;
*active_high_low = ACPI_ACTIVE_HIGH;
break;
}
}
static void
pnpacpi_parse_allocated_irqresource(struct pnp_resource_table * res, u32 gsi,
int edge_level, int active_high_low)
{
int i = 0;
int irq;
if (!valid_IRQ(gsi))
return;
while (!(res->irq_resource[i].flags & IORESOURCE_UNSET) &&
i < PNP_MAX_IRQ)
i++;
if (i >= PNP_MAX_IRQ)
return;
res->irq_resource[i].flags = IORESOURCE_IRQ; // Also clears _UNSET flag
irq = acpi_register_gsi(gsi, edge_level, active_high_low);
if (irq < 0) {
res->irq_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
res->irq_resource[i].start = irq;
res->irq_resource[i].end = irq;
pcibios_penalize_isa_irq(irq, 1);
}
static void
pnpacpi_parse_allocated_dmaresource(struct pnp_resource_table * res, u32 dma)
{
int i = 0;
while (i < PNP_MAX_DMA &&
!(res->dma_resource[i].flags & IORESOURCE_UNSET))
i++;
if (i < PNP_MAX_DMA) {
res->dma_resource[i].flags = IORESOURCE_DMA; // Also clears _UNSET flag
if (dma == -1) {
res->dma_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
res->dma_resource[i].start = dma;
res->dma_resource[i].end = dma;
}
}
static void
pnpacpi_parse_allocated_ioresource(struct pnp_resource_table * res,
u32 io, u32 len)
{
int i = 0;
while (!(res->port_resource[i].flags & IORESOURCE_UNSET) &&
i < PNP_MAX_PORT)
i++;
if (i < PNP_MAX_PORT) {
res->port_resource[i].flags = IORESOURCE_IO; // Also clears _UNSET flag
if (len <= 0 || (io + len -1) >= 0x10003) {
res->port_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
res->port_resource[i].start = io;
res->port_resource[i].end = io + len - 1;
}
}
static void
pnpacpi_parse_allocated_memresource(struct pnp_resource_table * res,
u64 mem, u64 len)
{
int i = 0;
while (!(res->mem_resource[i].flags & IORESOURCE_UNSET) &&
(i < PNP_MAX_MEM))
i++;
if (i < PNP_MAX_MEM) {
res->mem_resource[i].flags = IORESOURCE_MEM; // Also clears _UNSET flag
if (len <= 0) {
res->mem_resource[i].flags |= IORESOURCE_DISABLED;
return;
}
res->mem_resource[i].start = mem;
res->mem_resource[i].end = mem + len - 1;
}
}
static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res,
void *data)
{
struct pnp_resource_table * res_table = (struct pnp_resource_table *)data;
int i;
switch (res->id) {
case ACPI_RSTYPE_IRQ:
/*
* Per spec, only one interrupt per descriptor is allowed in
* _CRS, but some firmware violates this, so parse them all.
*/
for (i = 0; i < res->data.irq.number_of_interrupts; i++) {
pnpacpi_parse_allocated_irqresource(res_table,
res->data.irq.interrupts[i],
res->data.irq.edge_level,
res->data.irq.active_high_low);
}
break;
case ACPI_RSTYPE_EXT_IRQ:
for (i = 0; i < res->data.extended_irq.number_of_interrupts; i++) {
pnpacpi_parse_allocated_irqresource(res_table,
res->data.extended_irq.interrupts[i],
res->data.extended_irq.edge_level,
res->data.extended_irq.active_high_low);
}
break;
case ACPI_RSTYPE_DMA:
if (res->data.dma.number_of_channels > 0)
pnpacpi_parse_allocated_dmaresource(res_table,
res->data.dma.channels[0]);
break;
case ACPI_RSTYPE_IO:
pnpacpi_parse_allocated_ioresource(res_table,
res->data.io.min_base_address,
res->data.io.range_length);
break;
case ACPI_RSTYPE_FIXED_IO:
pnpacpi_parse_allocated_ioresource(res_table,
res->data.fixed_io.base_address,
res->data.fixed_io.range_length);
break;
case ACPI_RSTYPE_MEM24:
pnpacpi_parse_allocated_memresource(res_table,
res->data.memory24.min_base_address,
res->data.memory24.range_length);
break;
case ACPI_RSTYPE_MEM32:
pnpacpi_parse_allocated_memresource(res_table,
res->data.memory32.min_base_address,
res->data.memory32.range_length);
break;
case ACPI_RSTYPE_FIXED_MEM32:
pnpacpi_parse_allocated_memresource(res_table,
res->data.fixed_memory32.range_base_address,
res->data.fixed_memory32.range_length);
break;
case ACPI_RSTYPE_ADDRESS16:
pnpacpi_parse_allocated_memresource(res_table,
res->data.address16.min_address_range,
res->data.address16.address_length);
break;
case ACPI_RSTYPE_ADDRESS32:
pnpacpi_parse_allocated_memresource(res_table,
res->data.address32.min_address_range,
res->data.address32.address_length);
break;
case ACPI_RSTYPE_ADDRESS64:
pnpacpi_parse_allocated_memresource(res_table,
res->data.address64.min_address_range,
res->data.address64.address_length);
break;
case ACPI_RSTYPE_VENDOR:
break;
default:
pnp_warn("PnPACPI: unknown resource type %d", res->id);
return AE_ERROR;
}
return AE_OK;
}
acpi_status pnpacpi_parse_allocated_resource(acpi_handle handle, struct pnp_resource_table * res)
{
/* Blank the resource table values */
pnp_init_resource_table(res);
return acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_allocated_resource, res);
}
static void pnpacpi_parse_dma_option(struct pnp_option *option, struct acpi_resource_dma *p)
{
int i;
struct pnp_dma * dma;
if (p->number_of_channels == 0)
return;
dma = pnpacpi_kmalloc(sizeof(struct pnp_dma), GFP_KERNEL);
if (!dma)
return;
for(i = 0; i < p->number_of_channels; i++)
dma->map |= 1 << p->channels[i];
dma->flags = 0;
if (p->bus_master)
dma->flags |= IORESOURCE_DMA_MASTER;
switch (p->type) {
case ACPI_COMPATIBILITY:
dma->flags |= IORESOURCE_DMA_COMPATIBLE;
break;
case ACPI_TYPE_A:
dma->flags |= IORESOURCE_DMA_TYPEA;
break;
case ACPI_TYPE_B:
dma->flags |= IORESOURCE_DMA_TYPEB;
break;
case ACPI_TYPE_F:
dma->flags |= IORESOURCE_DMA_TYPEF;
break;
default:
/* Set a default value ? */
dma->flags |= IORESOURCE_DMA_COMPATIBLE;
pnp_err("Invalid DMA type");
}
switch (p->transfer) {
case ACPI_TRANSFER_8:
dma->flags |= IORESOURCE_DMA_8BIT;
break;
case ACPI_TRANSFER_8_16:
dma->flags |= IORESOURCE_DMA_8AND16BIT;
break;
case ACPI_TRANSFER_16:
dma->flags |= IORESOURCE_DMA_16BIT;
break;
default:
/* Set a default value ? */
dma->flags |= IORESOURCE_DMA_8AND16BIT;
pnp_err("Invalid DMA transfer type");
}
pnp_register_dma_resource(option,dma);
return;
}
static void pnpacpi_parse_irq_option(struct pnp_option *option,
struct acpi_resource_irq *p)
{
int i;
struct pnp_irq * irq;
if (p->number_of_interrupts == 0)
return;
irq = pnpacpi_kmalloc(sizeof(struct pnp_irq), GFP_KERNEL);
if (!irq)
return;
for(i = 0; i < p->number_of_interrupts; i++)
if (p->interrupts[i])
__set_bit(p->interrupts[i], irq->map);
irq->flags = irq_flags(p->edge_level, p->active_high_low);
pnp_register_irq_resource(option, irq);
return;
}
static void pnpacpi_parse_ext_irq_option(struct pnp_option *option,
struct acpi_resource_ext_irq *p)
{
int i;
struct pnp_irq * irq;
if (p->number_of_interrupts == 0)
return;
irq = pnpacpi_kmalloc(sizeof(struct pnp_irq), GFP_KERNEL);
if (!irq)
return;
for(i = 0; i < p->number_of_interrupts; i++)
if (p->interrupts[i])
__set_bit(p->interrupts[i], irq->map);
irq->flags = irq_flags(p->edge_level, p->active_high_low);
pnp_register_irq_resource(option, irq);
return;
}
static void
pnpacpi_parse_port_option(struct pnp_option *option,
struct acpi_resource_io *io)
{
struct pnp_port * port;
if (io->range_length == 0)
return;
port = pnpacpi_kmalloc(sizeof(struct pnp_port), GFP_KERNEL);
if (!port)
return;
port->min = io->min_base_address;
port->max = io->max_base_address;
port->align = io->alignment;
port->size = io->range_length;
port->flags = ACPI_DECODE_16 == io->io_decode ?
PNP_PORT_FLAG_16BITADDR : 0;
pnp_register_port_resource(option,port);
return;
}
static void
pnpacpi_parse_fixed_port_option(struct pnp_option *option,
struct acpi_resource_fixed_io *io)
{
struct pnp_port * port;
if (io->range_length == 0)
return;
port = pnpacpi_kmalloc(sizeof(struct pnp_port), GFP_KERNEL);
if (!port)
return;
port->min = port->max = io->base_address;
port->size = io->range_length;
port->align = 0;
port->flags = PNP_PORT_FLAG_FIXED;
pnp_register_port_resource(option,port);
return;
}
static void
pnpacpi_parse_mem24_option(struct pnp_option *option,
struct acpi_resource_mem24 *p)
{
struct pnp_mem * mem;
if (p->range_length == 0)
return;
mem = pnpacpi_kmalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = p->min_base_address;
mem->max = p->max_base_address;
mem->align = p->alignment;
mem->size = p->range_length;
mem->flags = (ACPI_READ_WRITE_MEMORY == p->read_write_attribute) ?
IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option,mem);
return;
}
static void
pnpacpi_parse_mem32_option(struct pnp_option *option,
struct acpi_resource_mem32 *p)
{
struct pnp_mem * mem;
if (p->range_length == 0)
return;
mem = pnpacpi_kmalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = p->min_base_address;
mem->max = p->max_base_address;
mem->align = p->alignment;
mem->size = p->range_length;
mem->flags = (ACPI_READ_WRITE_MEMORY == p->read_write_attribute) ?
IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option,mem);
return;
}
static void
pnpacpi_parse_fixed_mem32_option(struct pnp_option *option,
struct acpi_resource_fixed_mem32 *p)
{
struct pnp_mem * mem;
if (p->range_length == 0)
return;
mem = pnpacpi_kmalloc(sizeof(struct pnp_mem), GFP_KERNEL);
if (!mem)
return;
mem->min = mem->max = p->range_base_address;
mem->size = p->range_length;
mem->align = 0;
mem->flags = (ACPI_READ_WRITE_MEMORY == p->read_write_attribute) ?
IORESOURCE_MEM_WRITEABLE : 0;
pnp_register_mem_resource(option,mem);
return;
}
struct acpipnp_parse_option_s {
struct pnp_option *option;
struct pnp_option *option_independent;
struct pnp_dev *dev;
};
static acpi_status pnpacpi_option_resource(struct acpi_resource *res,
void *data)
{
int priority = 0;
struct acpipnp_parse_option_s *parse_data = (struct acpipnp_parse_option_s *)data;
struct pnp_dev *dev = parse_data->dev;
struct pnp_option *option = parse_data->option;
switch (res->id) {
case ACPI_RSTYPE_IRQ:
pnpacpi_parse_irq_option(option, &res->data.irq);
break;
case ACPI_RSTYPE_EXT_IRQ:
pnpacpi_parse_ext_irq_option(option,
&res->data.extended_irq);
break;
case ACPI_RSTYPE_DMA:
pnpacpi_parse_dma_option(option, &res->data.dma);
break;
case ACPI_RSTYPE_IO:
pnpacpi_parse_port_option(option, &res->data.io);
break;
case ACPI_RSTYPE_FIXED_IO:
pnpacpi_parse_fixed_port_option(option,
&res->data.fixed_io);
break;
case ACPI_RSTYPE_MEM24:
pnpacpi_parse_mem24_option(option, &res->data.memory24);
break;
case ACPI_RSTYPE_MEM32:
pnpacpi_parse_mem32_option(option, &res->data.memory32);
break;
case ACPI_RSTYPE_FIXED_MEM32:
pnpacpi_parse_fixed_mem32_option(option,
&res->data.fixed_memory32);
break;
case ACPI_RSTYPE_START_DPF:
switch (res->data.start_dpf.compatibility_priority) {
case ACPI_GOOD_CONFIGURATION:
priority = PNP_RES_PRIORITY_PREFERRED;
break;
case ACPI_ACCEPTABLE_CONFIGURATION:
priority = PNP_RES_PRIORITY_ACCEPTABLE;
break;
case ACPI_SUB_OPTIMAL_CONFIGURATION:
priority = PNP_RES_PRIORITY_FUNCTIONAL;
break;
default:
priority = PNP_RES_PRIORITY_INVALID;
break;
}
/* TBD: Considering performace/robustness bits */
option = pnp_register_dependent_option(dev, priority);
if (!option)
return AE_ERROR;
parse_data->option = option;
break;
case ACPI_RSTYPE_END_DPF:
/*only one EndDependentFn is allowed*/
if (!parse_data->option_independent) {
pnp_warn("PnPACPI: more than one EndDependentFn");
return AE_ERROR;
}
parse_data->option = parse_data->option_independent;
parse_data->option_independent = NULL;
break;
default:
pnp_warn("PnPACPI: unknown resource type %d", res->id);
return AE_ERROR;
}
return AE_OK;
}
acpi_status pnpacpi_parse_resource_option_data(acpi_handle handle,
struct pnp_dev *dev)
{
acpi_status status;
struct acpipnp_parse_option_s parse_data;
parse_data.option = pnp_register_independent_option(dev);
if (!parse_data.option)
return AE_ERROR;
parse_data.option_independent = parse_data.option;
parse_data.dev = dev;
status = acpi_walk_resources(handle, METHOD_NAME__PRS,
pnpacpi_option_resource, &parse_data);
return status;
}
/*
* Set resource
*/
static acpi_status pnpacpi_count_resources(struct acpi_resource *res,
void *data)
{
int *res_cnt = (int *)data;
switch (res->id) {
case ACPI_RSTYPE_IRQ:
case ACPI_RSTYPE_EXT_IRQ:
case ACPI_RSTYPE_DMA:
case ACPI_RSTYPE_IO:
case ACPI_RSTYPE_FIXED_IO:
case ACPI_RSTYPE_MEM24:
case ACPI_RSTYPE_MEM32:
case ACPI_RSTYPE_FIXED_MEM32:
#if 0
case ACPI_RSTYPE_ADDRESS16:
case ACPI_RSTYPE_ADDRESS32:
case ACPI_RSTYPE_ADDRESS64:
#endif
(*res_cnt) ++;
default:
return AE_OK;
}
return AE_OK;
}
static acpi_status pnpacpi_type_resources(struct acpi_resource *res,
void *data)
{
struct acpi_resource **resource = (struct acpi_resource **)data;
switch (res->id) {
case ACPI_RSTYPE_IRQ:
case ACPI_RSTYPE_EXT_IRQ:
case ACPI_RSTYPE_DMA:
case ACPI_RSTYPE_IO:
case ACPI_RSTYPE_FIXED_IO:
case ACPI_RSTYPE_MEM24:
case ACPI_RSTYPE_MEM32:
case ACPI_RSTYPE_FIXED_MEM32:
#if 0
case ACPI_RSTYPE_ADDRESS16:
case ACPI_RSTYPE_ADDRESS32:
case ACPI_RSTYPE_ADDRESS64:
#endif
(*resource)->id = res->id;
(*resource)++;
default:
return AE_OK;
}
return AE_OK;
}
int pnpacpi_build_resource_template(acpi_handle handle,
struct acpi_buffer *buffer)
{
struct acpi_resource *resource;
int res_cnt = 0;
acpi_status status;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_count_resources, &res_cnt);
if (ACPI_FAILURE(status)) {
pnp_err("Evaluate _CRS failed");
return -EINVAL;
}
if (!res_cnt)
return -EINVAL;
buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1;
buffer->pointer = pnpacpi_kmalloc(buffer->length - 1, GFP_KERNEL);
if (!buffer->pointer)
return -ENOMEM;
pnp_dbg("Res cnt %d", res_cnt);
resource = (struct acpi_resource *)buffer->pointer;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_type_resources, &resource);
if (ACPI_FAILURE(status)) {
kfree(buffer->pointer);
pnp_err("Evaluate _CRS failed");
return -EINVAL;
}
/* resource will pointer the end resource now */
resource->id = ACPI_RSTYPE_END_TAG;
return 0;
}
static void pnpacpi_encode_irq(struct acpi_resource *resource,
struct resource *p)
{
int edge_level, active_high_low;
decode_irq_flags(p->flags & IORESOURCE_BITS, &edge_level,
&active_high_low);
resource->id = ACPI_RSTYPE_IRQ;
resource->length = sizeof(struct acpi_resource);
resource->data.irq.edge_level = edge_level;
resource->data.irq.active_high_low = active_high_low;
if (edge_level == ACPI_EDGE_SENSITIVE)
resource->data.irq.shared_exclusive = ACPI_EXCLUSIVE;
else
resource->data.irq.shared_exclusive = ACPI_SHARED;
resource->data.irq.number_of_interrupts = 1;
resource->data.irq.interrupts[0] = p->start;
}
static void pnpacpi_encode_ext_irq(struct acpi_resource *resource,
struct resource *p)
{
int edge_level, active_high_low;
decode_irq_flags(p->flags & IORESOURCE_BITS, &edge_level,
&active_high_low);
resource->id = ACPI_RSTYPE_EXT_IRQ;
resource->length = sizeof(struct acpi_resource);
resource->data.extended_irq.producer_consumer = ACPI_CONSUMER;
resource->data.extended_irq.edge_level = edge_level;
resource->data.extended_irq.active_high_low = active_high_low;
if (edge_level == ACPI_EDGE_SENSITIVE)
resource->data.irq.shared_exclusive = ACPI_EXCLUSIVE;
else
resource->data.irq.shared_exclusive = ACPI_SHARED;
resource->data.extended_irq.number_of_interrupts = 1;
resource->data.extended_irq.interrupts[0] = p->start;
}
static void pnpacpi_encode_dma(struct acpi_resource *resource,
struct resource *p)
{
resource->id = ACPI_RSTYPE_DMA;
resource->length = sizeof(struct acpi_resource);
/* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */
if (p->flags & IORESOURCE_DMA_COMPATIBLE)
resource->data.dma.type = ACPI_COMPATIBILITY;
else if (p->flags & IORESOURCE_DMA_TYPEA)
resource->data.dma.type = ACPI_TYPE_A;
else if (p->flags & IORESOURCE_DMA_TYPEB)
resource->data.dma.type = ACPI_TYPE_B;
else if (p->flags & IORESOURCE_DMA_TYPEF)
resource->data.dma.type = ACPI_TYPE_F;
if (p->flags & IORESOURCE_DMA_8BIT)
resource->data.dma.transfer = ACPI_TRANSFER_8;
else if (p->flags & IORESOURCE_DMA_8AND16BIT)
resource->data.dma.transfer = ACPI_TRANSFER_8_16;
else if (p->flags & IORESOURCE_DMA_16BIT)
resource->data.dma.transfer = ACPI_TRANSFER_16;
resource->data.dma.bus_master = p->flags & IORESOURCE_DMA_MASTER;
resource->data.dma.number_of_channels = 1;
resource->data.dma.channels[0] = p->start;
}
static void pnpacpi_encode_io(struct acpi_resource *resource,
struct resource *p)
{
resource->id = ACPI_RSTYPE_IO;
resource->length = sizeof(struct acpi_resource);
/* Note: pnp_assign_port will copy pnp_port->flags into p->flags */
resource->data.io.io_decode = (p->flags & PNP_PORT_FLAG_16BITADDR)?
ACPI_DECODE_16 : ACPI_DECODE_10;
resource->data.io.min_base_address = p->start;
resource->data.io.max_base_address = p->end;
resource->data.io.alignment = 0; /* Correct? */
resource->data.io.range_length = p->end - p->start + 1;
}
static void pnpacpi_encode_fixed_io(struct acpi_resource *resource,
struct resource *p)
{
resource->id = ACPI_RSTYPE_FIXED_IO;
resource->length = sizeof(struct acpi_resource);
resource->data.fixed_io.base_address = p->start;
resource->data.fixed_io.range_length = p->end - p->start + 1;
}
static void pnpacpi_encode_mem24(struct acpi_resource *resource,
struct resource *p)
{
resource->id = ACPI_RSTYPE_MEM24;
resource->length = sizeof(struct acpi_resource);
/* Note: pnp_assign_mem will copy pnp_mem->flags into p->flags */
resource->data.memory24.read_write_attribute =
(p->flags & IORESOURCE_MEM_WRITEABLE) ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
resource->data.memory24.min_base_address = p->start;
resource->data.memory24.max_base_address = p->end;
resource->data.memory24.alignment = 0;
resource->data.memory24.range_length = p->end - p->start + 1;
}
static void pnpacpi_encode_mem32(struct acpi_resource *resource,
struct resource *p)
{
resource->id = ACPI_RSTYPE_MEM32;
resource->length = sizeof(struct acpi_resource);
resource->data.memory32.read_write_attribute =
(p->flags & IORESOURCE_MEM_WRITEABLE) ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
resource->data.memory32.min_base_address = p->start;
resource->data.memory32.max_base_address = p->end;
resource->data.memory32.alignment = 0;
resource->data.memory32.range_length = p->end - p->start + 1;
}
static void pnpacpi_encode_fixed_mem32(struct acpi_resource *resource,
struct resource *p)
{
resource->id = ACPI_RSTYPE_FIXED_MEM32;
resource->length = sizeof(struct acpi_resource);
resource->data.fixed_memory32.read_write_attribute =
(p->flags & IORESOURCE_MEM_WRITEABLE) ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
resource->data.fixed_memory32.range_base_address = p->start;
resource->data.fixed_memory32.range_length = p->end - p->start + 1;
}
int pnpacpi_encode_resources(struct pnp_resource_table *res_table,
struct acpi_buffer *buffer)
{
int i = 0;
/* pnpacpi_build_resource_template allocates extra mem */
int res_cnt = (buffer->length - 1)/sizeof(struct acpi_resource) - 1;
struct acpi_resource *resource = (struct acpi_resource*)buffer->pointer;
int port = 0, irq = 0, dma = 0, mem = 0;
pnp_dbg("res cnt %d", res_cnt);
while (i < res_cnt) {
switch(resource->id) {
case ACPI_RSTYPE_IRQ:
pnp_dbg("Encode irq");
pnpacpi_encode_irq(resource,
&res_table->irq_resource[irq]);
irq++;
break;
case ACPI_RSTYPE_EXT_IRQ:
pnp_dbg("Encode ext irq");
pnpacpi_encode_ext_irq(resource,
&res_table->irq_resource[irq]);
irq++;
break;
case ACPI_RSTYPE_DMA:
pnp_dbg("Encode dma");
pnpacpi_encode_dma(resource,
&res_table->dma_resource[dma]);
dma ++;
break;
case ACPI_RSTYPE_IO:
pnp_dbg("Encode io");
pnpacpi_encode_io(resource,
&res_table->port_resource[port]);
port ++;
break;
case ACPI_RSTYPE_FIXED_IO:
pnp_dbg("Encode fixed io");
pnpacpi_encode_fixed_io(resource,
&res_table->port_resource[port]);
port ++;
break;
case ACPI_RSTYPE_MEM24:
pnp_dbg("Encode mem24");
pnpacpi_encode_mem24(resource,
&res_table->mem_resource[mem]);
mem ++;
break;
case ACPI_RSTYPE_MEM32:
pnp_dbg("Encode mem32");
pnpacpi_encode_mem32(resource,
&res_table->mem_resource[mem]);
mem ++;
break;
case ACPI_RSTYPE_FIXED_MEM32:
pnp_dbg("Encode fixed mem32");
pnpacpi_encode_fixed_mem32(resource,
&res_table->mem_resource[mem]);
mem ++;
break;
default: /* other type */
pnp_warn("unknown resource type %d", resource->id);
return -EINVAL;
}
resource ++;
i ++;
}
return 0;
}