b7404c7ecb
Consider two tasks that are running in parallel on a pair of engines (vcs0, vcs1), but then must complete on a shared engine (rcs0). To maximise throughput, we want to run the first ready task on rcs0 (i.e. the first task that completes on either of vcs0 or vcs1). When using semaphores, however, we will instead queue onto rcs in submission order. To resolve this incorrect ordering, we want to re-evaluate the priority queue when each of the request is ready. Normally this happens because we only insert into the priority queue requests that are ready, but with semaphores we are inserting ahead of their readiness and to compensate we penalize those tasks with reduced priority (so that tasks that do not need to busywait should naturally be run first). However, given a series of tasks that each use semaphores, the queue degrades into submission fifo rather than readiness fifo, and so to counter this we give a small boost to semaphore users as their dependent tasks are completed (and so we no longer require any busywait prior to running the user task as they are then ready themselves). v2: Fixup irqsave for schedule_lock (Tvrtko) Testcase: igt/gem_exec_schedule/semaphore-codependency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Cc: Dmitry Ermilov <dmitry.ermilov@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190409152922.23894-1-chris@chris-wilson.co.uk
480 lines
12 KiB
C
480 lines
12 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_globals.h"
|
|
#include "i915_request.h"
|
|
#include "i915_scheduler.h"
|
|
|
|
static struct i915_global_scheduler {
|
|
struct i915_global base;
|
|
struct kmem_cache *slab_dependencies;
|
|
struct kmem_cache *slab_priorities;
|
|
} global;
|
|
|
|
static DEFINE_SPINLOCK(schedule_lock);
|
|
|
|
static const struct i915_request *
|
|
node_to_request(const struct i915_sched_node *node)
|
|
{
|
|
return container_of(node, const struct i915_request, sched);
|
|
}
|
|
|
|
static inline bool node_started(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_started(node_to_request(node));
|
|
}
|
|
|
|
static inline bool node_signaled(const struct i915_sched_node *node)
|
|
{
|
|
return i915_request_completed(node_to_request(node));
|
|
}
|
|
|
|
void i915_sched_node_init(struct i915_sched_node *node)
|
|
{
|
|
INIT_LIST_HEAD(&node->signalers_list);
|
|
INIT_LIST_HEAD(&node->waiters_list);
|
|
INIT_LIST_HEAD(&node->link);
|
|
node->attr.priority = I915_PRIORITY_INVALID;
|
|
node->semaphores = 0;
|
|
node->flags = 0;
|
|
}
|
|
|
|
static struct i915_dependency *
|
|
i915_dependency_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
|
|
}
|
|
|
|
static void
|
|
i915_dependency_free(struct i915_dependency *dep)
|
|
{
|
|
kmem_cache_free(global.slab_dependencies, dep);
|
|
}
|
|
|
|
bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal,
|
|
struct i915_dependency *dep,
|
|
unsigned long flags)
|
|
{
|
|
bool ret = false;
|
|
|
|
spin_lock_irq(&schedule_lock);
|
|
|
|
if (!node_signaled(signal)) {
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
list_add(&dep->wait_link, &signal->waiters_list);
|
|
list_add(&dep->signal_link, &node->signalers_list);
|
|
dep->signaler = signal;
|
|
dep->flags = flags;
|
|
|
|
/* Keep track of whether anyone on this chain has a semaphore */
|
|
if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
|
|
!node_started(signal))
|
|
node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
|
|
|
|
ret = true;
|
|
}
|
|
|
|
spin_unlock_irq(&schedule_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_sched_node_add_dependency(struct i915_sched_node *node,
|
|
struct i915_sched_node *signal)
|
|
{
|
|
struct i915_dependency *dep;
|
|
|
|
dep = i915_dependency_alloc();
|
|
if (!dep)
|
|
return -ENOMEM;
|
|
|
|
if (!__i915_sched_node_add_dependency(node, signal, dep,
|
|
I915_DEPENDENCY_ALLOC))
|
|
i915_dependency_free(dep);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_sched_node_fini(struct i915_sched_node *node)
|
|
{
|
|
struct i915_dependency *dep, *tmp;
|
|
|
|
GEM_BUG_ON(!list_empty(&node->link));
|
|
|
|
spin_lock_irq(&schedule_lock);
|
|
|
|
/*
|
|
* Everyone we depended upon (the fences we wait to be signaled)
|
|
* should retire before us and remove themselves from our list.
|
|
* However, retirement is run independently on each timeline and
|
|
* so we may be called out-of-order.
|
|
*/
|
|
list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(!node_signaled(dep->signaler));
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del(&dep->wait_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(dep);
|
|
}
|
|
|
|
/* Remove ourselves from everyone who depends upon us */
|
|
list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
|
|
GEM_BUG_ON(dep->signaler != node);
|
|
GEM_BUG_ON(!list_empty(&dep->dfs_link));
|
|
|
|
list_del(&dep->signal_link);
|
|
if (dep->flags & I915_DEPENDENCY_ALLOC)
|
|
i915_dependency_free(dep);
|
|
}
|
|
|
|
spin_unlock_irq(&schedule_lock);
|
|
}
|
|
|
|
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
|
|
{
|
|
return rb_entry(rb, struct i915_priolist, node);
|
|
}
|
|
|
|
static void assert_priolists(struct intel_engine_execlists * const execlists)
|
|
{
|
|
struct rb_node *rb;
|
|
long last_prio, i;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return;
|
|
|
|
GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
|
|
rb_first(&execlists->queue.rb_root));
|
|
|
|
last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
|
|
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
|
|
const struct i915_priolist *p = to_priolist(rb);
|
|
|
|
GEM_BUG_ON(p->priority >= last_prio);
|
|
last_prio = p->priority;
|
|
|
|
GEM_BUG_ON(!p->used);
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
|
|
if (list_empty(&p->requests[i]))
|
|
continue;
|
|
|
|
GEM_BUG_ON(!(p->used & BIT(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct list_head *
|
|
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
|
|
{
|
|
struct intel_engine_execlists * const execlists = &engine->execlists;
|
|
struct i915_priolist *p;
|
|
struct rb_node **parent, *rb;
|
|
bool first = true;
|
|
int idx, i;
|
|
|
|
lockdep_assert_held(&engine->timeline.lock);
|
|
assert_priolists(execlists);
|
|
|
|
/* buckets sorted from highest [in slot 0] to lowest priority */
|
|
idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
|
|
prio >>= I915_USER_PRIORITY_SHIFT;
|
|
if (unlikely(execlists->no_priolist))
|
|
prio = I915_PRIORITY_NORMAL;
|
|
|
|
find_priolist:
|
|
/* most positive priority is scheduled first, equal priorities fifo */
|
|
rb = NULL;
|
|
parent = &execlists->queue.rb_root.rb_node;
|
|
while (*parent) {
|
|
rb = *parent;
|
|
p = to_priolist(rb);
|
|
if (prio > p->priority) {
|
|
parent = &rb->rb_left;
|
|
} else if (prio < p->priority) {
|
|
parent = &rb->rb_right;
|
|
first = false;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (prio == I915_PRIORITY_NORMAL) {
|
|
p = &execlists->default_priolist;
|
|
} else {
|
|
p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
|
|
/* Convert an allocation failure to a priority bump */
|
|
if (unlikely(!p)) {
|
|
prio = I915_PRIORITY_NORMAL; /* recurses just once */
|
|
|
|
/* To maintain ordering with all rendering, after an
|
|
* allocation failure we have to disable all scheduling.
|
|
* Requests will then be executed in fifo, and schedule
|
|
* will ensure that dependencies are emitted in fifo.
|
|
* There will be still some reordering with existing
|
|
* requests, so if userspace lied about their
|
|
* dependencies that reordering may be visible.
|
|
*/
|
|
execlists->no_priolist = true;
|
|
goto find_priolist;
|
|
}
|
|
}
|
|
|
|
p->priority = prio;
|
|
for (i = 0; i < ARRAY_SIZE(p->requests); i++)
|
|
INIT_LIST_HEAD(&p->requests[i]);
|
|
rb_link_node(&p->node, rb, parent);
|
|
rb_insert_color_cached(&p->node, &execlists->queue, first);
|
|
p->used = 0;
|
|
|
|
out:
|
|
p->used |= BIT(idx);
|
|
return &p->requests[idx];
|
|
}
|
|
|
|
struct sched_cache {
|
|
struct list_head *priolist;
|
|
};
|
|
|
|
static struct intel_engine_cs *
|
|
sched_lock_engine(const struct i915_sched_node *node,
|
|
struct intel_engine_cs *locked,
|
|
struct sched_cache *cache)
|
|
{
|
|
struct intel_engine_cs *engine = node_to_request(node)->engine;
|
|
|
|
GEM_BUG_ON(!locked);
|
|
|
|
if (engine != locked) {
|
|
spin_unlock(&locked->timeline.lock);
|
|
memset(cache, 0, sizeof(*cache));
|
|
spin_lock(&engine->timeline.lock);
|
|
}
|
|
|
|
return engine;
|
|
}
|
|
|
|
static bool inflight(const struct i915_request *rq,
|
|
const struct intel_engine_cs *engine)
|
|
{
|
|
const struct i915_request *active;
|
|
|
|
if (!i915_request_is_active(rq))
|
|
return false;
|
|
|
|
active = port_request(engine->execlists.port);
|
|
return active->hw_context == rq->hw_context;
|
|
}
|
|
|
|
static void __i915_schedule(struct i915_request *rq,
|
|
const struct i915_sched_attr *attr)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
struct i915_dependency *dep, *p;
|
|
struct i915_dependency stack;
|
|
const int prio = attr->priority;
|
|
struct sched_cache cache;
|
|
LIST_HEAD(dfs);
|
|
|
|
/* Needed in order to use the temporary link inside i915_dependency */
|
|
lockdep_assert_held(&schedule_lock);
|
|
GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
|
|
|
|
if (i915_request_completed(rq))
|
|
return;
|
|
|
|
if (prio <= READ_ONCE(rq->sched.attr.priority))
|
|
return;
|
|
|
|
stack.signaler = &rq->sched;
|
|
list_add(&stack.dfs_link, &dfs);
|
|
|
|
/*
|
|
* Recursively bump all dependent priorities to match the new request.
|
|
*
|
|
* A naive approach would be to use recursion:
|
|
* static void update_priorities(struct i915_sched_node *node, prio) {
|
|
* list_for_each_entry(dep, &node->signalers_list, signal_link)
|
|
* update_priorities(dep->signal, prio)
|
|
* queue_request(node);
|
|
* }
|
|
* but that may have unlimited recursion depth and so runs a very
|
|
* real risk of overunning the kernel stack. Instead, we build
|
|
* a flat list of all dependencies starting with the current request.
|
|
* As we walk the list of dependencies, we add all of its dependencies
|
|
* to the end of the list (this may include an already visited
|
|
* request) and continue to walk onwards onto the new dependencies. The
|
|
* end result is a topological list of requests in reverse order, the
|
|
* last element in the list is the request we must execute first.
|
|
*/
|
|
list_for_each_entry(dep, &dfs, dfs_link) {
|
|
struct i915_sched_node *node = dep->signaler;
|
|
|
|
/* If we are already flying, we know we have no signalers */
|
|
if (node_started(node))
|
|
continue;
|
|
|
|
/*
|
|
* Within an engine, there can be no cycle, but we may
|
|
* refer to the same dependency chain multiple times
|
|
* (redundant dependencies are not eliminated) and across
|
|
* engines.
|
|
*/
|
|
list_for_each_entry(p, &node->signalers_list, signal_link) {
|
|
GEM_BUG_ON(p == dep); /* no cycles! */
|
|
|
|
if (node_signaled(p->signaler))
|
|
continue;
|
|
|
|
if (prio > READ_ONCE(p->signaler->attr.priority))
|
|
list_move_tail(&p->dfs_link, &dfs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we didn't need to bump any existing priorities, and we haven't
|
|
* yet submitted this request (i.e. there is no potential race with
|
|
* execlists_submit_request()), we can set our own priority and skip
|
|
* acquiring the engine locks.
|
|
*/
|
|
if (rq->sched.attr.priority == I915_PRIORITY_INVALID) {
|
|
GEM_BUG_ON(!list_empty(&rq->sched.link));
|
|
rq->sched.attr = *attr;
|
|
|
|
if (stack.dfs_link.next == stack.dfs_link.prev)
|
|
return;
|
|
|
|
__list_del_entry(&stack.dfs_link);
|
|
}
|
|
|
|
memset(&cache, 0, sizeof(cache));
|
|
engine = rq->engine;
|
|
spin_lock(&engine->timeline.lock);
|
|
|
|
/* Fifo and depth-first replacement ensure our deps execute before us */
|
|
list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
|
|
struct i915_sched_node *node = dep->signaler;
|
|
|
|
INIT_LIST_HEAD(&dep->dfs_link);
|
|
|
|
engine = sched_lock_engine(node, engine, &cache);
|
|
lockdep_assert_held(&engine->timeline.lock);
|
|
|
|
/* Recheck after acquiring the engine->timeline.lock */
|
|
if (prio <= node->attr.priority || node_signaled(node))
|
|
continue;
|
|
|
|
node->attr.priority = prio;
|
|
if (!list_empty(&node->link)) {
|
|
if (!cache.priolist)
|
|
cache.priolist =
|
|
i915_sched_lookup_priolist(engine,
|
|
prio);
|
|
list_move_tail(&node->link, cache.priolist);
|
|
} else {
|
|
/*
|
|
* If the request is not in the priolist queue because
|
|
* it is not yet runnable, then it doesn't contribute
|
|
* to our preemption decisions. On the other hand,
|
|
* if the request is on the HW, it too is not in the
|
|
* queue; but in that case we may still need to reorder
|
|
* the inflight requests.
|
|
*/
|
|
if (!i915_sw_fence_done(&node_to_request(node)->submit))
|
|
continue;
|
|
}
|
|
|
|
if (prio <= engine->execlists.queue_priority_hint)
|
|
continue;
|
|
|
|
engine->execlists.queue_priority_hint = prio;
|
|
|
|
/*
|
|
* If we are already the currently executing context, don't
|
|
* bother evaluating if we should preempt ourselves.
|
|
*/
|
|
if (inflight(node_to_request(node), engine))
|
|
continue;
|
|
|
|
/* Defer (tasklet) submission until after all of our updates. */
|
|
tasklet_hi_schedule(&engine->execlists.tasklet);
|
|
}
|
|
|
|
spin_unlock(&engine->timeline.lock);
|
|
}
|
|
|
|
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
|
|
{
|
|
spin_lock_irq(&schedule_lock);
|
|
__i915_schedule(rq, attr);
|
|
spin_unlock_irq(&schedule_lock);
|
|
}
|
|
|
|
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
|
|
{
|
|
struct i915_sched_attr attr;
|
|
unsigned long flags;
|
|
|
|
GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
|
|
|
|
if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID)
|
|
return;
|
|
|
|
spin_lock_irqsave(&schedule_lock, flags);
|
|
|
|
attr = rq->sched.attr;
|
|
attr.priority |= bump;
|
|
__i915_schedule(rq, &attr);
|
|
|
|
spin_unlock_irqrestore(&schedule_lock, flags);
|
|
}
|
|
|
|
void __i915_priolist_free(struct i915_priolist *p)
|
|
{
|
|
kmem_cache_free(global.slab_priorities, p);
|
|
}
|
|
|
|
static void i915_global_scheduler_shrink(void)
|
|
{
|
|
kmem_cache_shrink(global.slab_dependencies);
|
|
kmem_cache_shrink(global.slab_priorities);
|
|
}
|
|
|
|
static void i915_global_scheduler_exit(void)
|
|
{
|
|
kmem_cache_destroy(global.slab_dependencies);
|
|
kmem_cache_destroy(global.slab_priorities);
|
|
}
|
|
|
|
static struct i915_global_scheduler global = { {
|
|
.shrink = i915_global_scheduler_shrink,
|
|
.exit = i915_global_scheduler_exit,
|
|
} };
|
|
|
|
int __init i915_global_scheduler_init(void)
|
|
{
|
|
global.slab_dependencies = KMEM_CACHE(i915_dependency,
|
|
SLAB_HWCACHE_ALIGN);
|
|
if (!global.slab_dependencies)
|
|
return -ENOMEM;
|
|
|
|
global.slab_priorities = KMEM_CACHE(i915_priolist,
|
|
SLAB_HWCACHE_ALIGN);
|
|
if (!global.slab_priorities)
|
|
goto err_priorities;
|
|
|
|
i915_global_register(&global.base);
|
|
return 0;
|
|
|
|
err_priorities:
|
|
kmem_cache_destroy(global.slab_priorities);
|
|
return -ENOMEM;
|
|
}
|