linux/drivers/gpu/drm/i915/i915_gem.c
Chris Wilson 5e2a0419ef drm/i915: Switch back to an array of logical per-engine HW contexts
We switched to a tree of per-engine HW context to accommodate the
introduction of virtual engines. However, we plan to also support
multiple instances of the same engine within the GEM context, defeating
our use of the engine as a key to looking up the HW context. Just
allocate a logical per-engine instance and always use an index into the
ctx->engines[]. Later on, this ctx->engines[] may be replaced by a user
specified map.

v2: Add for_each_gem_engine() helper to iterator within the engines lock
v3: intel_context_create_request() helper
v4: s/unsigned long/unsigned int/ 4 billion engines is quite enough.
v5: Push iterator locking to caller

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190426163336.15906-7-chris@chris-wilson.co.uk
2019-04-26 18:32:11 +01:00

5181 lines
134 KiB
C

/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drm_vma_manager.h>
#include <drm/drm_pci.h>
#include <drm/i915_drm.h>
#include <linux/dma-fence-array.h>
#include <linux/kthread.h>
#include <linux/reservation.h>
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
#include <linux/mman.h>
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
#include "gt/intel_workarounds.h"
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
#include "i915_gem_pm.h"
#include "i915_trace.h"
#include "i915_vgpu.h"
#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_pm.h"
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
if (obj->cache_dirty)
return false;
if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
return true;
return obj->pin_global; /* currently in use by HW, keep flushed */
}
static int
insert_mappable_node(struct i915_ggtt *ggtt,
struct drm_mm_node *node, u32 size)
{
memset(node, 0, sizeof(*node));
return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
size, 0, I915_COLOR_UNEVICTABLE,
0, ggtt->mappable_end,
DRM_MM_INSERT_LOW);
}
static void
remove_mappable_node(struct drm_mm_node *node)
{
drm_mm_remove_node(node);
}
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
u64 size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
u64 size)
{
spin_lock(&dev_priv->mm.object_stat_lock);
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
spin_unlock(&dev_priv->mm.object_stat_lock);
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
struct drm_i915_gem_get_aperture *args = data;
struct i915_vma *vma;
u64 pinned;
mutex_lock(&ggtt->vm.mutex);
pinned = ggtt->vm.reserved;
list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
if (i915_vma_is_pinned(vma))
pinned += vma->node.size;
mutex_unlock(&ggtt->vm.mutex);
args->aper_size = ggtt->vm.total;
args->aper_available_size = args->aper_size - pinned;
return 0;
}
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
{
struct address_space *mapping = obj->base.filp->f_mapping;
drm_dma_handle_t *phys;
struct sg_table *st;
struct scatterlist *sg;
char *vaddr;
int i;
int err;
if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
return -EINVAL;
/* Always aligning to the object size, allows a single allocation
* to handle all possible callers, and given typical object sizes,
* the alignment of the buddy allocation will naturally match.
*/
phys = drm_pci_alloc(obj->base.dev,
roundup_pow_of_two(obj->base.size),
roundup_pow_of_two(obj->base.size));
if (!phys)
return -ENOMEM;
vaddr = phys->vaddr;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
char *src;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto err_phys;
}
src = kmap_atomic(page);
memcpy(vaddr, src, PAGE_SIZE);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
kunmap_atomic(src);
put_page(page);
vaddr += PAGE_SIZE;
}
i915_gem_chipset_flush(to_i915(obj->base.dev));
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st) {
err = -ENOMEM;
goto err_phys;
}
if (sg_alloc_table(st, 1, GFP_KERNEL)) {
kfree(st);
err = -ENOMEM;
goto err_phys;
}
sg = st->sgl;
sg->offset = 0;
sg->length = obj->base.size;
sg_dma_address(sg) = phys->busaddr;
sg_dma_len(sg) = obj->base.size;
obj->phys_handle = phys;
__i915_gem_object_set_pages(obj, st, sg->length);
return 0;
err_phys:
drm_pci_free(obj->base.dev, phys);
return err;
}
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
obj->read_domains = I915_GEM_DOMAIN_CPU;
obj->write_domain = I915_GEM_DOMAIN_CPU;
if (cpu_write_needs_clflush(obj))
obj->cache_dirty = true;
}
void
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
struct sg_table *pages,
bool needs_clflush)
{
GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
if (obj->mm.madv == I915_MADV_DONTNEED)
obj->mm.dirty = false;
if (needs_clflush &&
(obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
drm_clflush_sg(pages);
__start_cpu_write(obj);
}
static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
__i915_gem_object_release_shmem(obj, pages, false);
if (obj->mm.dirty) {
struct address_space *mapping = obj->base.filp->f_mapping;
char *vaddr = obj->phys_handle->vaddr;
int i;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
char *dst;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
continue;
dst = kmap_atomic(page);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
memcpy(dst, vaddr, PAGE_SIZE);
kunmap_atomic(dst);
set_page_dirty(page);
if (obj->mm.madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
put_page(page);
vaddr += PAGE_SIZE;
}
obj->mm.dirty = false;
}
sg_free_table(pages);
kfree(pages);
drm_pci_free(obj->base.dev, obj->phys_handle);
}
static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
i915_gem_object_unpin_pages(obj);
}
static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
.get_pages = i915_gem_object_get_pages_phys,
.put_pages = i915_gem_object_put_pages_phys,
.release = i915_gem_object_release_phys,
};
static const struct drm_i915_gem_object_ops i915_gem_object_ops;
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
LIST_HEAD(still_in_list);
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
/* Closed vma are removed from the obj->vma_list - but they may
* still have an active binding on the object. To remove those we
* must wait for all rendering to complete to the object (as unbinding
* must anyway), and retire the requests.
*/
ret = i915_gem_object_set_to_cpu_domain(obj, false);
if (ret)
return ret;
spin_lock(&obj->vma.lock);
while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
struct i915_vma,
obj_link))) {
list_move_tail(&vma->obj_link, &still_in_list);
spin_unlock(&obj->vma.lock);
ret = i915_vma_unbind(vma);
spin_lock(&obj->vma.lock);
}
list_splice(&still_in_list, &obj->vma.list);
spin_unlock(&obj->vma.lock);
return ret;
}
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
unsigned int flags,
long timeout)
{
struct i915_request *rq;
BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return timeout;
if (!dma_fence_is_i915(fence))
return dma_fence_wait_timeout(fence,
flags & I915_WAIT_INTERRUPTIBLE,
timeout);
rq = to_request(fence);
if (i915_request_completed(rq))
goto out;
timeout = i915_request_wait(rq, flags, timeout);
out:
if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
i915_request_retire_upto(rq);
return timeout;
}
static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
unsigned int flags,
long timeout)
{
unsigned int seq = __read_seqcount_begin(&resv->seq);
struct dma_fence *excl;
bool prune_fences = false;
if (flags & I915_WAIT_ALL) {
struct dma_fence **shared;
unsigned int count, i;
int ret;
ret = reservation_object_get_fences_rcu(resv,
&excl, &count, &shared);
if (ret)
return ret;
for (i = 0; i < count; i++) {
timeout = i915_gem_object_wait_fence(shared[i],
flags, timeout);
if (timeout < 0)
break;
dma_fence_put(shared[i]);
}
for (; i < count; i++)
dma_fence_put(shared[i]);
kfree(shared);
/*
* If both shared fences and an exclusive fence exist,
* then by construction the shared fences must be later
* than the exclusive fence. If we successfully wait for
* all the shared fences, we know that the exclusive fence
* must all be signaled. If all the shared fences are
* signaled, we can prune the array and recover the
* floating references on the fences/requests.
*/
prune_fences = count && timeout >= 0;
} else {
excl = reservation_object_get_excl_rcu(resv);
}
if (excl && timeout >= 0)
timeout = i915_gem_object_wait_fence(excl, flags, timeout);
dma_fence_put(excl);
/*
* Opportunistically prune the fences iff we know they have *all* been
* signaled and that the reservation object has not been changed (i.e.
* no new fences have been added).
*/
if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
if (reservation_object_trylock(resv)) {
if (!__read_seqcount_retry(&resv->seq, seq))
reservation_object_add_excl_fence(resv, NULL);
reservation_object_unlock(resv);
}
}
return timeout;
}
static void __fence_set_priority(struct dma_fence *fence,
const struct i915_sched_attr *attr)
{
struct i915_request *rq;
struct intel_engine_cs *engine;
if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
return;
rq = to_request(fence);
engine = rq->engine;
local_bh_disable();
rcu_read_lock(); /* RCU serialisation for set-wedged protection */
if (engine->schedule)
engine->schedule(rq, attr);
rcu_read_unlock();
local_bh_enable(); /* kick the tasklets if queues were reprioritised */
}
static void fence_set_priority(struct dma_fence *fence,
const struct i915_sched_attr *attr)
{
/* Recurse once into a fence-array */
if (dma_fence_is_array(fence)) {
struct dma_fence_array *array = to_dma_fence_array(fence);
int i;
for (i = 0; i < array->num_fences; i++)
__fence_set_priority(array->fences[i], attr);
} else {
__fence_set_priority(fence, attr);
}
}
int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
unsigned int flags,
const struct i915_sched_attr *attr)
{
struct dma_fence *excl;
if (flags & I915_WAIT_ALL) {
struct dma_fence **shared;
unsigned int count, i;
int ret;
ret = reservation_object_get_fences_rcu(obj->resv,
&excl, &count, &shared);
if (ret)
return ret;
for (i = 0; i < count; i++) {
fence_set_priority(shared[i], attr);
dma_fence_put(shared[i]);
}
kfree(shared);
} else {
excl = reservation_object_get_excl_rcu(obj->resv);
}
if (excl) {
fence_set_priority(excl, attr);
dma_fence_put(excl);
}
return 0;
}
/**
* Waits for rendering to the object to be completed
* @obj: i915 gem object
* @flags: how to wait (under a lock, for all rendering or just for writes etc)
* @timeout: how long to wait
*/
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
unsigned int flags,
long timeout)
{
might_sleep();
GEM_BUG_ON(timeout < 0);
timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
return timeout < 0 ? timeout : 0;
}
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
void *vaddr = obj->phys_handle->vaddr + args->offset;
char __user *user_data = u64_to_user_ptr(args->data_ptr);
/* We manually control the domain here and pretend that it
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
*/
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
if (copy_from_user(vaddr, user_data, args->size))
return -EFAULT;
drm_clflush_virt_range(vaddr, args->size);
i915_gem_chipset_flush(to_i915(obj->base.dev));
intel_fb_obj_flush(obj, ORIGIN_CPU);
return 0;
}
static int
i915_gem_create(struct drm_file *file,
struct drm_i915_private *dev_priv,
u64 *size_p,
u32 *handle_p)
{
struct drm_i915_gem_object *obj;
u32 handle;
u64 size;
int ret;
size = round_up(*size_p, PAGE_SIZE);
if (size == 0)
return -EINVAL;
/* Allocate the new object */
obj = i915_gem_object_create(dev_priv, size);
if (IS_ERR(obj))
return PTR_ERR(obj);
ret = drm_gem_handle_create(file, &obj->base, &handle);
/* drop reference from allocate - handle holds it now */
i915_gem_object_put(obj);
if (ret)
return ret;
*handle_p = handle;
*size_p = size;
return 0;
}
int
i915_gem_dumb_create(struct drm_file *file,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
args->size = args->pitch * args->height;
return i915_gem_create(file, to_i915(dev),
&args->size, &args->handle);
}
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
return !(obj->cache_level == I915_CACHE_NONE ||
obj->cache_level == I915_CACHE_WT);
}
/**
* Creates a new mm object and returns a handle to it.
* @dev: drm device pointer
* @data: ioctl data blob
* @file: drm file pointer
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_create *args = data;
i915_gem_flush_free_objects(dev_priv);
return i915_gem_create(file, dev_priv,
&args->size, &args->handle);
}
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
return (domain == I915_GEM_DOMAIN_GTT ?
obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
{
intel_wakeref_t wakeref;
/*
* No actual flushing is required for the GTT write domain for reads
* from the GTT domain. Writes to it "immediately" go to main memory
* as far as we know, so there's no chipset flush. It also doesn't
* land in the GPU render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*
* We also have to wait a bit for the writes to land from the GTT.
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
* timing. This issue has only been observed when switching quickly
* between GTT writes and CPU reads from inside the kernel on recent hw,
* and it appears to only affect discrete GTT blocks (i.e. on LLC
* system agents we cannot reproduce this behaviour, until Cannonlake
* that was!).
*/
wmb();
if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
return;
i915_gem_chipset_flush(dev_priv);
with_intel_runtime_pm(dev_priv, wakeref) {
spin_lock_irq(&dev_priv->uncore.lock);
POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
spin_unlock_irq(&dev_priv->uncore.lock);
}
}
static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_vma *vma;
if (!(obj->write_domain & flush_domains))
return;
switch (obj->write_domain) {
case I915_GEM_DOMAIN_GTT:
i915_gem_flush_ggtt_writes(dev_priv);
intel_fb_obj_flush(obj,
fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
for_each_ggtt_vma(vma, obj) {
if (vma->iomap)
continue;
i915_vma_unset_ggtt_write(vma);
}
break;
case I915_GEM_DOMAIN_WC:
wmb();
break;
case I915_GEM_DOMAIN_CPU:
i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
break;
case I915_GEM_DOMAIN_RENDER:
if (gpu_write_needs_clflush(obj))
obj->cache_dirty = true;
break;
}
obj->write_domain = 0;
}
/*
* Pins the specified object's pages and synchronizes the object with
* GPU accesses. Sets needs_clflush to non-zero if the caller should
* flush the object from the CPU cache.
*/
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
unsigned int *needs_clflush)
{
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
*needs_clflush = 0;
if (!i915_gem_object_has_struct_page(obj))
return -ENODEV;
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED,
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
!static_cpu_has(X86_FEATURE_CLFLUSH)) {
ret = i915_gem_object_set_to_cpu_domain(obj, false);
if (ret)
goto err_unpin;
else
goto out;
}
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens.
*/
if (!obj->cache_dirty &&
!(obj->read_domains & I915_GEM_DOMAIN_CPU))
*needs_clflush = CLFLUSH_BEFORE;
out:
/* return with the pages pinned */
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
unsigned int *needs_clflush)
{
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
*needs_clflush = 0;
if (!i915_gem_object_has_struct_page(obj))
return -ENODEV;
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED |
I915_WAIT_ALL,
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
!static_cpu_has(X86_FEATURE_CLFLUSH)) {
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
goto err_unpin;
else
goto out;
}
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
/* If we're not in the cpu write domain, set ourself into the
* gtt write domain and manually flush cachelines (as required).
* This optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway.
*/
if (!obj->cache_dirty) {
*needs_clflush |= CLFLUSH_AFTER;
/*
* Same trick applies to invalidate partially written
* cachelines read before writing.
*/
if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
*needs_clflush |= CLFLUSH_BEFORE;
}
out:
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
obj->mm.dirty = true;
/* return with the pages pinned */
return 0;
err_unpin:
i915_gem_object_unpin_pages(obj);
return ret;
}
static int
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
bool needs_clflush)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (needs_clflush)
drm_clflush_virt_range(vaddr + offset, len);
ret = __copy_to_user(user_data, vaddr + offset, len);
kunmap(page);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args)
{
char __user *user_data;
u64 remain;
unsigned int needs_clflush;
unsigned int idx, offset;
int ret;
ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
if (ret)
return ret;
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
mutex_unlock(&obj->base.dev->struct_mutex);
if (ret)
return ret;
remain = args->size;
user_data = u64_to_user_ptr(args->data_ptr);
offset = offset_in_page(args->offset);
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
struct page *page = i915_gem_object_get_page(obj, idx);
unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
ret = shmem_pread(page, offset, length, user_data,
needs_clflush);
if (ret)
break;
remain -= length;
user_data += length;
offset = 0;
}
i915_gem_obj_finish_shmem_access(obj);
return ret;
}
static inline bool
gtt_user_read(struct io_mapping *mapping,
loff_t base, int offset,
char __user *user_data, int length)
{
void __iomem *vaddr;
unsigned long unwritten;
/* We can use the cpu mem copy function because this is X86. */
vaddr = io_mapping_map_atomic_wc(mapping, base);
unwritten = __copy_to_user_inatomic(user_data,
(void __force *)vaddr + offset,
length);
io_mapping_unmap_atomic(vaddr);
if (unwritten) {
vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
unwritten = copy_to_user(user_data,
(void __force *)vaddr + offset,
length);
io_mapping_unmap(vaddr);
}
return unwritten;
}
static int
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pread *args)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_ggtt *ggtt = &i915->ggtt;
intel_wakeref_t wakeref;
struct drm_mm_node node;
struct i915_vma *vma;
void __user *user_data;
u64 remain, offset;
int ret;
ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
if (ret)
return ret;
wakeref = intel_runtime_pm_get(i915);
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
PIN_MAPPABLE |
PIN_NONFAULT |
PIN_NONBLOCK);
if (!IS_ERR(vma)) {
node.start = i915_ggtt_offset(vma);
node.allocated = false;
ret = i915_vma_put_fence(vma);
if (ret) {
i915_vma_unpin(vma);
vma = ERR_PTR(ret);
}
}
if (IS_ERR(vma)) {
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
if (ret)
goto out_unlock;
GEM_BUG_ON(!node.allocated);
}
ret = i915_gem_object_set_to_gtt_domain(obj, false);
if (ret)
goto out_unpin;
mutex_unlock(&i915->drm.struct_mutex);
user_data = u64_to_user_ptr(args->data_ptr);
remain = args->size;
offset = args->offset;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
u32 page_base = node.start;
unsigned page_offset = offset_in_page(offset);
unsigned page_length = PAGE_SIZE - page_offset;
page_length = remain < page_length ? remain : page_length;
if (node.allocated) {
wmb();
ggtt->vm.insert_page(&ggtt->vm,
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
node.start, I915_CACHE_NONE, 0);
wmb();
} else {
page_base += offset & PAGE_MASK;
}
if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
user_data, page_length)) {
ret = -EFAULT;
break;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
mutex_lock(&i915->drm.struct_mutex);
out_unpin:
if (node.allocated) {
wmb();
ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
remove_mappable_node(&node);
} else {
i915_vma_unpin(vma);
}
out_unlock:
intel_runtime_pm_put(i915, wakeref);
mutex_unlock(&i915->drm.struct_mutex);
return ret;
}
/**
* Reads data from the object referenced by handle.
* @dev: drm device pointer
* @data: ioctl data blob
* @file: drm file pointer
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(u64_to_user_ptr(args->data_ptr),
args->size))
return -EFAULT;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* Bounds check source. */
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pread(obj, args->offset, args->size);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
if (ret)
goto out;
ret = i915_gem_object_pin_pages(obj);
if (ret)
goto out;
ret = i915_gem_shmem_pread(obj, args);
if (ret == -EFAULT || ret == -ENODEV)
ret = i915_gem_gtt_pread(obj, args);
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_put(obj);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline bool
ggtt_write(struct io_mapping *mapping,
loff_t base, int offset,
char __user *user_data, int length)
{
void __iomem *vaddr;
unsigned long unwritten;
/* We can use the cpu mem copy function because this is X86. */
vaddr = io_mapping_map_atomic_wc(mapping, base);
unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
user_data, length);
io_mapping_unmap_atomic(vaddr);
if (unwritten) {
vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
unwritten = copy_from_user((void __force *)vaddr + offset,
user_data, length);
io_mapping_unmap(vaddr);
}
return unwritten;
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
* @obj: i915 GEM object
* @args: pwrite arguments structure
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pwrite *args)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_ggtt *ggtt = &i915->ggtt;
intel_wakeref_t wakeref;
struct drm_mm_node node;
struct i915_vma *vma;
u64 remain, offset;
void __user *user_data;
int ret;
ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
if (ret)
return ret;
if (i915_gem_object_has_struct_page(obj)) {
/*
* Avoid waking the device up if we can fallback, as
* waking/resuming is very slow (worst-case 10-100 ms
* depending on PCI sleeps and our own resume time).
* This easily dwarfs any performance advantage from
* using the cache bypass of indirect GGTT access.
*/
wakeref = intel_runtime_pm_get_if_in_use(i915);
if (!wakeref) {
ret = -EFAULT;
goto out_unlock;
}
} else {
/* No backing pages, no fallback, we must force GGTT access */
wakeref = intel_runtime_pm_get(i915);
}
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
PIN_MAPPABLE |
PIN_NONFAULT |
PIN_NONBLOCK);
if (!IS_ERR(vma)) {
node.start = i915_ggtt_offset(vma);
node.allocated = false;
ret = i915_vma_put_fence(vma);
if (ret) {
i915_vma_unpin(vma);
vma = ERR_PTR(ret);
}
}
if (IS_ERR(vma)) {
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
if (ret)
goto out_rpm;
GEM_BUG_ON(!node.allocated);
}
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
mutex_unlock(&i915->drm.struct_mutex);
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
user_data = u64_to_user_ptr(args->data_ptr);
offset = args->offset;
remain = args->size;
while (remain) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
u32 page_base = node.start;
unsigned int page_offset = offset_in_page(offset);
unsigned int page_length = PAGE_SIZE - page_offset;
page_length = remain < page_length ? remain : page_length;
if (node.allocated) {
wmb(); /* flush the write before we modify the GGTT */
ggtt->vm.insert_page(&ggtt->vm,
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
node.start, I915_CACHE_NONE, 0);
wmb(); /* flush modifications to the GGTT (insert_page) */
} else {
page_base += offset & PAGE_MASK;
}
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
* If the object is non-shmem backed, we retry again with the
* path that handles page fault.
*/
if (ggtt_write(&ggtt->iomap, page_base, page_offset,
user_data, page_length)) {
ret = -EFAULT;
break;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
intel_fb_obj_flush(obj, ORIGIN_CPU);
mutex_lock(&i915->drm.struct_mutex);
out_unpin:
if (node.allocated) {
wmb();
ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
remove_mappable_node(&node);
} else {
i915_vma_unpin(vma);
}
out_rpm:
intel_runtime_pm_put(i915, wakeref);
out_unlock:
mutex_unlock(&i915->drm.struct_mutex);
return ret;
}
/* Per-page copy function for the shmem pwrite fastpath.
* Flushes invalid cachelines before writing to the target if
* needs_clflush_before is set and flushes out any written cachelines after
* writing if needs_clflush is set.
*/
static int
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (needs_clflush_before)
drm_clflush_virt_range(vaddr + offset, len);
ret = __copy_from_user(vaddr + offset, user_data, len);
if (!ret && needs_clflush_after)
drm_clflush_virt_range(vaddr + offset, len);
kunmap(page);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pwrite *args)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
void __user *user_data;
u64 remain;
unsigned int partial_cacheline_write;
unsigned int needs_clflush;
unsigned int offset, idx;
int ret;
ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
if (ret)
return ret;
ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
mutex_unlock(&i915->drm.struct_mutex);
if (ret)
return ret;
/* If we don't overwrite a cacheline completely we need to be
* careful to have up-to-date data by first clflushing. Don't
* overcomplicate things and flush the entire patch.
*/
partial_cacheline_write = 0;
if (needs_clflush & CLFLUSH_BEFORE)
partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
user_data = u64_to_user_ptr(args->data_ptr);
remain = args->size;
offset = offset_in_page(args->offset);
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
struct page *page = i915_gem_object_get_page(obj, idx);
unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
ret = shmem_pwrite(page, offset, length, user_data,
(offset | length) & partial_cacheline_write,
needs_clflush & CLFLUSH_AFTER);
if (ret)
break;
remain -= length;
user_data += length;
offset = 0;
}
intel_fb_obj_flush(obj, ORIGIN_CPU);
i915_gem_obj_finish_shmem_access(obj);
return ret;
}
/**
* Writes data to the object referenced by handle.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
return -EFAULT;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* Bounds check destination. */
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ret = -EINVAL;
goto err;
}
/* Writes not allowed into this read-only object */
if (i915_gem_object_is_readonly(obj)) {
ret = -EINVAL;
goto err;
}
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
ret = -ENODEV;
if (obj->ops->pwrite)
ret = obj->ops->pwrite(obj, args);
if (ret != -ENODEV)
goto err;
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_ALL,
MAX_SCHEDULE_TIMEOUT);
if (ret)
goto err;
ret = i915_gem_object_pin_pages(obj);
if (ret)
goto err;
ret = -EFAULT;
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (!i915_gem_object_has_struct_page(obj) ||
cpu_write_needs_clflush(obj))
/* Note that the gtt paths might fail with non-page-backed user
* pointers (e.g. gtt mappings when moving data between
* textures). Fallback to the shmem path in that case.
*/
ret = i915_gem_gtt_pwrite_fast(obj, args);
if (ret == -EFAULT || ret == -ENOSPC) {
if (obj->phys_handle)
ret = i915_gem_phys_pwrite(obj, args, file);
else
ret = i915_gem_shmem_pwrite(obj, args);
}
i915_gem_object_unpin_pages(obj);
err:
i915_gem_object_put(obj);
return ret;
}
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct list_head *list;
struct i915_vma *vma;
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
mutex_lock(&i915->ggtt.vm.mutex);
for_each_ggtt_vma(vma, obj) {
if (!drm_mm_node_allocated(&vma->node))
continue;
list_move_tail(&vma->vm_link, &vma->vm->bound_list);
}
mutex_unlock(&i915->ggtt.vm.mutex);
spin_lock(&i915->mm.obj_lock);
list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
list_move_tail(&obj->mm.link, list);
spin_unlock(&i915->mm.obj_lock);
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
u32 read_domains = args->read_domains;
u32 write_domain = args->write_domain;
int err;
/* Only handle setting domains to types used by the CPU. */
if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/*
* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain && read_domains != write_domain)
return -EINVAL;
if (!read_domains)
return 0;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/*
* Already in the desired write domain? Nothing for us to do!
*
* We apply a little bit of cunning here to catch a broader set of
* no-ops. If obj->write_domain is set, we must be in the same
* obj->read_domains, and only that domain. Therefore, if that
* obj->write_domain matches the request read_domains, we are
* already in the same read/write domain and can skip the operation,
* without having to further check the requested write_domain.
*/
if (READ_ONCE(obj->write_domain) == read_domains) {
err = 0;
goto out;
}
/*
* Try to flush the object off the GPU without holding the lock.
* We will repeat the flush holding the lock in the normal manner
* to catch cases where we are gazumped.
*/
err = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_PRIORITY |
(write_domain ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (err)
goto out;
/*
* Proxy objects do not control access to the backing storage, ergo
* they cannot be used as a means to manipulate the cache domain
* tracking for that backing storage. The proxy object is always
* considered to be outside of any cache domain.
*/
if (i915_gem_object_is_proxy(obj)) {
err = -ENXIO;
goto out;
}
/*
* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
err = i915_gem_object_pin_pages(obj);
if (err)
goto out;
err = i915_mutex_lock_interruptible(dev);
if (err)
goto out_unpin;
if (read_domains & I915_GEM_DOMAIN_WC)
err = i915_gem_object_set_to_wc_domain(obj, write_domain);
else if (read_domains & I915_GEM_DOMAIN_GTT)
err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
else
err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
/* And bump the LRU for this access */
i915_gem_object_bump_inactive_ggtt(obj);
mutex_unlock(&dev->struct_mutex);
if (write_domain != 0)
intel_fb_obj_invalidate(obj,
fb_write_origin(obj, write_domain));
out_unpin:
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_put(obj);
return err;
}
/**
* Called when user space has done writes to this buffer
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_i915_gem_object *obj;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/*
* Proxy objects are barred from CPU access, so there is no
* need to ban sw_finish as it is a nop.
*/
/* Pinned buffers may be scanout, so flush the cache */
i915_gem_object_flush_if_display(obj);
i915_gem_object_put(obj);
return 0;
}
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
unsigned long addr, unsigned long size)
{
if (vma->vm_file != filp)
return false;
return vma->vm_start == addr &&
(vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}
/**
* i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
* it is mapped to.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*
* IMPORTANT:
*
* DRM driver writers who look a this function as an example for how to do GEM
* mmap support, please don't implement mmap support like here. The modern way
* to implement DRM mmap support is with an mmap offset ioctl (like
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
* That way debug tooling like valgrind will understand what's going on, hiding
* the mmap call in a driver private ioctl will break that. The i915 driver only
* does cpu mmaps this way because we didn't know better.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap *args = data;
struct drm_i915_gem_object *obj;
unsigned long addr;
if (args->flags & ~(I915_MMAP_WC))
return -EINVAL;
if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
return -ENODEV;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->base.filp) {
addr = -ENXIO;
goto err;
}
if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
addr = -EINVAL;
goto err;
}
addr = vm_mmap(obj->base.filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
if (IS_ERR_VALUE(addr))
goto err;
if (args->flags & I915_MMAP_WC) {
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
if (down_write_killable(&mm->mmap_sem)) {
addr = -EINTR;
goto err;
}
vma = find_vma(mm, addr);
if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
else
addr = -ENOMEM;
up_write(&mm->mmap_sem);
if (IS_ERR_VALUE(addr))
goto err;
/* This may race, but that's ok, it only gets set */
WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
}
i915_gem_object_put(obj);
args->addr_ptr = (u64)addr;
return 0;
err:
i915_gem_object_put(obj);
return addr;
}
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}
/**
* i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
*
* A history of the GTT mmap interface:
*
* 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
* aligned and suitable for fencing, and still fit into the available
* mappable space left by the pinned display objects. A classic problem
* we called the page-fault-of-doom where we would ping-pong between
* two objects that could not fit inside the GTT and so the memcpy
* would page one object in at the expense of the other between every
* single byte.
*
* 1 - Objects can be any size, and have any compatible fencing (X Y, or none
* as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
* object is too large for the available space (or simply too large
* for the mappable aperture!), a view is created instead and faulted
* into userspace. (This view is aligned and sized appropriately for
* fenced access.)
*
* 2 - Recognise WC as a separate cache domain so that we can flush the
* delayed writes via GTT before performing direct access via WC.
*
* 3 - Remove implicit set-domain(GTT) and synchronisation on initial
* pagefault; swapin remains transparent.
*
* Restrictions:
*
* * snoopable objects cannot be accessed via the GTT. It can cause machine
* hangs on some architectures, corruption on others. An attempt to service
* a GTT page fault from a snoopable object will generate a SIGBUS.
*
* * the object must be able to fit into RAM (physical memory, though no
* limited to the mappable aperture).
*
*
* Caveats:
*
* * a new GTT page fault will synchronize rendering from the GPU and flush
* all data to system memory. Subsequent access will not be synchronized.
*
* * all mappings are revoked on runtime device suspend.
*
* * there are only 8, 16 or 32 fence registers to share between all users
* (older machines require fence register for display and blitter access
* as well). Contention of the fence registers will cause the previous users
* to be unmapped and any new access will generate new page faults.
*
* * running out of memory while servicing a fault may generate a SIGBUS,
* rather than the expected SIGSEGV.
*/
int i915_gem_mmap_gtt_version(void)
{
return 3;
}
static inline struct i915_ggtt_view
compute_partial_view(const struct drm_i915_gem_object *obj,
pgoff_t page_offset,
unsigned int chunk)
{
struct i915_ggtt_view view;
if (i915_gem_object_is_tiled(obj))
chunk = roundup(chunk, tile_row_pages(obj));
view.type = I915_GGTT_VIEW_PARTIAL;
view.partial.offset = rounddown(page_offset, chunk);
view.partial.size =
min_t(unsigned int, chunk,
(obj->base.size >> PAGE_SHIFT) - view.partial.offset);
/* If the partial covers the entire object, just create a normal VMA. */
if (chunk >= obj->base.size >> PAGE_SHIFT)
view.type = I915_GGTT_VIEW_NORMAL;
return view;
}
/**
* i915_gem_fault - fault a page into the GTT
* @vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*
* The current feature set supported by i915_gem_fault() and thus GTT mmaps
* is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
*/
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
{
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
struct vm_area_struct *area = vmf->vma;
struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
bool write = area->vm_flags & VM_WRITE;
intel_wakeref_t wakeref;
struct i915_vma *vma;
pgoff_t page_offset;
int srcu;
int ret;
/* Sanity check that we allow writing into this object */
if (i915_gem_object_is_readonly(obj) && write)
return VM_FAULT_SIGBUS;
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
trace_i915_gem_object_fault(obj, page_offset, true, write);
ret = i915_gem_object_pin_pages(obj);
if (ret)
goto err;
wakeref = intel_runtime_pm_get(dev_priv);
srcu = i915_reset_trylock(dev_priv);
if (srcu < 0) {
ret = srcu;
goto err_rpm;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto err_reset;
/* Access to snoopable pages through the GTT is incoherent. */
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ret = -EFAULT;
goto err_unlock;
}
/* Now pin it into the GTT as needed */
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
PIN_MAPPABLE |
PIN_NONBLOCK |
PIN_NONFAULT);
if (IS_ERR(vma)) {
/* Use a partial view if it is bigger than available space */
struct i915_ggtt_view view =
compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
unsigned int flags;
flags = PIN_MAPPABLE;
if (view.type == I915_GGTT_VIEW_NORMAL)
flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
/*
* Userspace is now writing through an untracked VMA, abandon
* all hope that the hardware is able to track future writes.
*/
obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
if (IS_ERR(vma) && !view.type) {
flags = PIN_MAPPABLE;
view.type = I915_GGTT_VIEW_PARTIAL;
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
}
}
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unlock;
}
ret = i915_vma_pin_fence(vma);
if (ret)
goto err_unpin;
/* Finally, remap it using the new GTT offset */
ret = remap_io_mapping(area,
area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
(ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
min_t(u64, vma->size, area->vm_end - area->vm_start),
&ggtt->iomap);
if (ret)
goto err_fence;
/* Mark as being mmapped into userspace for later revocation */
assert_rpm_wakelock_held(dev_priv);
if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
GEM_BUG_ON(!obj->userfault_count);
i915_vma_set_ggtt_write(vma);
err_fence:
i915_vma_unpin_fence(vma);
err_unpin:
__i915_vma_unpin(vma);
err_unlock:
mutex_unlock(&dev->struct_mutex);
err_reset:
i915_reset_unlock(dev_priv, srcu);
err_rpm:
intel_runtime_pm_put(dev_priv, wakeref);
i915_gem_object_unpin_pages(obj);
err:
switch (ret) {
case -EIO:
/*
* We eat errors when the gpu is terminally wedged to avoid
* userspace unduly crashing (gl has no provisions for mmaps to
* fail). But any other -EIO isn't ours (e.g. swap in failure)
* and so needs to be reported.
*/
if (!i915_terminally_wedged(dev_priv))
return VM_FAULT_SIGBUS;
/* else: fall through */
case -EAGAIN:
/*
* EAGAIN means the gpu is hung and we'll wait for the error
* handler to reset everything when re-faulting in
* i915_mutex_lock_interruptible.
*/
case 0:
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
case -ENOSPC:
case -EFAULT:
return VM_FAULT_SIGBUS;
default:
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
return VM_FAULT_SIGBUS;
}
}
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
GEM_BUG_ON(!obj->userfault_count);
obj->userfault_count = 0;
list_del(&obj->userfault_link);
drm_vma_node_unmap(&obj->base.vma_node,
obj->base.dev->anon_inode->i_mapping);
for_each_ggtt_vma(vma, obj)
i915_vma_unset_userfault(vma);
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
intel_wakeref_t wakeref;
/* Serialisation between user GTT access and our code depends upon
* revoking the CPU's PTE whilst the mutex is held. The next user
* pagefault then has to wait until we release the mutex.
*
* Note that RPM complicates somewhat by adding an additional
* requirement that operations to the GGTT be made holding the RPM
* wakeref.
*/
lockdep_assert_held(&i915->drm.struct_mutex);
wakeref = intel_runtime_pm_get(i915);
if (!obj->userfault_count)
goto out;
__i915_gem_object_release_mmap(obj);
/* Ensure that the CPU's PTE are revoked and there are not outstanding
* memory transactions from userspace before we return. The TLB
* flushing implied above by changing the PTE above *should* be
* sufficient, an extra barrier here just provides us with a bit
* of paranoid documentation about our requirement to serialise
* memory writes before touching registers / GSM.
*/
wmb();
out:
intel_runtime_pm_put(i915, wakeref);
}
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj, *on;
int i;
/*
* Only called during RPM suspend. All users of the userfault_list
* must be holding an RPM wakeref to ensure that this can not
* run concurrently with themselves (and use the struct_mutex for
* protection between themselves).
*/
list_for_each_entry_safe(obj, on,
&dev_priv->mm.userfault_list, userfault_link)
__i915_gem_object_release_mmap(obj);
/* The fence will be lost when the device powers down. If any were
* in use by hardware (i.e. they are pinned), we should not be powering
* down! All other fences will be reacquired by the user upon waking.
*/
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
/* Ideally we want to assert that the fence register is not
* live at this point (i.e. that no piece of code will be
* trying to write through fence + GTT, as that both violates
* our tracking of activity and associated locking/barriers,
* but also is illegal given that the hw is powered down).
*
* Previously we used reg->pin_count as a "liveness" indicator.
* That is not sufficient, and we need a more fine-grained
* tool if we want to have a sanity check here.
*/
if (!reg->vma)
continue;
GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
reg->dirty = true;
}
}
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
int err;
err = drm_gem_create_mmap_offset(&obj->base);
if (likely(!err))
return 0;
/* Attempt to reap some mmap space from dead objects */
do {
err = i915_gem_wait_for_idle(dev_priv,
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
if (err)
break;
i915_gem_drain_freed_objects(dev_priv);
err = drm_gem_create_mmap_offset(&obj->base);
if (!err)
break;
} while (flush_delayed_work(&dev_priv->gem.retire_work));
return err;
}
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
drm_gem_free_mmap_offset(&obj->base);
}
int
i915_gem_mmap_gtt(struct drm_file *file,
struct drm_device *dev,
u32 handle,
u64 *offset)
{
struct drm_i915_gem_object *obj;
int ret;
obj = i915_gem_object_lookup(file, handle);
if (!obj)
return -ENOENT;
ret = i915_gem_object_create_mmap_offset(obj);
if (ret == 0)
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
i915_gem_object_put(obj);
return ret;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap_gtt *args = data;
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}
/* Immediately discard the backing storage */
void __i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
i915_gem_object_free_mmap_offset(obj);
if (obj->base.filp == NULL)
return;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
obj->mm.madv = __I915_MADV_PURGED;
obj->mm.pages = ERR_PTR(-EFAULT);
}
/*
* Move pages to appropriate lru and release the pagevec, decrementing the
* ref count of those pages.
*/
static void check_release_pagevec(struct pagevec *pvec)
{
check_move_unevictable_pages(pvec);
__pagevec_release(pvec);
cond_resched();
}
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
struct sgt_iter sgt_iter;
struct pagevec pvec;
struct page *page;
__i915_gem_object_release_shmem(obj, pages, true);
i915_gem_gtt_finish_pages(obj, pages);
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj, pages);
mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
pagevec_init(&pvec);
for_each_sgt_page(page, sgt_iter, pages) {
if (obj->mm.dirty)
set_page_dirty(page);
if (obj->mm.madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
if (!pagevec_add(&pvec, page))
check_release_pagevec(&pvec);
}
if (pagevec_count(&pvec))
check_release_pagevec(&pvec);
obj->mm.dirty = false;
sg_free_table(pages);
kfree(pages);
}
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
struct radix_tree_iter iter;
void __rcu **slot;
rcu_read_lock();
radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
radix_tree_delete(&obj->mm.get_page.radix, iter.index);
rcu_read_unlock();
}
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct sg_table *pages;
pages = fetch_and_zero(&obj->mm.pages);
if (IS_ERR_OR_NULL(pages))
return pages;
spin_lock(&i915->mm.obj_lock);
list_del(&obj->mm.link);
spin_unlock(&i915->mm.obj_lock);
if (obj->mm.mapping) {
void *ptr;
ptr = page_mask_bits(obj->mm.mapping);
if (is_vmalloc_addr(ptr))
vunmap(ptr);
else
kunmap(kmap_to_page(ptr));
obj->mm.mapping = NULL;
}
__i915_gem_object_reset_page_iter(obj);
obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
return pages;
}
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
enum i915_mm_subclass subclass)
{
struct sg_table *pages;
int ret;
if (i915_gem_object_has_pinned_pages(obj))
return -EBUSY;
GEM_BUG_ON(obj->bind_count);
/* May be called by shrinker from within get_pages() (on another bo) */
mutex_lock_nested(&obj->mm.lock, subclass);
if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
ret = -EBUSY;
goto unlock;
}
/*
* ->put_pages might need to allocate memory for the bit17 swizzle
* array, hence protect them from being reaped by removing them from gtt
* lists early.
*/
pages = __i915_gem_object_unset_pages(obj);
/*
* XXX Temporary hijinx to avoid updating all backends to handle
* NULL pages. In the future, when we have more asynchronous
* get_pages backends we should be better able to handle the
* cancellation of the async task in a more uniform manner.
*/
if (!pages && !i915_gem_object_needs_async_cancel(obj))
pages = ERR_PTR(-EINVAL);
if (!IS_ERR(pages))
obj->ops->put_pages(obj, pages);
ret = 0;
unlock:
mutex_unlock(&obj->mm.lock);
return ret;
}
bool i915_sg_trim(struct sg_table *orig_st)
{
struct sg_table new_st;
struct scatterlist *sg, *new_sg;
unsigned int i;
if (orig_st->nents == orig_st->orig_nents)
return false;
if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
return false;
new_sg = new_st.sgl;
for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
sg_set_page(new_sg, sg_page(sg), sg->length, 0);
sg_dma_address(new_sg) = sg_dma_address(sg);
sg_dma_len(new_sg) = sg_dma_len(sg);
new_sg = sg_next(new_sg);
}
GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
sg_free_table(orig_st);
*orig_st = new_st;
return true;
}
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
const unsigned long page_count = obj->base.size / PAGE_SIZE;
unsigned long i;
struct address_space *mapping;
struct sg_table *st;
struct scatterlist *sg;
struct sgt_iter sgt_iter;
struct page *page;
unsigned long last_pfn = 0; /* suppress gcc warning */
unsigned int max_segment = i915_sg_segment_size();
unsigned int sg_page_sizes;
struct pagevec pvec;
gfp_t noreclaim;
int ret;
/*
* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
/*
* If there's no chance of allocating enough pages for the whole
* object, bail early.
*/
if (page_count > totalram_pages())
return -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
rebuild_st:
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
kfree(st);
return -ENOMEM;
}
/*
* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping = obj->base.filp->f_mapping;
mapping_set_unevictable(mapping);
noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
sg = st->sgl;
st->nents = 0;
sg_page_sizes = 0;
for (i = 0; i < page_count; i++) {
const unsigned int shrink[] = {
I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
0,
}, *s = shrink;
gfp_t gfp = noreclaim;
do {
cond_resched();
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (!IS_ERR(page))
break;
if (!*s) {
ret = PTR_ERR(page);
goto err_sg;
}
i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
/*
* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*
* However, since graphics tend to be disposable,
* defer the oom here by reporting the ENOMEM back
* to userspace.
*/
if (!*s) {
/* reclaim and warn, but no oom */
gfp = mapping_gfp_mask(mapping);
/*
* Our bo are always dirty and so we require
* kswapd to reclaim our pages (direct reclaim
* does not effectively begin pageout of our
* buffers on its own). However, direct reclaim
* only waits for kswapd when under allocation
* congestion. So as a result __GFP_RECLAIM is
* unreliable and fails to actually reclaim our
* dirty pages -- unless you try over and over
* again with !__GFP_NORETRY. However, we still
* want to fail this allocation rather than
* trigger the out-of-memory killer and for
* this we want __GFP_RETRY_MAYFAIL.
*/
gfp |= __GFP_RETRY_MAYFAIL;
}
} while (1);
if (!i ||
sg->length >= max_segment ||
page_to_pfn(page) != last_pfn + 1) {
if (i) {
sg_page_sizes |= sg->length;
sg = sg_next(sg);
}
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
} else {
sg->length += PAGE_SIZE;
}
last_pfn = page_to_pfn(page);
/* Check that the i965g/gm workaround works. */
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
}
if (sg) { /* loop terminated early; short sg table */
sg_page_sizes |= sg->length;
sg_mark_end(sg);
}
/* Trim unused sg entries to avoid wasting memory. */
i915_sg_trim(st);
ret = i915_gem_gtt_prepare_pages(obj, st);
if (ret) {
/*
* DMA remapping failed? One possible cause is that
* it could not reserve enough large entries, asking
* for PAGE_SIZE chunks instead may be helpful.
*/
if (max_segment > PAGE_SIZE) {
for_each_sgt_page(page, sgt_iter, st)
put_page(page);
sg_free_table(st);
max_segment = PAGE_SIZE;
goto rebuild_st;
} else {
dev_warn(&dev_priv->drm.pdev->dev,
"Failed to DMA remap %lu pages\n",
page_count);
goto err_pages;
}
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj, st);
__i915_gem_object_set_pages(obj, st, sg_page_sizes);
return 0;
err_sg:
sg_mark_end(sg);
err_pages:
mapping_clear_unevictable(mapping);
pagevec_init(&pvec);
for_each_sgt_page(page, sgt_iter, st) {
if (!pagevec_add(&pvec, page))
check_release_pagevec(&pvec);
}
if (pagevec_count(&pvec))
check_release_pagevec(&pvec);
sg_free_table(st);
kfree(st);
/*
* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
if (ret == -ENOSPC)
ret = -ENOMEM;
return ret;
}
void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages,
unsigned int sg_page_sizes)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
unsigned long supported = INTEL_INFO(i915)->page_sizes;
int i;
lockdep_assert_held(&obj->mm.lock);
/* Make the pages coherent with the GPU (flushing any swapin). */
if (obj->cache_dirty) {
obj->write_domain = 0;
if (i915_gem_object_has_struct_page(obj))
drm_clflush_sg(pages);
obj->cache_dirty = false;
}
obj->mm.get_page.sg_pos = pages->sgl;
obj->mm.get_page.sg_idx = 0;
obj->mm.pages = pages;
if (i915_gem_object_is_tiled(obj) &&
i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
GEM_BUG_ON(obj->mm.quirked);
__i915_gem_object_pin_pages(obj);
obj->mm.quirked = true;
}
GEM_BUG_ON(!sg_page_sizes);
obj->mm.page_sizes.phys = sg_page_sizes;
/*
* Calculate the supported page-sizes which fit into the given
* sg_page_sizes. This will give us the page-sizes which we may be able
* to use opportunistically when later inserting into the GTT. For
* example if phys=2G, then in theory we should be able to use 1G, 2M,
* 64K or 4K pages, although in practice this will depend on a number of
* other factors.
*/
obj->mm.page_sizes.sg = 0;
for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
if (obj->mm.page_sizes.phys & ~0u << i)
obj->mm.page_sizes.sg |= BIT(i);
}
GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
spin_lock(&i915->mm.obj_lock);
list_add(&obj->mm.link, &i915->mm.unbound_list);
spin_unlock(&i915->mm.obj_lock);
}
static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
int err;
if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
DRM_DEBUG("Attempting to obtain a purgeable object\n");
return -EFAULT;
}
err = obj->ops->get_pages(obj);
GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
return err;
}
/* Ensure that the associated pages are gathered from the backing storage
* and pinned into our object. i915_gem_object_pin_pages() may be called
* multiple times before they are released by a single call to
* i915_gem_object_unpin_pages() - once the pages are no longer referenced
* either as a result of memory pressure (reaping pages under the shrinker)
* or as the object is itself released.
*/
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
int err;
err = mutex_lock_interruptible(&obj->mm.lock);
if (err)
return err;
if (unlikely(!i915_gem_object_has_pages(obj))) {
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
err = ____i915_gem_object_get_pages(obj);
if (err)
goto unlock;
smp_mb__before_atomic();
}
atomic_inc(&obj->mm.pages_pin_count);
unlock:
mutex_unlock(&obj->mm.lock);
return err;
}
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
struct sg_table *sgt = obj->mm.pages;
struct sgt_iter sgt_iter;
struct page *page;
struct page *stack_pages[32];
struct page **pages = stack_pages;
unsigned long i = 0;
pgprot_t pgprot;
void *addr;
/* A single page can always be kmapped */
if (n_pages == 1 && type == I915_MAP_WB)
return kmap(sg_page(sgt->sgl));
if (n_pages > ARRAY_SIZE(stack_pages)) {
/* Too big for stack -- allocate temporary array instead */
pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
if (!pages)
return NULL;
}
for_each_sgt_page(page, sgt_iter, sgt)
pages[i++] = page;
/* Check that we have the expected number of pages */
GEM_BUG_ON(i != n_pages);
switch (type) {
default:
MISSING_CASE(type);
/* fallthrough to use PAGE_KERNEL anyway */
case I915_MAP_WB:
pgprot = PAGE_KERNEL;
break;
case I915_MAP_WC:
pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
break;
}
addr = vmap(pages, n_pages, 0, pgprot);
if (pages != stack_pages)
kvfree(pages);
return addr;
}
/* get, pin, and map the pages of the object into kernel space */
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
enum i915_map_type has_type;
bool pinned;
void *ptr;
int ret;
if (unlikely(!i915_gem_object_has_struct_page(obj)))
return ERR_PTR(-ENXIO);
ret = mutex_lock_interruptible(&obj->mm.lock);
if (ret)
return ERR_PTR(ret);
pinned = !(type & I915_MAP_OVERRIDE);
type &= ~I915_MAP_OVERRIDE;
if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
if (unlikely(!i915_gem_object_has_pages(obj))) {
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
ret = ____i915_gem_object_get_pages(obj);
if (ret)
goto err_unlock;
smp_mb__before_atomic();
}
atomic_inc(&obj->mm.pages_pin_count);
pinned = false;
}
GEM_BUG_ON(!i915_gem_object_has_pages(obj));
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
if (ptr && has_type != type) {
if (pinned) {
ret = -EBUSY;
goto err_unpin;
}
if (is_vmalloc_addr(ptr))
vunmap(ptr);
else
kunmap(kmap_to_page(ptr));
ptr = obj->mm.mapping = NULL;
}
if (!ptr) {
ptr = i915_gem_object_map(obj, type);
if (!ptr) {
ret = -ENOMEM;
goto err_unpin;
}
obj->mm.mapping = page_pack_bits(ptr, type);
}
out_unlock:
mutex_unlock(&obj->mm.lock);
return ptr;
err_unpin:
atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
ptr = ERR_PTR(ret);
goto out_unlock;
}
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
unsigned long offset,
unsigned long size)
{
enum i915_map_type has_type;
void *ptr;
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
offset, size, obj->base.size));
obj->mm.dirty = true;
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
return;
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
if (has_type == I915_MAP_WC)
return;
drm_clflush_virt_range(ptr + offset, size);
if (size == obj->base.size) {
obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
obj->cache_dirty = false;
}
}
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pwrite *arg)
{
struct address_space *mapping = obj->base.filp->f_mapping;
char __user *user_data = u64_to_user_ptr(arg->data_ptr);
u64 remain, offset;
unsigned int pg;
/* Caller already validated user args */
GEM_BUG_ON(!access_ok(user_data, arg->size));
/*
* Before we instantiate/pin the backing store for our use, we
* can prepopulate the shmemfs filp efficiently using a write into
* the pagecache. We avoid the penalty of instantiating all the
* pages, important if the user is just writing to a few and never
* uses the object on the GPU, and using a direct write into shmemfs
* allows it to avoid the cost of retrieving a page (either swapin
* or clearing-before-use) before it is overwritten.
*/
if (i915_gem_object_has_pages(obj))
return -ENODEV;
if (obj->mm.madv != I915_MADV_WILLNEED)
return -EFAULT;
/*
* Before the pages are instantiated the object is treated as being
* in the CPU domain. The pages will be clflushed as required before
* use, and we can freely write into the pages directly. If userspace
* races pwrite with any other operation; corruption will ensue -
* that is userspace's prerogative!
*/
remain = arg->size;
offset = arg->offset;
pg = offset_in_page(offset);
do {
unsigned int len, unwritten;
struct page *page;
void *data, *vaddr;
int err;
char c;
len = PAGE_SIZE - pg;
if (len > remain)
len = remain;
/* Prefault the user page to reduce potential recursion */
err = __get_user(c, user_data);
if (err)
return err;
err = __get_user(c, user_data + len - 1);
if (err)
return err;
err = pagecache_write_begin(obj->base.filp, mapping,
offset, len, 0,
&page, &data);
if (err < 0)
return err;
vaddr = kmap_atomic(page);
unwritten = __copy_from_user_inatomic(vaddr + pg,
user_data,
len);
kunmap_atomic(vaddr);
err = pagecache_write_end(obj->base.filp, mapping,
offset, len, len - unwritten,
page, data);
if (err < 0)
return err;
/* We don't handle -EFAULT, leave it to the caller to check */
if (unwritten)
return -ENODEV;
remain -= len;
user_data += len;
offset += len;
pg = 0;
} while (remain);
return 0;
}
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(gem->dev);
struct drm_i915_gem_object *obj = to_intel_bo(gem);
struct drm_i915_file_private *fpriv = file->driver_priv;
struct i915_lut_handle *lut, *ln;
mutex_lock(&i915->drm.struct_mutex);
list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
struct i915_gem_context *ctx = lut->ctx;
struct i915_vma *vma;
GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
if (ctx->file_priv != fpriv)
continue;
vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
GEM_BUG_ON(vma->obj != obj);
/* We allow the process to have multiple handles to the same
* vma, in the same fd namespace, by virtue of flink/open.
*/
GEM_BUG_ON(!vma->open_count);
if (!--vma->open_count && !i915_vma_is_ggtt(vma))
i915_vma_close(vma);
list_del(&lut->obj_link);
list_del(&lut->ctx_link);
i915_lut_handle_free(lut);
__i915_gem_object_release_unless_active(obj);
}
mutex_unlock(&i915->drm.struct_mutex);
}
static unsigned long to_wait_timeout(s64 timeout_ns)
{
if (timeout_ns < 0)
return MAX_SCHEDULE_TIMEOUT;
if (timeout_ns == 0)
return 0;
return nsecs_to_jiffies_timeout(timeout_ns);
}
/**
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
* @dev: drm device pointer
* @data: ioctl data blob
* @file: drm file pointer
*
* Returns 0 if successful, else an error is returned with the remaining time in
* the timeout parameter.
* -ETIME: object is still busy after timeout
* -ERESTARTSYS: signal interrupted the wait
* -ENONENT: object doesn't exist
* Also possible, but rare:
* -EAGAIN: incomplete, restart syscall
* -ENOMEM: damn
* -ENODEV: Internal IRQ fail
* -E?: The add request failed
*
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
* non-zero timeout parameter the wait ioctl will wait for the given number of
* nanoseconds on an object becoming unbusy. Since the wait itself does so
* without holding struct_mutex the object may become re-busied before this
* function completes. A similar but shorter * race condition exists in the busy
* ioctl
*/
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_i915_gem_wait *args = data;
struct drm_i915_gem_object *obj;
ktime_t start;
long ret;
if (args->flags != 0)
return -EINVAL;
obj = i915_gem_object_lookup(file, args->bo_handle);
if (!obj)
return -ENOENT;
start = ktime_get();
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_PRIORITY |
I915_WAIT_ALL,
to_wait_timeout(args->timeout_ns));
if (args->timeout_ns > 0) {
args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
if (args->timeout_ns < 0)
args->timeout_ns = 0;
/*
* Apparently ktime isn't accurate enough and occasionally has a
* bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
* things up to make the test happy. We allow up to 1 jiffy.
*
* This is a regression from the timespec->ktime conversion.
*/
if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
args->timeout_ns = 0;
/* Asked to wait beyond the jiffie/scheduler precision? */
if (ret == -ETIME && args->timeout_ns)
ret = -EAGAIN;
}
i915_gem_object_put(obj);
return ret;
}
static int wait_for_engines(struct drm_i915_private *i915)
{
if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
dev_err(i915->drm.dev,
"Failed to idle engines, declaring wedged!\n");
GEM_TRACE_DUMP();
i915_gem_set_wedged(i915);
return -EIO;
}
return 0;
}
static long
wait_for_timelines(struct drm_i915_private *i915,
unsigned int flags, long timeout)
{
struct i915_gt_timelines *gt = &i915->gt.timelines;
struct i915_timeline *tl;
mutex_lock(&gt->mutex);
list_for_each_entry(tl, &gt->active_list, link) {
struct i915_request *rq;
rq = i915_active_request_get_unlocked(&tl->last_request);
if (!rq)
continue;
mutex_unlock(&gt->mutex);
/*
* "Race-to-idle".
*
* Switching to the kernel context is often used a synchronous
* step prior to idling, e.g. in suspend for flushing all
* current operations to memory before sleeping. These we
* want to complete as quickly as possible to avoid prolonged
* stalls, so allow the gpu to boost to maximum clocks.
*/
if (flags & I915_WAIT_FOR_IDLE_BOOST)
gen6_rps_boost(rq);
timeout = i915_request_wait(rq, flags, timeout);
i915_request_put(rq);
if (timeout < 0)
return timeout;
/* restart after reacquiring the lock */
mutex_lock(&gt->mutex);
tl = list_entry(&gt->active_list, typeof(*tl), link);
}
mutex_unlock(&gt->mutex);
return timeout;
}
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
unsigned int flags, long timeout)
{
GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
yesno(i915->gt.awake));
/* If the device is asleep, we have no requests outstanding */
if (!READ_ONCE(i915->gt.awake))
return 0;
timeout = wait_for_timelines(i915, flags, timeout);
if (timeout < 0)
return timeout;
if (flags & I915_WAIT_LOCKED) {
int err;
lockdep_assert_held(&i915->drm.struct_mutex);
err = wait_for_engines(i915);
if (err)
return err;
i915_retire_requests(i915);
}
return 0;
}
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
/*
* We manually flush the CPU domain so that we can override and
* force the flush for the display, and perform it asyncrhonously.
*/
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
if (obj->cache_dirty)
i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
obj->write_domain = 0;
}
void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
if (!READ_ONCE(obj->pin_global))
return;
mutex_lock(&obj->base.dev->struct_mutex);
__i915_gem_object_flush_for_display(obj);
mutex_unlock(&obj->base.dev->struct_mutex);
}
/**
* Moves a single object to the WC read, and possibly write domain.
* @obj: object to act on
* @write: ask for write access or read only
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED |
(write ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
if (obj->write_domain == I915_GEM_DOMAIN_WC)
return 0;
/* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* WC domain upon first access.
*/
if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
mb();
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
obj->read_domains |= I915_GEM_DOMAIN_WC;
if (write) {
obj->read_domains = I915_GEM_DOMAIN_WC;
obj->write_domain = I915_GEM_DOMAIN_WC;
obj->mm.dirty = true;
}
i915_gem_object_unpin_pages(obj);
return 0;
}
/**
* Moves a single object to the GTT read, and possibly write domain.
* @obj: object to act on
* @write: ask for write access or read only
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED |
(write ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
if (obj->write_domain == I915_GEM_DOMAIN_GTT)
return 0;
/* Flush and acquire obj->pages so that we are coherent through
* direct access in memory with previous cached writes through
* shmemfs and that our cache domain tracking remains valid.
* For example, if the obj->filp was moved to swap without us
* being notified and releasing the pages, we would mistakenly
* continue to assume that the obj remained out of the CPU cached
* domain.
*/
ret = i915_gem_object_pin_pages(obj);
if (ret)
return ret;
flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
/* Serialise direct access to this object with the barriers for
* coherent writes from the GPU, by effectively invalidating the
* GTT domain upon first access.
*/
if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
mb();
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->read_domains = I915_GEM_DOMAIN_GTT;
obj->write_domain = I915_GEM_DOMAIN_GTT;
obj->mm.dirty = true;
}
i915_gem_object_unpin_pages(obj);
return 0;
}
/**
* Changes the cache-level of an object across all VMA.
* @obj: object to act on
* @cache_level: new cache level to set for the object
*
* After this function returns, the object will be in the new cache-level
* across all GTT and the contents of the backing storage will be coherent,
* with respect to the new cache-level. In order to keep the backing storage
* coherent for all users, we only allow a single cache level to be set
* globally on the object and prevent it from being changed whilst the
* hardware is reading from the object. That is if the object is currently
* on the scanout it will be set to uncached (or equivalent display
* cache coherency) and all non-MOCS GPU access will also be uncached so
* that all direct access to the scanout remains coherent.
*/
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct i915_vma *vma;
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
if (obj->cache_level == cache_level)
return 0;
/* Inspect the list of currently bound VMA and unbind any that would
* be invalid given the new cache-level. This is principally to
* catch the issue of the CS prefetch crossing page boundaries and
* reading an invalid PTE on older architectures.
*/
restart:
list_for_each_entry(vma, &obj->vma.list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_vma_is_pinned(vma)) {
DRM_DEBUG("can not change the cache level of pinned objects\n");
return -EBUSY;
}
if (!i915_vma_is_closed(vma) &&
i915_gem_valid_gtt_space(vma, cache_level))
continue;
ret = i915_vma_unbind(vma);
if (ret)
return ret;
/* As unbinding may affect other elements in the
* obj->vma_list (due to side-effects from retiring
* an active vma), play safe and restart the iterator.
*/
goto restart;
}
/* We can reuse the existing drm_mm nodes but need to change the
* cache-level on the PTE. We could simply unbind them all and
* rebind with the correct cache-level on next use. However since
* we already have a valid slot, dma mapping, pages etc, we may as
* rewrite the PTE in the belief that doing so tramples upon less
* state and so involves less work.
*/
if (obj->bind_count) {
/* Before we change the PTE, the GPU must not be accessing it.
* If we wait upon the object, we know that all the bound
* VMA are no longer active.
*/
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED |
I915_WAIT_ALL,
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
if (!HAS_LLC(to_i915(obj->base.dev)) &&
cache_level != I915_CACHE_NONE) {
/* Access to snoopable pages through the GTT is
* incoherent and on some machines causes a hard
* lockup. Relinquish the CPU mmaping to force
* userspace to refault in the pages and we can
* then double check if the GTT mapping is still
* valid for that pointer access.
*/
i915_gem_release_mmap(obj);
/* As we no longer need a fence for GTT access,
* we can relinquish it now (and so prevent having
* to steal a fence from someone else on the next
* fence request). Note GPU activity would have
* dropped the fence as all snoopable access is
* supposed to be linear.
*/
for_each_ggtt_vma(vma, obj) {
ret = i915_vma_put_fence(vma);
if (ret)
return ret;
}
} else {
/* We either have incoherent backing store and
* so no GTT access or the architecture is fully
* coherent. In such cases, existing GTT mmaps
* ignore the cache bit in the PTE and we can
* rewrite it without confusing the GPU or having
* to force userspace to fault back in its mmaps.
*/
}
list_for_each_entry(vma, &obj->vma.list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
if (ret)
return ret;
}
}
list_for_each_entry(vma, &obj->vma.list, obj_link)
vma->node.color = cache_level;
i915_gem_object_set_cache_coherency(obj, cache_level);
obj->cache_dirty = true; /* Always invalidate stale cachelines */
return 0;
}
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
int err = 0;
rcu_read_lock();
obj = i915_gem_object_lookup_rcu(file, args->handle);
if (!obj) {
err = -ENOENT;
goto out;
}
switch (obj->cache_level) {
case I915_CACHE_LLC:
case I915_CACHE_L3_LLC:
args->caching = I915_CACHING_CACHED;
break;
case I915_CACHE_WT:
args->caching = I915_CACHING_DISPLAY;
break;
default:
args->caching = I915_CACHING_NONE;
break;
}
out:
rcu_read_unlock();
return err;
}
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
enum i915_cache_level level;
int ret = 0;
switch (args->caching) {
case I915_CACHING_NONE:
level = I915_CACHE_NONE;
break;
case I915_CACHING_CACHED:
/*
* Due to a HW issue on BXT A stepping, GPU stores via a
* snooped mapping may leave stale data in a corresponding CPU
* cacheline, whereas normally such cachelines would get
* invalidated.
*/
if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
return -ENODEV;
level = I915_CACHE_LLC;
break;
case I915_CACHING_DISPLAY:
level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
break;
default:
return -EINVAL;
}
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/*
* The caching mode of proxy object is handled by its generator, and
* not allowed to be changed by userspace.
*/
if (i915_gem_object_is_proxy(obj)) {
ret = -ENXIO;
goto out;
}
if (obj->cache_level == level)
goto out;
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
if (ret)
goto out;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto out;
ret = i915_gem_object_set_cache_level(obj, level);
mutex_unlock(&dev->struct_mutex);
out:
i915_gem_object_put(obj);
return ret;
}
/*
* Prepare buffer for display plane (scanout, cursors, etc). Can be called from
* an uninterruptible phase (modesetting) and allows any flushes to be pipelined
* (for pageflips). We only flush the caches while preparing the buffer for
* display, the callers are responsible for frontbuffer flush.
*/
struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment,
const struct i915_ggtt_view *view,
unsigned int flags)
{
struct i915_vma *vma;
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
/* Mark the global pin early so that we account for the
* display coherency whilst setting up the cache domains.
*/
obj->pin_global++;
/* The display engine is not coherent with the LLC cache on gen6. As
* a result, we make sure that the pinning that is about to occur is
* done with uncached PTEs. This is lowest common denominator for all
* chipsets.
*
* However for gen6+, we could do better by using the GFDT bit instead
* of uncaching, which would allow us to flush all the LLC-cached data
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
*/
ret = i915_gem_object_set_cache_level(obj,
HAS_WT(to_i915(obj->base.dev)) ?
I915_CACHE_WT : I915_CACHE_NONE);
if (ret) {
vma = ERR_PTR(ret);
goto err_unpin_global;
}
/* As the user may map the buffer once pinned in the display plane
* (e.g. libkms for the bootup splash), we have to ensure that we
* always use map_and_fenceable for all scanout buffers. However,
* it may simply be too big to fit into mappable, in which case
* put it anyway and hope that userspace can cope (but always first
* try to preserve the existing ABI).
*/
vma = ERR_PTR(-ENOSPC);
if ((flags & PIN_MAPPABLE) == 0 &&
(!view || view->type == I915_GGTT_VIEW_NORMAL))
vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
flags |
PIN_MAPPABLE |
PIN_NONBLOCK);
if (IS_ERR(vma))
vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
if (IS_ERR(vma))
goto err_unpin_global;
vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
__i915_gem_object_flush_for_display(obj);
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
obj->read_domains |= I915_GEM_DOMAIN_GTT;
return vma;
err_unpin_global:
obj->pin_global--;
return vma;
}
void
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
{
lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
if (WARN_ON(vma->obj->pin_global == 0))
return;
if (--vma->obj->pin_global == 0)
vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
/* Bump the LRU to try and avoid premature eviction whilst flipping */
i915_gem_object_bump_inactive_ggtt(vma->obj);
i915_vma_unpin(vma);
}
/**
* Moves a single object to the CPU read, and possibly write domain.
* @obj: object to act on
* @write: requesting write or read-only access
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
ret = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED |
(write ? I915_WAIT_ALL : 0),
MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
/* Flush the CPU cache if it's still invalid. */
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
obj->read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write)
__start_cpu_write(obj);
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
struct i915_request *request, *target = NULL;
long ret;
/* ABI: return -EIO if already wedged */
ret = i915_terminally_wedged(dev_priv);
if (ret)
return ret;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
if (target) {
list_del(&target->client_link);
target->file_priv = NULL;
}
target = request;
}
if (target)
i915_request_get(target);
spin_unlock(&file_priv->mm.lock);
if (target == NULL)
return 0;
ret = i915_request_wait(target,
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
i915_request_put(target);
return ret < 0 ? ret : 0;
}
struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view,
u64 size,
u64 alignment,
u64 flags)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_address_space *vm = &dev_priv->ggtt.vm;
struct i915_vma *vma;
int ret;
lockdep_assert_held(&obj->base.dev->struct_mutex);
if (flags & PIN_MAPPABLE &&
(!view || view->type == I915_GGTT_VIEW_NORMAL)) {
/* If the required space is larger than the available
* aperture, we will not able to find a slot for the
* object and unbinding the object now will be in
* vain. Worse, doing so may cause us to ping-pong
* the object in and out of the Global GTT and
* waste a lot of cycles under the mutex.
*/
if (obj->base.size > dev_priv->ggtt.mappable_end)
return ERR_PTR(-E2BIG);
/* If NONBLOCK is set the caller is optimistically
* trying to cache the full object within the mappable
* aperture, and *must* have a fallback in place for
* situations where we cannot bind the object. We
* can be a little more lax here and use the fallback
* more often to avoid costly migrations of ourselves
* and other objects within the aperture.
*
* Half-the-aperture is used as a simple heuristic.
* More interesting would to do search for a free
* block prior to making the commitment to unbind.
* That caters for the self-harm case, and with a
* little more heuristics (e.g. NOFAULT, NOEVICT)
* we could try to minimise harm to others.
*/
if (flags & PIN_NONBLOCK &&
obj->base.size > dev_priv->ggtt.mappable_end / 2)
return ERR_PTR(-ENOSPC);
}
vma = i915_vma_instance(obj, vm, view);
if (IS_ERR(vma))
return vma;
if (i915_vma_misplaced(vma, size, alignment, flags)) {
if (flags & PIN_NONBLOCK) {
if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
return ERR_PTR(-ENOSPC);
if (flags & PIN_MAPPABLE &&
vma->fence_size > dev_priv->ggtt.mappable_end / 2)
return ERR_PTR(-ENOSPC);
}
WARN(i915_vma_is_pinned(vma),
"bo is already pinned in ggtt with incorrect alignment:"
" offset=%08x, req.alignment=%llx,"
" req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
i915_ggtt_offset(vma), alignment,
!!(flags & PIN_MAPPABLE),
i915_vma_is_map_and_fenceable(vma));
ret = i915_vma_unbind(vma);
if (ret)
return ERR_PTR(ret);
}
ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
if (ret)
return ERR_PTR(ret);
return vma;
}
static __always_inline u32 __busy_read_flag(u8 id)
{
if (id == (u8)I915_ENGINE_CLASS_INVALID)
return 0xffff0000u;
GEM_BUG_ON(id >= 16);
return 0x10000u << id;
}
static __always_inline u32 __busy_write_id(u8 id)
{
/*
* The uABI guarantees an active writer is also amongst the read
* engines. This would be true if we accessed the activity tracking
* under the lock, but as we perform the lookup of the object and
* its activity locklessly we can not guarantee that the last_write
* being active implies that we have set the same engine flag from
* last_read - hence we always set both read and write busy for
* last_write.
*/
if (id == (u8)I915_ENGINE_CLASS_INVALID)
return 0xffffffffu;
return (id + 1) | __busy_read_flag(id);
}
static __always_inline unsigned int
__busy_set_if_active(const struct dma_fence *fence, u32 (*flag)(u8 id))
{
const struct i915_request *rq;
/*
* We have to check the current hw status of the fence as the uABI
* guarantees forward progress. We could rely on the idle worker
* to eventually flush us, but to minimise latency just ask the
* hardware.
*
* Note we only report on the status of native fences.
*/
if (!dma_fence_is_i915(fence))
return 0;
/* opencode to_request() in order to avoid const warnings */
rq = container_of(fence, const struct i915_request, fence);
if (i915_request_completed(rq))
return 0;
/* Beware type-expansion follies! */
BUILD_BUG_ON(!typecheck(u8, rq->engine->uabi_class));
return flag(rq->engine->uabi_class);
}
static __always_inline unsigned int
busy_check_reader(const struct dma_fence *fence)
{
return __busy_set_if_active(fence, __busy_read_flag);
}
static __always_inline unsigned int
busy_check_writer(const struct dma_fence *fence)
{
if (!fence)
return 0;
return __busy_set_if_active(fence, __busy_write_id);
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args = data;
struct drm_i915_gem_object *obj;
struct reservation_object_list *list;
unsigned int seq;
int err;
err = -ENOENT;
rcu_read_lock();
obj = i915_gem_object_lookup_rcu(file, args->handle);
if (!obj)
goto out;
/*
* A discrepancy here is that we do not report the status of
* non-i915 fences, i.e. even though we may report the object as idle,
* a call to set-domain may still stall waiting for foreign rendering.
* This also means that wait-ioctl may report an object as busy,
* where busy-ioctl considers it idle.
*
* We trade the ability to warn of foreign fences to report on which
* i915 engines are active for the object.
*
* Alternatively, we can trade that extra information on read/write
* activity with
* args->busy =
* !reservation_object_test_signaled_rcu(obj->resv, true);
* to report the overall busyness. This is what the wait-ioctl does.
*
*/
retry:
seq = raw_read_seqcount(&obj->resv->seq);
/* Translate the exclusive fence to the READ *and* WRITE engine */
args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
/* Translate shared fences to READ set of engines */
list = rcu_dereference(obj->resv->fence);
if (list) {
unsigned int shared_count = list->shared_count, i;
for (i = 0; i < shared_count; ++i) {
struct dma_fence *fence =
rcu_dereference(list->shared[i]);
args->busy |= busy_check_reader(fence);
}
}
if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
goto retry;
err = 0;
out:
rcu_read_unlock();
return err;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_madvise *args = data;
struct drm_i915_gem_object *obj;
int err;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
obj = i915_gem_object_lookup(file_priv, args->handle);
if (!obj)
return -ENOENT;
err = mutex_lock_interruptible(&obj->mm.lock);
if (err)
goto out;
if (i915_gem_object_has_pages(obj) &&
i915_gem_object_is_tiled(obj) &&
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
if (obj->mm.madv == I915_MADV_WILLNEED) {
GEM_BUG_ON(!obj->mm.quirked);
__i915_gem_object_unpin_pages(obj);
obj->mm.quirked = false;
}
if (args->madv == I915_MADV_WILLNEED) {
GEM_BUG_ON(obj->mm.quirked);
__i915_gem_object_pin_pages(obj);
obj->mm.quirked = true;
}
}
if (obj->mm.madv != __I915_MADV_PURGED)
obj->mm.madv = args->madv;
/* if the object is no longer attached, discard its backing storage */
if (obj->mm.madv == I915_MADV_DONTNEED &&
!i915_gem_object_has_pages(obj))
__i915_gem_object_truncate(obj);
args->retained = obj->mm.madv != __I915_MADV_PURGED;
mutex_unlock(&obj->mm.lock);
out:
i915_gem_object_put(obj);
return err;
}
static void
frontbuffer_retire(struct i915_active_request *active,
struct i915_request *request)
{
struct drm_i915_gem_object *obj =
container_of(active, typeof(*obj), frontbuffer_write);
intel_fb_obj_flush(obj, ORIGIN_CS);
}
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops)
{
mutex_init(&obj->mm.lock);
spin_lock_init(&obj->vma.lock);
INIT_LIST_HEAD(&obj->vma.list);
INIT_LIST_HEAD(&obj->lut_list);
INIT_LIST_HEAD(&obj->batch_pool_link);
init_rcu_head(&obj->rcu);
obj->ops = ops;
reservation_object_init(&obj->__builtin_resv);
obj->resv = &obj->__builtin_resv;
obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
i915_active_request_init(&obj->frontbuffer_write,
NULL, frontbuffer_retire);
obj->mm.madv = I915_MADV_WILLNEED;
INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
mutex_init(&obj->mm.get_page.lock);
i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
}
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
I915_GEM_OBJECT_IS_SHRINKABLE,
.get_pages = i915_gem_object_get_pages_gtt,
.put_pages = i915_gem_object_put_pages_gtt,
.pwrite = i915_gem_object_pwrite_gtt,
};
static int i915_gem_object_create_shmem(struct drm_device *dev,
struct drm_gem_object *obj,
size_t size)
{
struct drm_i915_private *i915 = to_i915(dev);
unsigned long flags = VM_NORESERVE;
struct file *filp;
drm_gem_private_object_init(dev, obj, size);
if (i915->mm.gemfs)
filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
flags);
else
filp = shmem_file_setup("i915", size, flags);
if (IS_ERR(filp))
return PTR_ERR(filp);
obj->filp = filp;
return 0;
}
struct drm_i915_gem_object *
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
{
struct drm_i915_gem_object *obj;
struct address_space *mapping;
unsigned int cache_level;
gfp_t mask;
int ret;
/* There is a prevalence of the assumption that we fit the object's
* page count inside a 32bit _signed_ variable. Let's document this and
* catch if we ever need to fix it. In the meantime, if you do spot
* such a local variable, please consider fixing!
*/
if (size >> PAGE_SHIFT > INT_MAX)
return ERR_PTR(-E2BIG);
if (overflows_type(size, obj->base.size))
return ERR_PTR(-E2BIG);
obj = i915_gem_object_alloc();
if (obj == NULL)
return ERR_PTR(-ENOMEM);
ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
if (ret)
goto fail;
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = obj->base.filp->f_mapping;
mapping_set_gfp_mask(mapping, mask);
GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
i915_gem_object_init(obj, &i915_gem_object_ops);
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(dev_priv))
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
cache_level = I915_CACHE_LLC;
else
cache_level = I915_CACHE_NONE;
i915_gem_object_set_cache_coherency(obj, cache_level);
trace_i915_gem_object_create(obj);
return obj;
fail:
i915_gem_object_free(obj);
return ERR_PTR(ret);
}
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
/* If we are the last user of the backing storage (be it shmemfs
* pages or stolen etc), we know that the pages are going to be
* immediately released. In this case, we can then skip copying
* back the contents from the GPU.
*/
if (obj->mm.madv != I915_MADV_WILLNEED)
return false;
if (obj->base.filp == NULL)
return true;
/* At first glance, this looks racy, but then again so would be
* userspace racing mmap against close. However, the first external
* reference to the filp can only be obtained through the
* i915_gem_mmap_ioctl() which safeguards us against the user
* acquiring such a reference whilst we are in the middle of
* freeing the object.
*/
return atomic_long_read(&obj->base.filp->f_count) == 1;
}
static void __i915_gem_free_objects(struct drm_i915_private *i915,
struct llist_node *freed)
{
struct drm_i915_gem_object *obj, *on;
intel_wakeref_t wakeref;
wakeref = intel_runtime_pm_get(i915);
llist_for_each_entry_safe(obj, on, freed, freed) {
struct i915_vma *vma, *vn;
trace_i915_gem_object_destroy(obj);
mutex_lock(&i915->drm.struct_mutex);
GEM_BUG_ON(i915_gem_object_is_active(obj));
list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
GEM_BUG_ON(i915_vma_is_active(vma));
vma->flags &= ~I915_VMA_PIN_MASK;
i915_vma_destroy(vma);
}
GEM_BUG_ON(!list_empty(&obj->vma.list));
GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
/* This serializes freeing with the shrinker. Since the free
* is delayed, first by RCU then by the workqueue, we want the
* shrinker to be able to free pages of unreferenced objects,
* or else we may oom whilst there are plenty of deferred
* freed objects.
*/
if (i915_gem_object_has_pages(obj)) {
spin_lock(&i915->mm.obj_lock);
list_del_init(&obj->mm.link);
spin_unlock(&i915->mm.obj_lock);
}
mutex_unlock(&i915->drm.struct_mutex);
GEM_BUG_ON(obj->bind_count);
GEM_BUG_ON(obj->userfault_count);
GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
GEM_BUG_ON(!list_empty(&obj->lut_list));
if (obj->ops->release)
obj->ops->release(obj);
if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
atomic_set(&obj->mm.pages_pin_count, 0);
__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
GEM_BUG_ON(i915_gem_object_has_pages(obj));
if (obj->base.import_attach)
drm_prime_gem_destroy(&obj->base, NULL);
reservation_object_fini(&obj->__builtin_resv);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(i915, obj->base.size);
bitmap_free(obj->bit_17);
i915_gem_object_free(obj);
GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
atomic_dec(&i915->mm.free_count);
if (on)
cond_resched();
}
intel_runtime_pm_put(i915, wakeref);
}
static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
struct llist_node *freed;
/* Free the oldest, most stale object to keep the free_list short */
freed = NULL;
if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
/* Only one consumer of llist_del_first() allowed */
spin_lock(&i915->mm.free_lock);
freed = llist_del_first(&i915->mm.free_list);
spin_unlock(&i915->mm.free_lock);
}
if (unlikely(freed)) {
freed->next = NULL;
__i915_gem_free_objects(i915, freed);
}
}
static void __i915_gem_free_work(struct work_struct *work)
{
struct drm_i915_private *i915 =
container_of(work, struct drm_i915_private, mm.free_work);
struct llist_node *freed;
/*
* All file-owned VMA should have been released by this point through
* i915_gem_close_object(), or earlier by i915_gem_context_close().
* However, the object may also be bound into the global GTT (e.g.
* older GPUs without per-process support, or for direct access through
* the GTT either for the user or for scanout). Those VMA still need to
* unbound now.
*/
spin_lock(&i915->mm.free_lock);
while ((freed = llist_del_all(&i915->mm.free_list))) {
spin_unlock(&i915->mm.free_lock);
__i915_gem_free_objects(i915, freed);
if (need_resched())
return;
spin_lock(&i915->mm.free_lock);
}
spin_unlock(&i915->mm.free_lock);
}
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
struct drm_i915_gem_object *obj =
container_of(head, typeof(*obj), rcu);
struct drm_i915_private *i915 = to_i915(obj->base.dev);
/*
* We reuse obj->rcu for the freed list, so we had better not treat
* it like a rcu_head from this point forwards. And we expect all
* objects to be freed via this path.
*/
destroy_rcu_head(&obj->rcu);
/*
* Since we require blocking on struct_mutex to unbind the freed
* object from the GPU before releasing resources back to the
* system, we can not do that directly from the RCU callback (which may
* be a softirq context), but must instead then defer that work onto a
* kthread. We use the RCU callback rather than move the freed object
* directly onto the work queue so that we can mix between using the
* worker and performing frees directly from subsequent allocations for
* crude but effective memory throttling.
*/
if (llist_add(&obj->freed, &i915->mm.free_list))
queue_work(i915->wq, &i915->mm.free_work);
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
if (obj->mm.quirked)
__i915_gem_object_unpin_pages(obj);
if (discard_backing_storage(obj))
obj->mm.madv = I915_MADV_DONTNEED;
/*
* Before we free the object, make sure any pure RCU-only
* read-side critical sections are complete, e.g.
* i915_gem_busy_ioctl(). For the corresponding synchronized
* lookup see i915_gem_object_lookup_rcu().
*/
atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
lockdep_assert_held(&obj->base.dev->struct_mutex);
if (!i915_gem_object_has_active_reference(obj) &&
i915_gem_object_is_active(obj))
i915_gem_object_set_active_reference(obj);
else
i915_gem_object_put(obj);
}
void i915_gem_sanitize(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref;
GEM_TRACE("\n");
wakeref = intel_runtime_pm_get(i915);
intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
/*
* As we have just resumed the machine and woken the device up from
* deep PCI sleep (presumably D3_cold), assume the HW has been reset
* back to defaults, recovering from whatever wedged state we left it
* in and so worth trying to use the device once more.
*/
if (i915_terminally_wedged(i915))
i915_gem_unset_wedged(i915);
/*
* If we inherit context state from the BIOS or earlier occupants
* of the GPU, the GPU may be in an inconsistent state when we
* try to take over. The only way to remove the earlier state
* is by resetting. However, resetting on earlier gen is tricky as
* it may impact the display and we are uncertain about the stability
* of the reset, so this could be applied to even earlier gen.
*/
intel_gt_sanitize(i915, false);
intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
intel_runtime_pm_put(i915, wakeref);
mutex_lock(&i915->drm.struct_mutex);
i915_gem_contexts_lost(i915);
mutex_unlock(&i915->drm.struct_mutex);
}
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) < 5 ||
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
return;
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_TILE_SURFACE_SWIZZLING);
if (IS_GEN(dev_priv, 5))
return;
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
if (IS_GEN(dev_priv, 6))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
else if (IS_GEN(dev_priv, 7))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
else if (IS_GEN(dev_priv, 8))
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
else
BUG();
}
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
{
I915_WRITE(RING_CTL(base), 0);
I915_WRITE(RING_HEAD(base), 0);
I915_WRITE(RING_TAIL(base), 0);
I915_WRITE(RING_START(base), 0);
}
static void init_unused_rings(struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv)) {
init_unused_ring(dev_priv, PRB1_BASE);
init_unused_ring(dev_priv, SRB0_BASE);
init_unused_ring(dev_priv, SRB1_BASE);
init_unused_ring(dev_priv, SRB2_BASE);
init_unused_ring(dev_priv, SRB3_BASE);
} else if (IS_GEN(dev_priv, 2)) {
init_unused_ring(dev_priv, SRB0_BASE);
init_unused_ring(dev_priv, SRB1_BASE);
} else if (IS_GEN(dev_priv, 3)) {
init_unused_ring(dev_priv, PRB1_BASE);
init_unused_ring(dev_priv, PRB2_BASE);
}
}
int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
int ret;
dev_priv->gt.last_init_time = ktime_get();
/* Double layer security blanket, see i915_gem_init() */
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
if (IS_HASWELL(dev_priv))
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
/* Apply the GT workarounds... */
intel_gt_apply_workarounds(dev_priv);
/* ...and determine whether they are sticking. */
intel_gt_verify_workarounds(dev_priv, "init");
i915_gem_init_swizzling(dev_priv);
/*
* At least 830 can leave some of the unused rings
* "active" (ie. head != tail) after resume which
* will prevent c3 entry. Makes sure all unused rings
* are totally idle.
*/
init_unused_rings(dev_priv);
BUG_ON(!dev_priv->kernel_context);
ret = i915_terminally_wedged(dev_priv);
if (ret)
goto out;
ret = i915_ppgtt_init_hw(dev_priv);
if (ret) {
DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
goto out;
}
ret = intel_wopcm_init_hw(&dev_priv->wopcm);
if (ret) {
DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
goto out;
}
/* We can't enable contexts until all firmware is loaded */
ret = intel_uc_init_hw(dev_priv);
if (ret) {
DRM_ERROR("Enabling uc failed (%d)\n", ret);
goto out;
}
intel_mocs_init_l3cc_table(dev_priv);
/* Only when the HW is re-initialised, can we replay the requests */
ret = intel_engines_resume(dev_priv);
if (ret)
goto cleanup_uc;
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
intel_engines_set_scheduler_caps(dev_priv);
return 0;
cleanup_uc:
intel_uc_fini_hw(dev_priv);
out:
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
return ret;
}
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
struct i915_gem_engines *e;
enum intel_engine_id id;
int err = 0;
/*
* As we reset the gpu during very early sanitisation, the current
* register state on the GPU should reflect its defaults values.
* We load a context onto the hw (with restore-inhibit), then switch
* over to a second context to save that default register state. We
* can then prime every new context with that state so they all start
* from the same default HW values.
*/
ctx = i915_gem_context_create_kernel(i915, 0);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
e = i915_gem_context_lock_engines(ctx);
for_each_engine(engine, i915, id) {
struct intel_context *ce = e->engines[id];
struct i915_request *rq;
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_active;
}
err = 0;
if (rq->engine->init_context)
err = rq->engine->init_context(rq);
i915_request_add(rq);
if (err)
goto err_active;
}
/* Flush the default context image to memory, and enable powersaving. */
if (!i915_gem_load_power_context(i915)) {
err = -EIO;
goto err_active;
}
for_each_engine(engine, i915, id) {
struct intel_context *ce = e->engines[id];
struct i915_vma *state = ce->state;
void *vaddr;
if (!state)
continue;
GEM_BUG_ON(intel_context_is_pinned(ce));
/*
* As we will hold a reference to the logical state, it will
* not be torn down with the context, and importantly the
* object will hold onto its vma (making it possible for a
* stray GTT write to corrupt our defaults). Unmap the vma
* from the GTT to prevent such accidents and reclaim the
* space.
*/
err = i915_vma_unbind(state);
if (err)
goto err_active;
err = i915_gem_object_set_to_cpu_domain(state->obj, false);
if (err)
goto err_active;
engine->default_state = i915_gem_object_get(state->obj);
i915_gem_object_set_cache_coherency(engine->default_state,
I915_CACHE_LLC);
/* Check we can acquire the image of the context state */
vaddr = i915_gem_object_pin_map(engine->default_state,
I915_MAP_FORCE_WB);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto err_active;
}
i915_gem_object_unpin_map(engine->default_state);
}
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
unsigned int found = intel_engines_has_context_isolation(i915);
/*
* Make sure that classes with multiple engine instances all
* share the same basic configuration.
*/
for_each_engine(engine, i915, id) {
unsigned int bit = BIT(engine->uabi_class);
unsigned int expected = engine->default_state ? bit : 0;
if ((found & bit) != expected) {
DRM_ERROR("mismatching default context state for class %d on engine %s\n",
engine->uabi_class, engine->name);
}
}
}
out_ctx:
i915_gem_context_unlock_engines(ctx);
i915_gem_context_set_closed(ctx);
i915_gem_context_put(ctx);
return err;
err_active:
/*
* If we have to abandon now, we expect the engines to be idle
* and ready to be torn-down. The quickest way we can accomplish
* this is by declaring ourselves wedged.
*/
i915_gem_set_wedged(i915);
goto out_ctx;
}
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create_stolen(i915, size);
if (!obj)
obj = i915_gem_object_create_internal(i915, size);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate scratch page\n");
return PTR_ERR(obj);
}
vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (ret)
goto err_unref;
i915->gt.scratch = vma;
return 0;
err_unref:
i915_gem_object_put(obj);
return ret;
}
static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return 0;
for_each_engine(engine, i915, id) {
if (intel_engine_verify_workarounds(engine, "load"))
err = -EIO;
}
return err;
}
int i915_gem_init(struct drm_i915_private *dev_priv)
{
int ret;
/* We need to fallback to 4K pages if host doesn't support huge gtt. */
if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
mkwrite_device_info(dev_priv)->page_sizes =
I915_GTT_PAGE_SIZE_4K;
dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
else
dev_priv->gt.cleanup_engine = intel_engine_cleanup;
i915_timelines_init(dev_priv);
ret = i915_gem_init_userptr(dev_priv);
if (ret)
return ret;
ret = intel_uc_init_misc(dev_priv);
if (ret)
return ret;
ret = intel_wopcm_init(&dev_priv->wopcm);
if (ret)
goto err_uc_misc;
/* This is just a security blanket to placate dragons.
* On some systems, we very sporadically observe that the first TLBs
* used by the CS may be stale, despite us poking the TLB reset. If
* we hold the forcewake during initialisation these problems
* just magically go away.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
ret = i915_gem_init_ggtt(dev_priv);
if (ret) {
GEM_BUG_ON(ret == -EIO);
goto err_unlock;
}
ret = i915_gem_init_scratch(dev_priv,
IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
if (ret) {
GEM_BUG_ON(ret == -EIO);
goto err_ggtt;
}
ret = intel_engines_setup(dev_priv);
if (ret) {
GEM_BUG_ON(ret == -EIO);
goto err_unlock;
}
ret = i915_gem_contexts_init(dev_priv);
if (ret) {
GEM_BUG_ON(ret == -EIO);
goto err_scratch;
}
ret = intel_engines_init(dev_priv);
if (ret) {
GEM_BUG_ON(ret == -EIO);
goto err_context;
}
intel_init_gt_powersave(dev_priv);
ret = intel_uc_init(dev_priv);
if (ret)
goto err_pm;
ret = i915_gem_init_hw(dev_priv);
if (ret)
goto err_uc_init;
/*
* Despite its name intel_init_clock_gating applies both display
* clock gating workarounds; GT mmio workarounds and the occasional
* GT power context workaround. Worse, sometimes it includes a context
* register workaround which we need to apply before we record the
* default HW state for all contexts.
*
* FIXME: break up the workarounds and apply them at the right time!
*/
intel_init_clock_gating(dev_priv);
ret = intel_engines_verify_workarounds(dev_priv);
if (ret)
goto err_init_hw;
ret = __intel_engines_record_defaults(dev_priv);
if (ret)
goto err_init_hw;
if (i915_inject_load_failure()) {
ret = -ENODEV;
goto err_init_hw;
}
if (i915_inject_load_failure()) {
ret = -EIO;
goto err_init_hw;
}
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
mutex_unlock(&dev_priv->drm.struct_mutex);
return 0;
/*
* Unwinding is complicated by that we want to handle -EIO to mean
* disable GPU submission but keep KMS alive. We want to mark the
* HW as irrevisibly wedged, but keep enough state around that the
* driver doesn't explode during runtime.
*/
err_init_hw:
mutex_unlock(&dev_priv->drm.struct_mutex);
i915_gem_set_wedged(dev_priv);
i915_gem_suspend(dev_priv);
i915_gem_suspend_late(dev_priv);
i915_gem_drain_workqueue(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
intel_uc_fini_hw(dev_priv);
err_uc_init:
intel_uc_fini(dev_priv);
err_pm:
if (ret != -EIO) {
intel_cleanup_gt_powersave(dev_priv);
i915_gem_cleanup_engines(dev_priv);
}
err_context:
if (ret != -EIO)
i915_gem_contexts_fini(dev_priv);
err_scratch:
i915_gem_fini_scratch(dev_priv);
err_ggtt:
err_unlock:
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
mutex_unlock(&dev_priv->drm.struct_mutex);
err_uc_misc:
intel_uc_fini_misc(dev_priv);
if (ret != -EIO) {
i915_gem_cleanup_userptr(dev_priv);
i915_timelines_fini(dev_priv);
}
if (ret == -EIO) {
mutex_lock(&dev_priv->drm.struct_mutex);
/*
* Allow engine initialisation to fail by marking the GPU as
* wedged. But we only want to do this where the GPU is angry,
* for all other failure, such as an allocation failure, bail.
*/
if (!i915_reset_failed(dev_priv)) {
i915_load_error(dev_priv,
"Failed to initialize GPU, declaring it wedged!\n");
i915_gem_set_wedged(dev_priv);
}
/* Minimal basic recovery for KMS */
ret = i915_ggtt_enable_hw(dev_priv);
i915_gem_restore_gtt_mappings(dev_priv);
i915_gem_restore_fences(dev_priv);
intel_init_clock_gating(dev_priv);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
i915_gem_drain_freed_objects(dev_priv);
return ret;
}
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
GEM_BUG_ON(dev_priv->gt.awake);
i915_gem_suspend_late(dev_priv);
intel_disable_gt_powersave(dev_priv);
/* Flush any outstanding unpin_work. */
i915_gem_drain_workqueue(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
intel_uc_fini_hw(dev_priv);
intel_uc_fini(dev_priv);
i915_gem_cleanup_engines(dev_priv);
i915_gem_contexts_fini(dev_priv);
i915_gem_fini_scratch(dev_priv);
mutex_unlock(&dev_priv->drm.struct_mutex);
intel_wa_list_free(&dev_priv->gt_wa_list);
intel_cleanup_gt_powersave(dev_priv);
intel_uc_fini_misc(dev_priv);
i915_gem_cleanup_userptr(dev_priv);
i915_timelines_fini(dev_priv);
i915_gem_drain_freed_objects(dev_priv);
WARN_ON(!list_empty(&dev_priv->contexts.list));
}
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
i915_gem_sanitize(i915);
}
void
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, dev_priv, id)
dev_priv->gt.cleanup_engine(engine);
}
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
int i;
if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
!IS_CHERRYVIEW(dev_priv))
dev_priv->num_fence_regs = 32;
else if (INTEL_GEN(dev_priv) >= 4 ||
IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
if (intel_vgpu_active(dev_priv))
dev_priv->num_fence_regs =
I915_READ(vgtif_reg(avail_rs.fence_num));
/* Initialize fence registers to zero */
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
fence->i915 = dev_priv;
fence->id = i;
list_add_tail(&fence->link, &dev_priv->mm.fence_list);
}
i915_gem_restore_fences(dev_priv);
i915_gem_detect_bit_6_swizzle(dev_priv);
}
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
spin_lock_init(&i915->mm.object_stat_lock);
spin_lock_init(&i915->mm.obj_lock);
spin_lock_init(&i915->mm.free_lock);
init_llist_head(&i915->mm.free_list);
INIT_LIST_HEAD(&i915->mm.unbound_list);
INIT_LIST_HEAD(&i915->mm.bound_list);
INIT_LIST_HEAD(&i915->mm.fence_list);
INIT_LIST_HEAD(&i915->mm.userfault_list);
INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}
int i915_gem_init_early(struct drm_i915_private *dev_priv)
{
int err;
intel_gt_pm_init(dev_priv);
INIT_LIST_HEAD(&dev_priv->gt.active_rings);
INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
i915_gem_init__mm(dev_priv);
i915_gem_init__pm(dev_priv);
init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
mutex_init(&dev_priv->gpu_error.wedge_mutex);
init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
spin_lock_init(&dev_priv->fb_tracking.lock);
err = i915_gemfs_init(dev_priv);
if (err)
DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
return 0;
}
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
{
i915_gem_drain_freed_objects(dev_priv);
GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
WARN_ON(dev_priv->mm.object_count);
cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
i915_gemfs_fini(dev_priv);
}
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
/* Discard all purgeable objects, let userspace recover those as
* required after resuming.
*/
i915_gem_shrink_all(dev_priv);
return 0;
}
int i915_gem_freeze_late(struct drm_i915_private *i915)
{
struct drm_i915_gem_object *obj;
struct list_head *phases[] = {
&i915->mm.unbound_list,
&i915->mm.bound_list,
NULL
}, **phase;
/*
* Called just before we write the hibernation image.
*
* We need to update the domain tracking to reflect that the CPU
* will be accessing all the pages to create and restore from the
* hibernation, and so upon restoration those pages will be in the
* CPU domain.
*
* To make sure the hibernation image contains the latest state,
* we update that state just before writing out the image.
*
* To try and reduce the hibernation image, we manually shrink
* the objects as well, see i915_gem_freeze()
*/
i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
i915_gem_drain_freed_objects(i915);
mutex_lock(&i915->drm.struct_mutex);
for (phase = phases; *phase; phase++) {
list_for_each_entry(obj, *phase, mm.link)
WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
}
mutex_unlock(&i915->drm.struct_mutex);
return 0;
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_request *request;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_link)
request->file_priv = NULL;
spin_unlock(&file_priv->mm.lock);
}
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
{
struct drm_i915_file_private *file_priv;
int ret;
DRM_DEBUG("\n");
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
if (!file_priv)
return -ENOMEM;
file->driver_priv = file_priv;
file_priv->dev_priv = i915;
file_priv->file = file;
spin_lock_init(&file_priv->mm.lock);
INIT_LIST_HEAD(&file_priv->mm.request_list);
file_priv->bsd_engine = -1;
file_priv->hang_timestamp = jiffies;
ret = i915_gem_context_open(i915, file);
if (ret)
kfree(file_priv);
return ret;
}
/**
* i915_gem_track_fb - update frontbuffer tracking
* @old: current GEM buffer for the frontbuffer slots
* @new: new GEM buffer for the frontbuffer slots
* @frontbuffer_bits: bitmask of frontbuffer slots
*
* This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
* from @old and setting them in @new. Both @old and @new can be NULL.
*/
void i915_gem_track_fb(struct drm_i915_gem_object *old,
struct drm_i915_gem_object *new,
unsigned frontbuffer_bits)
{
/* Control of individual bits within the mask are guarded by
* the owning plane->mutex, i.e. we can never see concurrent
* manipulation of individual bits. But since the bitfield as a whole
* is updated using RMW, we need to use atomics in order to update
* the bits.
*/
BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
BITS_PER_TYPE(atomic_t));
if (old) {
WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
}
if (new) {
WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
}
}
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
const void *data, size_t size)
{
struct drm_i915_gem_object *obj;
struct file *file;
size_t offset;
int err;
obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
if (IS_ERR(obj))
return obj;
GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
file = obj->base.filp;
offset = 0;
do {
unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
struct page *page;
void *pgdata, *vaddr;
err = pagecache_write_begin(file, file->f_mapping,
offset, len, 0,
&page, &pgdata);
if (err < 0)
goto fail;
vaddr = kmap(page);
memcpy(vaddr, data, len);
kunmap(page);
err = pagecache_write_end(file, file->f_mapping,
offset, len, len,
page, pgdata);
if (err < 0)
goto fail;
size -= len;
data += len;
offset += len;
} while (size);
return obj;
fail:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
unsigned int n,
unsigned int *offset)
{
struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
struct scatterlist *sg;
unsigned int idx, count;
might_sleep();
GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
/* As we iterate forward through the sg, we record each entry in a
* radixtree for quick repeated (backwards) lookups. If we have seen
* this index previously, we will have an entry for it.
*
* Initial lookup is O(N), but this is amortized to O(1) for
* sequential page access (where each new request is consecutive
* to the previous one). Repeated lookups are O(lg(obj->base.size)),
* i.e. O(1) with a large constant!
*/
if (n < READ_ONCE(iter->sg_idx))
goto lookup;
mutex_lock(&iter->lock);
/* We prefer to reuse the last sg so that repeated lookup of this
* (or the subsequent) sg are fast - comparing against the last
* sg is faster than going through the radixtree.
*/
sg = iter->sg_pos;
idx = iter->sg_idx;
count = __sg_page_count(sg);
while (idx + count <= n) {
void *entry;
unsigned long i;
int ret;
/* If we cannot allocate and insert this entry, or the
* individual pages from this range, cancel updating the
* sg_idx so that on this lookup we are forced to linearly
* scan onwards, but on future lookups we will try the
* insertion again (in which case we need to be careful of
* the error return reporting that we have already inserted
* this index).
*/
ret = radix_tree_insert(&iter->radix, idx, sg);
if (ret && ret != -EEXIST)
goto scan;
entry = xa_mk_value(idx);
for (i = 1; i < count; i++) {
ret = radix_tree_insert(&iter->radix, idx + i, entry);
if (ret && ret != -EEXIST)
goto scan;
}
idx += count;
sg = ____sg_next(sg);
count = __sg_page_count(sg);
}
scan:
iter->sg_pos = sg;
iter->sg_idx = idx;
mutex_unlock(&iter->lock);
if (unlikely(n < idx)) /* insertion completed by another thread */
goto lookup;
/* In case we failed to insert the entry into the radixtree, we need
* to look beyond the current sg.
*/
while (idx + count <= n) {
idx += count;
sg = ____sg_next(sg);
count = __sg_page_count(sg);
}
*offset = n - idx;
return sg;
lookup:
rcu_read_lock();
sg = radix_tree_lookup(&iter->radix, n);
GEM_BUG_ON(!sg);
/* If this index is in the middle of multi-page sg entry,
* the radix tree will contain a value entry that points
* to the start of that range. We will return the pointer to
* the base page and the offset of this page within the
* sg entry's range.
*/
*offset = 0;
if (unlikely(xa_is_value(sg))) {
unsigned long base = xa_to_value(sg);
sg = radix_tree_lookup(&iter->radix, base);
GEM_BUG_ON(!sg);
*offset = n - base;
}
rcu_read_unlock();
return sg;
}
struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
struct scatterlist *sg;
unsigned int offset;
GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
sg = i915_gem_object_get_sg(obj, n, &offset);
return nth_page(sg_page(sg), offset);
}
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
unsigned int n)
{
struct page *page;
page = i915_gem_object_get_page(obj, n);
if (!obj->mm.dirty)
set_page_dirty(page);
return page;
}
dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
unsigned long n)
{
struct scatterlist *sg;
unsigned int offset;
sg = i915_gem_object_get_sg(obj, n, &offset);
return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
struct sg_table *pages;
int err;
if (align > obj->base.size)
return -EINVAL;
if (obj->ops == &i915_gem_phys_ops)
return 0;
if (obj->ops != &i915_gem_object_ops)
return -EINVAL;
err = i915_gem_object_unbind(obj);
if (err)
return err;
mutex_lock(&obj->mm.lock);
if (obj->mm.madv != I915_MADV_WILLNEED) {
err = -EFAULT;
goto err_unlock;
}
if (obj->mm.quirked) {
err = -EFAULT;
goto err_unlock;
}
if (obj->mm.mapping) {
err = -EBUSY;
goto err_unlock;
}
pages = __i915_gem_object_unset_pages(obj);
obj->ops = &i915_gem_phys_ops;
err = ____i915_gem_object_get_pages(obj);
if (err)
goto err_xfer;
/* Perma-pin (until release) the physical set of pages */
__i915_gem_object_pin_pages(obj);
if (!IS_ERR_OR_NULL(pages))
i915_gem_object_ops.put_pages(obj, pages);
mutex_unlock(&obj->mm.lock);
return 0;
err_xfer:
obj->ops = &i915_gem_object_ops;
if (!IS_ERR_OR_NULL(pages)) {
unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
}
err_unlock:
mutex_unlock(&obj->mm.lock);
return err;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
#include "selftests/mock_gem_device.c"
#include "selftests/huge_gem_object.c"
#include "selftests/huge_pages.c"
#include "selftests/i915_gem_object.c"
#include "selftests/i915_gem_coherency.c"
#include "selftests/i915_gem.c"
#endif