Adds gamma and color-transform support for DOU-IPS. Adds two caps members fgamma_coeffs and ctm_coeffs to komeda_improc_state. If color management changed, set gamma and color-transform accordingly. v5: Rebase with drm-misc-next Signed-off-by: Lowry Li (Arm Technology China) <lowry.li@arm.com> Signed-off-by: james qian wang (Arm Technology China) <james.qian.wang@arm.com> Reviewed-by: Mihail Atanassov <mihail.atanassov@arm.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191112110927.20931-5-james.qian.wang@arm.com
		
			
				
	
	
		
			1351 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1351 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
 | |
|  * Author: James.Qian.Wang <james.qian.wang@arm.com>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <drm/drm_print.h>
 | |
| #include <linux/clk.h>
 | |
| #include "komeda_dev.h"
 | |
| #include "komeda_kms.h"
 | |
| #include "komeda_pipeline.h"
 | |
| #include "komeda_framebuffer.h"
 | |
| 
 | |
| static inline bool is_switching_user(void *old, void *new)
 | |
| {
 | |
| 	if (!old || !new)
 | |
| 		return false;
 | |
| 
 | |
| 	return old != new;
 | |
| }
 | |
| 
 | |
| static struct komeda_pipeline_state *
 | |
| komeda_pipeline_get_state(struct komeda_pipeline *pipe,
 | |
| 			  struct drm_atomic_state *state)
 | |
| {
 | |
| 	struct drm_private_state *priv_st;
 | |
| 
 | |
| 	priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
 | |
| 	if (IS_ERR(priv_st))
 | |
| 		return ERR_CAST(priv_st);
 | |
| 
 | |
| 	return priv_to_pipe_st(priv_st);
 | |
| }
 | |
| 
 | |
| struct komeda_pipeline_state *
 | |
| komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
 | |
| 			      struct drm_atomic_state *state)
 | |
| {
 | |
| 	struct drm_private_state *priv_st;
 | |
| 
 | |
| 	priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
 | |
| 	if (priv_st)
 | |
| 		return priv_to_pipe_st(priv_st);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct komeda_pipeline_state *
 | |
| komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
 | |
| 			      struct drm_atomic_state *state)
 | |
| {
 | |
| 	struct drm_private_state *priv_st;
 | |
| 
 | |
| 	priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
 | |
| 	if (priv_st)
 | |
| 		return priv_to_pipe_st(priv_st);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Assign pipeline for crtc */
 | |
| static struct komeda_pipeline_state *
 | |
| komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
 | |
| 				       struct drm_atomic_state *state,
 | |
| 				       struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct komeda_pipeline_state *st;
 | |
| 
 | |
| 	st = komeda_pipeline_get_state(pipe, state);
 | |
| 	if (IS_ERR(st))
 | |
| 		return st;
 | |
| 
 | |
| 	if (is_switching_user(crtc, st->crtc)) {
 | |
| 		DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
 | |
| 				 drm_crtc_index(crtc), pipe->id);
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 
 | |
| 	/* pipeline only can be disabled when the it is free or unused */
 | |
| 	if (!crtc && st->active_comps) {
 | |
| 		DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 
 | |
| 	st->crtc = crtc;
 | |
| 
 | |
| 	if (crtc) {
 | |
| 		struct komeda_crtc_state *kcrtc_st;
 | |
| 
 | |
| 		kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
 | |
| 								     crtc));
 | |
| 
 | |
| 		kcrtc_st->active_pipes |= BIT(pipe->id);
 | |
| 		kcrtc_st->affected_pipes |= BIT(pipe->id);
 | |
| 	}
 | |
| 	return st;
 | |
| }
 | |
| 
 | |
| static struct komeda_component_state *
 | |
| komeda_component_get_state(struct komeda_component *c,
 | |
| 			   struct drm_atomic_state *state)
 | |
| {
 | |
| 	struct drm_private_state *priv_st;
 | |
| 
 | |
| 	WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
 | |
| 
 | |
| 	priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
 | |
| 	if (IS_ERR(priv_st))
 | |
| 		return ERR_CAST(priv_st);
 | |
| 
 | |
| 	return priv_to_comp_st(priv_st);
 | |
| }
 | |
| 
 | |
| static struct komeda_component_state *
 | |
| komeda_component_get_old_state(struct komeda_component *c,
 | |
| 			       struct drm_atomic_state *state)
 | |
| {
 | |
| 	struct drm_private_state *priv_st;
 | |
| 
 | |
| 	priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
 | |
| 	if (priv_st)
 | |
| 		return priv_to_comp_st(priv_st);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * komeda_component_get_state_and_set_user()
 | |
|  *
 | |
|  * @c: component to get state and set user
 | |
|  * @state: global atomic state
 | |
|  * @user: direct user, the binding user
 | |
|  * @crtc: the CRTC user, the big boss :)
 | |
|  *
 | |
|  * This function accepts two users:
 | |
|  * -   The direct user: can be plane/crtc/wb_connector depends on component
 | |
|  * -   The big boss (CRTC)
 | |
|  * CRTC is the big boss (the final user), because all component resources
 | |
|  * eventually will be assigned to CRTC, like the layer will be binding to
 | |
|  * kms_plane, but kms plane will be binding to a CRTC eventually.
 | |
|  *
 | |
|  * The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
 | |
|  * independent and can be assigned to CRTC freely, but belongs to a specific
 | |
|  * pipeline, only pipeline can be shared between crtc, and pipeline as a whole
 | |
|  * (include all the internal components) assigned to a specific CRTC.
 | |
|  *
 | |
|  * So when set a user to komeda_component, need first to check the status of
 | |
|  * component->pipeline to see if the pipeline is available on this specific
 | |
|  * CRTC. if the pipeline is busy (assigned to another CRTC), even the required
 | |
|  * component is free, the component still cannot be assigned to the direct user.
 | |
|  */
 | |
| static struct komeda_component_state *
 | |
| komeda_component_get_state_and_set_user(struct komeda_component *c,
 | |
| 					struct drm_atomic_state *state,
 | |
| 					void *user,
 | |
| 					struct drm_crtc *crtc)
 | |
| {
 | |
| 	struct komeda_pipeline_state *pipe_st;
 | |
| 	struct komeda_component_state *st;
 | |
| 
 | |
| 	/* First check if the pipeline is available */
 | |
| 	pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
 | |
| 							 state, crtc);
 | |
| 	if (IS_ERR(pipe_st))
 | |
| 		return ERR_CAST(pipe_st);
 | |
| 
 | |
| 	st = komeda_component_get_state(c, state);
 | |
| 	if (IS_ERR(st))
 | |
| 		return st;
 | |
| 
 | |
| 	/* check if the component has been occupied */
 | |
| 	if (is_switching_user(user, st->binding_user)) {
 | |
| 		DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 
 | |
| 	st->binding_user = user;
 | |
| 	/* mark the component as active if user is valid */
 | |
| 	if (st->binding_user)
 | |
| 		pipe_st->active_comps |= BIT(c->id);
 | |
| 
 | |
| 	return st;
 | |
| }
 | |
| 
 | |
| static void
 | |
| komeda_component_add_input(struct komeda_component_state *state,
 | |
| 			   struct komeda_component_output *input,
 | |
| 			   int idx)
 | |
| {
 | |
| 	struct komeda_component *c = state->component;
 | |
| 
 | |
| 	WARN_ON((idx < 0 || idx >= c->max_active_inputs));
 | |
| 
 | |
| 	/* since the inputs[i] is only valid when it is active. So if a input[i]
 | |
| 	 * is a newly enabled input which switches from disable to enable, then
 | |
| 	 * the old inputs[i] is undefined (NOT zeroed), we can not rely on
 | |
| 	 * memcmp, but directly mark it changed
 | |
| 	 */
 | |
| 	if (!has_bit(idx, state->affected_inputs) ||
 | |
| 	    memcmp(&state->inputs[idx], input, sizeof(*input))) {
 | |
| 		memcpy(&state->inputs[idx], input, sizeof(*input));
 | |
| 		state->changed_active_inputs |= BIT(idx);
 | |
| 	}
 | |
| 	state->active_inputs |= BIT(idx);
 | |
| 	state->affected_inputs |= BIT(idx);
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_component_check_input(struct komeda_component_state *state,
 | |
| 			     struct komeda_component_output *input,
 | |
| 			     int idx)
 | |
| {
 | |
| 	struct komeda_component *c = state->component;
 | |
| 
 | |
| 	if ((idx < 0) || (idx >= c->max_active_inputs)) {
 | |
| 		DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
 | |
| 				 input->component->name, c->name, idx);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (has_bit(idx, state->active_inputs)) {
 | |
| 		DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
 | |
| 				 input->component->name, c->name, idx);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| komeda_component_set_output(struct komeda_component_output *output,
 | |
| 			    struct komeda_component *comp,
 | |
| 			    u8 output_port)
 | |
| {
 | |
| 	output->component = comp;
 | |
| 	output->output_port = output_port;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_component_validate_private(struct komeda_component *c,
 | |
| 				  struct komeda_component_state *st)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!c->funcs->validate)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = c->funcs->validate(c, st);
 | |
| 	if (err)
 | |
| 		DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Get current available scaler from the component->supported_outputs */
 | |
| static struct komeda_scaler *
 | |
| komeda_component_get_avail_scaler(struct komeda_component *c,
 | |
| 				  struct drm_atomic_state *state)
 | |
| {
 | |
| 	struct komeda_pipeline_state *pipe_st;
 | |
| 	u32 avail_scalers;
 | |
| 
 | |
| 	pipe_st = komeda_pipeline_get_state(c->pipeline, state);
 | |
| 	if (!pipe_st)
 | |
| 		return NULL;
 | |
| 
 | |
| 	avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
 | |
| 			KOMEDA_PIPELINE_SCALERS;
 | |
| 
 | |
| 	c = komeda_component_pickup_output(c, avail_scalers);
 | |
| 
 | |
| 	return to_scaler(c);
 | |
| }
 | |
| 
 | |
| static void
 | |
| komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
 | |
| {
 | |
| 	if (drm_rotation_90_or_270(rot)) {
 | |
| 		swap(dflow->in_h, dflow->in_w);
 | |
| 		swap(dflow->total_in_h, dflow->total_in_w);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_layer_check_cfg(struct komeda_layer *layer,
 | |
| 		       struct komeda_fb *kfb,
 | |
| 		       struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	u32 src_x, src_y, src_w, src_h;
 | |
| 	u32 line_sz, max_line_sz;
 | |
| 
 | |
| 	if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
 | |
| 		src_x = dflow->out_x;
 | |
| 		src_y = dflow->out_y;
 | |
| 		src_w = dflow->out_w;
 | |
| 		src_h = dflow->out_h;
 | |
| 	} else {
 | |
| 		src_x = dflow->in_x;
 | |
| 		src_y = dflow->in_y;
 | |
| 		src_w = dflow->in_w;
 | |
| 		src_h = dflow->in_h;
 | |
| 	}
 | |
| 
 | |
| 	if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!in_range(&layer->hsize_in, src_w)) {
 | |
| 		DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!in_range(&layer->vsize_in, src_h)) {
 | |
| 		DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (drm_rotation_90_or_270(dflow->rot))
 | |
| 		line_sz = dflow->in_h;
 | |
| 	else
 | |
| 		line_sz = dflow->in_w;
 | |
| 
 | |
| 	if (kfb->base.format->hsub > 1)
 | |
| 		max_line_sz = layer->yuv_line_sz;
 | |
| 	else
 | |
| 		max_line_sz = layer->line_sz;
 | |
| 
 | |
| 	if (line_sz > max_line_sz) {
 | |
| 		DRM_DEBUG_ATOMIC("Required line_sz: %d exceeds the max size %d\n",
 | |
| 				 line_sz, max_line_sz);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_layer_validate(struct komeda_layer *layer,
 | |
| 		      struct komeda_plane_state *kplane_st,
 | |
| 		      struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_plane_state *plane_st = &kplane_st->base;
 | |
| 	struct drm_framebuffer *fb = plane_st->fb;
 | |
| 	struct komeda_fb *kfb = to_kfb(fb);
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_layer_state *st;
 | |
| 	int i, err;
 | |
| 
 | |
| 	err = komeda_layer_check_cfg(layer, kfb, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&layer->base,
 | |
| 			plane_st->state, plane_st->plane, plane_st->crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_layer_st(c_st);
 | |
| 
 | |
| 	st->rot = dflow->rot;
 | |
| 
 | |
| 	if (fb->modifier) {
 | |
| 		st->hsize = kfb->aligned_w;
 | |
| 		st->vsize = kfb->aligned_h;
 | |
| 		st->afbc_crop_l = dflow->in_x;
 | |
| 		st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
 | |
| 		st->afbc_crop_t = dflow->in_y;
 | |
| 		st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
 | |
| 	} else {
 | |
| 		st->hsize = dflow->in_w;
 | |
| 		st->vsize = dflow->in_h;
 | |
| 		st->afbc_crop_l = 0;
 | |
| 		st->afbc_crop_r = 0;
 | |
| 		st->afbc_crop_t = 0;
 | |
| 		st->afbc_crop_b = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < fb->format->num_planes; i++)
 | |
| 		st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
 | |
| 						       dflow->in_y, i);
 | |
| 
 | |
| 	err = komeda_component_validate_private(&layer->base, c_st);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* update the data flow for the next stage */
 | |
| 	komeda_component_set_output(&dflow->input, &layer->base, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The rotation has been handled by layer, so adjusted the data flow for
 | |
| 	 * the next stage.
 | |
| 	 */
 | |
| 	komeda_rotate_data_flow(dflow, st->rot);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_wb_layer_validate(struct komeda_layer *wb_layer,
 | |
| 			 struct drm_connector_state *conn_st,
 | |
| 			 struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_layer_state *st;
 | |
| 	int i, err;
 | |
| 
 | |
| 	err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
 | |
| 			conn_st->state, conn_st->connector, conn_st->crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_layer_st(c_st);
 | |
| 
 | |
| 	st->hsize = dflow->out_w;
 | |
| 	st->vsize = dflow->out_h;
 | |
| 
 | |
| 	for (i = 0; i < kfb->base.format->num_planes; i++)
 | |
| 		st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
 | |
| 						       dflow->out_y, i);
 | |
| 
 | |
| 	komeda_component_add_input(&st->base, &dflow->input, 0);
 | |
| 	komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool scaling_ratio_valid(u32 size_in, u32 size_out,
 | |
| 				u32 max_upscaling, u32 max_downscaling)
 | |
| {
 | |
| 	if (size_out > size_in * max_upscaling)
 | |
| 		return false;
 | |
| 	else if (size_in > size_out * max_downscaling)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_scaler_check_cfg(struct komeda_scaler *scaler,
 | |
| 			struct komeda_crtc_state *kcrtc_st,
 | |
| 			struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	u32 hsize_in, vsize_in, hsize_out, vsize_out;
 | |
| 	u32 max_upscaling;
 | |
| 
 | |
| 	hsize_in = dflow->in_w;
 | |
| 	vsize_in = dflow->in_h;
 | |
| 	hsize_out = dflow->out_w;
 | |
| 	vsize_out = dflow->out_h;
 | |
| 
 | |
| 	if (!in_range(&scaler->hsize, hsize_in) ||
 | |
| 	    !in_range(&scaler->hsize, hsize_out)) {
 | |
| 		DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!in_range(&scaler->vsize, vsize_in) ||
 | |
| 	    !in_range(&scaler->vsize, vsize_out)) {
 | |
| 		DRM_DEBUG_ATOMIC("Invalid vertical sizes");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* If input comes from compiz that means the scaling is for writeback
 | |
| 	 * and scaler can not do upscaling for writeback
 | |
| 	 */
 | |
| 	if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
 | |
| 		max_upscaling = 1;
 | |
| 	else
 | |
| 		max_upscaling = scaler->max_upscaling;
 | |
| 
 | |
| 	if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
 | |
| 				 scaler->max_downscaling)) {
 | |
| 		DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
 | |
| 				 scaler->max_downscaling)) {
 | |
| 		DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (hsize_in > hsize_out || vsize_in > vsize_out) {
 | |
| 		struct komeda_pipeline *pipe = scaler->base.pipeline;
 | |
| 		int err;
 | |
| 
 | |
| 		err = pipe->funcs->downscaling_clk_check(pipe,
 | |
| 					&kcrtc_st->base.adjusted_mode,
 | |
| 					komeda_crtc_get_aclk(kcrtc_st), dflow);
 | |
| 		if (err) {
 | |
| 			DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_scaler_validate(void *user,
 | |
| 		       struct komeda_crtc_state *kcrtc_st,
 | |
| 		       struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_atomic_state *drm_st = kcrtc_st->base.state;
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_scaler_state *st;
 | |
| 	struct komeda_scaler *scaler;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!(dflow->en_scaling || dflow->en_img_enhancement))
 | |
| 		return 0;
 | |
| 
 | |
| 	scaler = komeda_component_get_avail_scaler(dflow->input.component,
 | |
| 						   drm_st);
 | |
| 	if (!scaler) {
 | |
| 		DRM_DEBUG_ATOMIC("No scaler available");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&scaler->base,
 | |
| 			drm_st, user, kcrtc_st->base.crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_scaler_st(c_st);
 | |
| 
 | |
| 	st->hsize_in = dflow->in_w;
 | |
| 	st->vsize_in = dflow->in_h;
 | |
| 	st->hsize_out = dflow->out_w;
 | |
| 	st->vsize_out = dflow->out_h;
 | |
| 	st->right_crop = dflow->right_crop;
 | |
| 	st->left_crop = dflow->left_crop;
 | |
| 	st->total_vsize_in = dflow->total_in_h;
 | |
| 	st->total_hsize_in = dflow->total_in_w;
 | |
| 	st->total_hsize_out = dflow->total_out_w;
 | |
| 
 | |
| 	/* Enable alpha processing if the next stage needs the pixel alpha */
 | |
| 	st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
 | |
| 	st->en_scaling = dflow->en_scaling;
 | |
| 	st->en_img_enhancement = dflow->en_img_enhancement;
 | |
| 	st->en_split = dflow->en_split;
 | |
| 	st->right_part = dflow->right_part;
 | |
| 
 | |
| 	komeda_component_add_input(&st->base, &dflow->input, 0);
 | |
| 	komeda_component_set_output(&dflow->input, &scaler->base, 0);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void komeda_split_data_flow(struct komeda_scaler *scaler,
 | |
| 				   struct komeda_data_flow_cfg *dflow,
 | |
| 				   struct komeda_data_flow_cfg *l_dflow,
 | |
| 				   struct komeda_data_flow_cfg *r_dflow);
 | |
| 
 | |
| static int
 | |
| komeda_splitter_validate(struct komeda_splitter *splitter,
 | |
| 			 struct drm_connector_state *conn_st,
 | |
| 			 struct komeda_data_flow_cfg *dflow,
 | |
| 			 struct komeda_data_flow_cfg *l_output,
 | |
| 			 struct komeda_data_flow_cfg *r_output)
 | |
| {
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_splitter_state *st;
 | |
| 
 | |
| 	if (!splitter) {
 | |
| 		DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!in_range(&splitter->hsize, dflow->in_w)) {
 | |
| 		DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
 | |
| 				 dflow->in_w);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!in_range(&splitter->vsize, dflow->in_h)) {
 | |
| 		DRM_DEBUG_ATOMIC("split in_in: %d exceed the acceptable range.\n",
 | |
| 				 dflow->in_w);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&splitter->base,
 | |
| 			conn_st->state, conn_st->connector, conn_st->crtc);
 | |
| 
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	komeda_split_data_flow(splitter->base.pipeline->scalers[0],
 | |
| 			       dflow, l_output, r_output);
 | |
| 
 | |
| 	st = to_splitter_st(c_st);
 | |
| 	st->hsize = dflow->in_w;
 | |
| 	st->vsize = dflow->in_h;
 | |
| 	st->overlap = dflow->overlap;
 | |
| 
 | |
| 	komeda_component_add_input(&st->base, &dflow->input, 0);
 | |
| 	komeda_component_set_output(&l_output->input, &splitter->base, 0);
 | |
| 	komeda_component_set_output(&r_output->input, &splitter->base, 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_merger_validate(struct komeda_merger *merger,
 | |
| 		       void *user,
 | |
| 		       struct komeda_crtc_state *kcrtc_st,
 | |
| 		       struct komeda_data_flow_cfg *left_input,
 | |
| 		       struct komeda_data_flow_cfg *right_input,
 | |
| 		       struct komeda_data_flow_cfg *output)
 | |
| {
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_merger_state *st;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!merger) {
 | |
| 		DRM_DEBUG_ATOMIC("No merger is available");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!in_range(&merger->hsize_merged, output->out_w)) {
 | |
| 		DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
 | |
| 				 output->out_w);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!in_range(&merger->vsize_merged, output->out_h)) {
 | |
| 		DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
 | |
| 				 output->out_h);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&merger->base,
 | |
| 			kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
 | |
| 
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_merger_st(c_st);
 | |
| 	st->hsize_merged = output->out_w;
 | |
| 	st->vsize_merged = output->out_h;
 | |
| 
 | |
| 	komeda_component_add_input(c_st, &left_input->input, 0);
 | |
| 	komeda_component_add_input(c_st, &right_input->input, 1);
 | |
| 	komeda_component_set_output(&output->input, &merger->base, 0);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
 | |
| 			       u16 *hsize, u16 *vsize)
 | |
| {
 | |
| 	struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
 | |
| 
 | |
| 	if (hsize)
 | |
| 		*hsize = m->hdisplay;
 | |
| 	if (vsize)
 | |
| 		*vsize = m->vdisplay;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_compiz_set_input(struct komeda_compiz *compiz,
 | |
| 			struct komeda_crtc_state *kcrtc_st,
 | |
| 			struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_atomic_state *drm_st = kcrtc_st->base.state;
 | |
| 	struct komeda_component_state *c_st, *old_st;
 | |
| 	struct komeda_compiz_input_cfg *cin;
 | |
| 	u16 compiz_w, compiz_h;
 | |
| 	int idx = dflow->blending_zorder;
 | |
| 
 | |
| 	pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
 | |
| 	/* check display rect */
 | |
| 	if ((dflow->out_x + dflow->out_w > compiz_w) ||
 | |
| 	    (dflow->out_y + dflow->out_h > compiz_h) ||
 | |
| 	     dflow->out_w == 0 || dflow->out_h == 0) {
 | |
| 		DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
 | |
| 				 dflow->out_x, dflow->out_y,
 | |
| 				 dflow->out_w, dflow->out_h);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
 | |
| 			kcrtc_st->base.crtc, kcrtc_st->base.crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	if (komeda_component_check_input(c_st, &dflow->input, idx))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cin = &(to_compiz_st(c_st)->cins[idx]);
 | |
| 
 | |
| 	cin->hsize   = dflow->out_w;
 | |
| 	cin->vsize   = dflow->out_h;
 | |
| 	cin->hoffset = dflow->out_x;
 | |
| 	cin->voffset = dflow->out_y;
 | |
| 	cin->pixel_blend_mode = dflow->pixel_blend_mode;
 | |
| 	cin->layer_alpha = dflow->layer_alpha;
 | |
| 
 | |
| 	old_st = komeda_component_get_old_state(&compiz->base, drm_st);
 | |
| 	WARN_ON(!old_st);
 | |
| 
 | |
| 	/* compare with old to check if this input has been changed */
 | |
| 	if (memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
 | |
| 		c_st->changed_active_inputs |= BIT(idx);
 | |
| 
 | |
| 	komeda_component_add_input(c_st, &dflow->input, idx);
 | |
| 	komeda_component_set_output(&dflow->input, &compiz->base, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_compiz_validate(struct komeda_compiz *compiz,
 | |
| 		       struct komeda_crtc_state *state,
 | |
| 		       struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_compiz_state *st;
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&compiz->base,
 | |
| 			state->base.state, state->base.crtc, state->base.crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_compiz_st(c_st);
 | |
| 
 | |
| 	pipeline_composition_size(state, &st->hsize, &st->vsize);
 | |
| 
 | |
| 	komeda_component_set_output(&dflow->input, &compiz->base, 0);
 | |
| 
 | |
| 	/* compiz output dflow will be fed to the next pipeline stage, prepare
 | |
| 	 * the data flow configuration for the next stage
 | |
| 	 */
 | |
| 	if (dflow) {
 | |
| 		dflow->in_w = st->hsize;
 | |
| 		dflow->in_h = st->vsize;
 | |
| 		dflow->out_w = dflow->in_w;
 | |
| 		dflow->out_h = dflow->in_h;
 | |
| 		/* the output data of compiz doesn't have alpha, it only can be
 | |
| 		 * used as bottom layer when blend it with master layers
 | |
| 		 */
 | |
| 		dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
 | |
| 		dflow->layer_alpha = 0xFF;
 | |
| 		dflow->blending_zorder = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_improc_validate(struct komeda_improc *improc,
 | |
| 		       struct komeda_crtc_state *kcrtc_st,
 | |
| 		       struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
 | |
| 	struct drm_crtc_state *crtc_st = &kcrtc_st->base;
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_improc_state *st;
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&improc->base,
 | |
| 			kcrtc_st->base.state, crtc, crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_improc_st(c_st);
 | |
| 
 | |
| 	st->hsize = dflow->in_w;
 | |
| 	st->vsize = dflow->in_h;
 | |
| 
 | |
| 	if (drm_atomic_crtc_needs_modeset(crtc_st)) {
 | |
| 		u32 output_depths, output_formats;
 | |
| 		u32 avail_depths, avail_formats;
 | |
| 
 | |
| 		komeda_crtc_get_color_config(crtc_st, &output_depths,
 | |
| 					     &output_formats);
 | |
| 
 | |
| 		avail_depths = output_depths & improc->supported_color_depths;
 | |
| 		if (avail_depths == 0) {
 | |
| 			DRM_DEBUG_ATOMIC("No available color depths, conn depths: 0x%x & display: 0x%x\n",
 | |
| 					 output_depths,
 | |
| 					 improc->supported_color_depths);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		avail_formats = output_formats &
 | |
| 				improc->supported_color_formats;
 | |
| 		if (!avail_formats) {
 | |
| 			DRM_DEBUG_ATOMIC("No available color_formats, conn formats 0x%x & display: 0x%x\n",
 | |
| 					 output_formats,
 | |
| 					 improc->supported_color_formats);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		st->color_depth = __fls(avail_depths);
 | |
| 		st->color_format = BIT(__ffs(avail_formats));
 | |
| 	}
 | |
| 
 | |
| 	if (kcrtc_st->base.color_mgmt_changed) {
 | |
| 		drm_lut_to_fgamma_coeffs(kcrtc_st->base.gamma_lut,
 | |
| 					 st->fgamma_coeffs);
 | |
| 		drm_ctm_to_coeffs(kcrtc_st->base.ctm, st->ctm_coeffs);
 | |
| 	}
 | |
| 
 | |
| 	komeda_component_add_input(&st->base, &dflow->input, 0);
 | |
| 	komeda_component_set_output(&dflow->input, &improc->base, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
 | |
| 			     struct komeda_crtc_state *kcrtc_st,
 | |
| 			     struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
 | |
| 	struct komeda_timing_ctrlr_state *st;
 | |
| 	struct komeda_component_state *c_st;
 | |
| 
 | |
| 	c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
 | |
| 			kcrtc_st->base.state, crtc, crtc);
 | |
| 	if (IS_ERR(c_st))
 | |
| 		return PTR_ERR(c_st);
 | |
| 
 | |
| 	st = to_ctrlr_st(c_st);
 | |
| 
 | |
| 	komeda_component_add_input(&st->base, &dflow->input, 0);
 | |
| 	komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
 | |
| 				   struct komeda_data_flow_cfg *dflow,
 | |
| 				   struct drm_framebuffer *fb)
 | |
| {
 | |
| 	struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
 | |
| 	u32 w = dflow->in_w;
 | |
| 	u32 h = dflow->in_h;
 | |
| 
 | |
| 	dflow->total_in_w = dflow->in_w;
 | |
| 	dflow->total_in_h = dflow->in_h;
 | |
| 	dflow->total_out_w = dflow->out_w;
 | |
| 
 | |
| 	/* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
 | |
| 	if (!fb->format->has_alpha)
 | |
| 		dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
 | |
| 
 | |
| 	if (drm_rotation_90_or_270(dflow->rot))
 | |
| 		swap(w, h);
 | |
| 
 | |
| 	dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
 | |
| 	dflow->is_yuv = fb->format->is_yuv;
 | |
| 
 | |
| 	/* try to enable image enhancer if data flow is a 2x+ upscaling */
 | |
| 	dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
 | |
| 				    dflow->out_h >= 2 * h;
 | |
| 
 | |
| 	/* try to enable split if scaling exceed the scaler's acceptable
 | |
| 	 * input/output range.
 | |
| 	 */
 | |
| 	if (dflow->en_scaling && scaler)
 | |
| 		dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
 | |
| 				  !in_range(&scaler->hsize, dflow->out_w);
 | |
| }
 | |
| 
 | |
| static bool merger_is_available(struct komeda_pipeline *pipe,
 | |
| 				struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	u32 avail_inputs = pipe->merger ?
 | |
| 			   pipe->merger->base.supported_inputs : 0;
 | |
| 
 | |
| 	return has_bit(dflow->input.component->id, avail_inputs);
 | |
| }
 | |
| 
 | |
| int komeda_build_layer_data_flow(struct komeda_layer *layer,
 | |
| 				 struct komeda_plane_state *kplane_st,
 | |
| 				 struct komeda_crtc_state *kcrtc_st,
 | |
| 				 struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_plane *plane = kplane_st->base.plane;
 | |
| 	struct komeda_pipeline *pipe = layer->base.pipeline;
 | |
| 	int err;
 | |
| 
 | |
| 	DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
 | |
| 			 layer->base.name, plane->base.id, plane->name,
 | |
| 			 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
 | |
| 			 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
 | |
| 
 | |
| 	err = komeda_layer_validate(layer, kplane_st, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_scaler_validate(plane, kcrtc_st, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* if split, check if can put the data flow into merger */
 | |
| 	if (dflow->en_split && merger_is_available(pipe, dflow))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Split is introduced for workaround scaler's input/output size limitation.
 | |
|  * The idea is simple, if one scaler can not fit the requirement, use two.
 | |
|  * So split splits the big source image to two half parts (left/right) and do
 | |
|  * the scaling by two scaler separately and independently.
 | |
|  * But split also imports an edge problem in the middle of the image when
 | |
|  * scaling, to avoid it, split isn't a simple half-and-half, but add an extra
 | |
|  * pixels (overlap) to both side, after split the left/right will be:
 | |
|  * - left: [0, src_length/2 + overlap]
 | |
|  * - right: [src_length/2 - overlap, src_length]
 | |
|  * The extra overlap do eliminate the edge problem, but which may also generates
 | |
|  * unnecessary pixels when scaling, we need to crop them before scaler output
 | |
|  * the result to the next stage. and for the how to crop, it depends on the
 | |
|  * unneeded pixels, another words the position where overlay has been added.
 | |
|  * - left: crop the right
 | |
|  * - right: crop the left
 | |
|  *
 | |
|  * The diagram for how to do the split
 | |
|  *
 | |
|  *  <---------------------left->out_w ---------------->
 | |
|  * |--------------------------------|---right_crop-----| <- left after split
 | |
|  *  \                                \                /
 | |
|  *   \                                \<--overlap--->/
 | |
|  *   |-----------------|-------------|(Middle)------|-----------------| <- src
 | |
|  *                     /<---overlap--->\                               \
 | |
|  *                    /                 \                               \
 | |
|  * right after split->|-----left_crop---|--------------------------------|
 | |
|  *                    ^<------------------- right->out_w --------------->^
 | |
|  *
 | |
|  * NOTE: To consistent with HW the output_w always contains the crop size.
 | |
|  */
 | |
| 
 | |
| static void komeda_split_data_flow(struct komeda_scaler *scaler,
 | |
| 				   struct komeda_data_flow_cfg *dflow,
 | |
| 				   struct komeda_data_flow_cfg *l_dflow,
 | |
| 				   struct komeda_data_flow_cfg *r_dflow)
 | |
| {
 | |
| 	bool r90 = drm_rotation_90_or_270(dflow->rot);
 | |
| 	bool flip_h = has_flip_h(dflow->rot);
 | |
| 	u32 l_out, r_out, overlap;
 | |
| 
 | |
| 	memcpy(l_dflow, dflow, sizeof(*dflow));
 | |
| 	memcpy(r_dflow, dflow, sizeof(*dflow));
 | |
| 
 | |
| 	l_dflow->right_part = false;
 | |
| 	r_dflow->right_part = true;
 | |
| 	r_dflow->blending_zorder = dflow->blending_zorder + 1;
 | |
| 
 | |
| 	overlap = 0;
 | |
| 	if (dflow->en_scaling && scaler)
 | |
| 		overlap += scaler->scaling_split_overlap;
 | |
| 
 | |
| 	/* original dflow may fed into splitter, and which doesn't need
 | |
| 	 * enhancement overlap
 | |
| 	 */
 | |
| 	dflow->overlap = overlap;
 | |
| 
 | |
| 	if (dflow->en_img_enhancement && scaler)
 | |
| 		overlap += scaler->enh_split_overlap;
 | |
| 
 | |
| 	l_dflow->overlap = overlap;
 | |
| 	r_dflow->overlap = overlap;
 | |
| 
 | |
| 	/* split the origin content */
 | |
| 	/* left/right here always means the left/right part of display image,
 | |
| 	 * not the source Image
 | |
| 	 */
 | |
| 	/* DRM rotation is anti-clockwise */
 | |
| 	if (r90) {
 | |
| 		if (dflow->en_scaling) {
 | |
| 			l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
 | |
| 			r_dflow->in_h = l_dflow->in_h;
 | |
| 		} else if (dflow->en_img_enhancement) {
 | |
| 			/* enhancer only */
 | |
| 			l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
 | |
| 			r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
 | |
| 		} else {
 | |
| 			/* split without scaler, no overlap */
 | |
| 			l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
 | |
| 			r_dflow->in_h = dflow->in_h - l_dflow->in_h;
 | |
| 		}
 | |
| 
 | |
| 		/* Consider YUV format, after split, the split source w/h
 | |
| 		 * may not aligned to 2. we have two choices for such case.
 | |
| 		 * 1. scaler is enabled (overlap != 0), we can do a alignment
 | |
| 		 *    both left/right and crop the extra data by scaler.
 | |
| 		 * 2. scaler is not enabled, only align the split left
 | |
| 		 *    src/disp, and the rest part assign to right
 | |
| 		 */
 | |
| 		if ((overlap != 0) && dflow->is_yuv) {
 | |
| 			l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
 | |
| 			r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
 | |
| 		}
 | |
| 
 | |
| 		if (flip_h)
 | |
| 			l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
 | |
| 		else
 | |
| 			r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
 | |
| 	} else {
 | |
| 		if (dflow->en_scaling) {
 | |
| 			l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
 | |
| 			r_dflow->in_w = l_dflow->in_w;
 | |
| 		} else if (dflow->en_img_enhancement) {
 | |
| 			l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
 | |
| 			r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
 | |
| 		} else {
 | |
| 			l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
 | |
| 			r_dflow->in_w = dflow->in_w - l_dflow->in_w;
 | |
| 		}
 | |
| 
 | |
| 		/* do YUV alignment when scaler enabled */
 | |
| 		if ((overlap != 0) && dflow->is_yuv) {
 | |
| 			l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
 | |
| 			r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
 | |
| 		}
 | |
| 
 | |
| 		/* on flip_h, the left display content from the right-source */
 | |
| 		if (flip_h)
 | |
| 			l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
 | |
| 		else
 | |
| 			r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
 | |
| 	}
 | |
| 
 | |
| 	/* split the disp_rect */
 | |
| 	if (dflow->en_scaling || dflow->en_img_enhancement)
 | |
| 		l_dflow->out_w = ((dflow->out_w + 1) >> 1);
 | |
| 	else
 | |
| 		l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
 | |
| 
 | |
| 	r_dflow->out_w = dflow->out_w - l_dflow->out_w;
 | |
| 
 | |
| 	l_dflow->out_x = dflow->out_x;
 | |
| 	r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
 | |
| 
 | |
| 	/* calculate the scaling crop */
 | |
| 	/* left scaler output more data and do crop */
 | |
| 	if (r90) {
 | |
| 		l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
 | |
| 		r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
 | |
| 	} else {
 | |
| 		l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
 | |
| 		r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
 | |
| 	}
 | |
| 
 | |
| 	l_dflow->left_crop  = 0;
 | |
| 	l_dflow->right_crop = l_out - l_dflow->out_w;
 | |
| 	r_dflow->left_crop  = r_out - r_dflow->out_w;
 | |
| 	r_dflow->right_crop = 0;
 | |
| 
 | |
| 	/* out_w includes the crop length */
 | |
| 	l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
 | |
| 	r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
 | |
| }
 | |
| 
 | |
| /* For layer split, a plane state will be split to two data flows and handled
 | |
|  * by two separated komeda layer input pipelines. komeda supports two types of
 | |
|  * layer split:
 | |
|  * - none-scaling split:
 | |
|  *             / layer-left -> \
 | |
|  * plane_state                  compiz-> ...
 | |
|  *             \ layer-right-> /
 | |
|  *
 | |
|  * - scaling split:
 | |
|  *             / layer-left -> scaler->\
 | |
|  * plane_state                          merger -> compiz-> ...
 | |
|  *             \ layer-right-> scaler->/
 | |
|  *
 | |
|  * Since merger only supports scaler as input, so for none-scaling split, two
 | |
|  * layer data flows will be output to compiz directly. for scaling_split, two
 | |
|  * data flow will be merged by merger firstly, then merger outputs one merged
 | |
|  * data flow to compiz.
 | |
|  */
 | |
| int komeda_build_layer_split_data_flow(struct komeda_layer *left,
 | |
| 				       struct komeda_plane_state *kplane_st,
 | |
| 				       struct komeda_crtc_state *kcrtc_st,
 | |
| 				       struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_plane *plane = kplane_st->base.plane;
 | |
| 	struct komeda_pipeline *pipe = left->base.pipeline;
 | |
| 	struct komeda_layer *right = left->right;
 | |
| 	struct komeda_data_flow_cfg l_dflow, r_dflow;
 | |
| 	int err;
 | |
| 
 | |
| 	komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
 | |
| 
 | |
| 	DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
 | |
| 			 "src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
 | |
| 			 left->base.name, right->base.name,
 | |
| 			 plane->base.id, plane->name,
 | |
| 			 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
 | |
| 			 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
 | |
| 
 | |
| 	err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* The rotation has been handled by layer, so adjusted the data flow */
 | |
| 	komeda_rotate_data_flow(dflow, dflow->rot);
 | |
| 
 | |
| 	/* left and right dflow has been merged to compiz already,
 | |
| 	 * no need merger to merge them anymore.
 | |
| 	 */
 | |
| 	if (r_dflow.input.component == l_dflow.input.component)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* line merger path */
 | |
| 	err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
 | |
| 				     &l_dflow, &r_dflow, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* writeback data path: compiz -> scaler -> wb_layer -> memory */
 | |
| int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
 | |
| 			      struct drm_connector_state *conn_st,
 | |
| 			      struct komeda_crtc_state *kcrtc_st,
 | |
| 			      struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct drm_connector *conn = conn_st->connector;
 | |
| 	int err;
 | |
| 
 | |
| 	err = komeda_scaler_validate(conn, kcrtc_st, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
 | |
| }
 | |
| 
 | |
| /* writeback scaling split data path:
 | |
|  *                   /-> scaler ->\
 | |
|  * compiz -> splitter              merger -> wb_layer -> memory
 | |
|  *                   \-> scaler ->/
 | |
|  */
 | |
| int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
 | |
| 				    struct drm_connector_state *conn_st,
 | |
| 				    struct komeda_crtc_state *kcrtc_st,
 | |
| 				    struct komeda_data_flow_cfg *dflow)
 | |
| {
 | |
| 	struct komeda_pipeline *pipe = wb_layer->base.pipeline;
 | |
| 	struct drm_connector *conn = conn_st->connector;
 | |
| 	struct komeda_data_flow_cfg l_dflow, r_dflow;
 | |
| 	int err;
 | |
| 
 | |
| 	err = komeda_splitter_validate(pipe->splitter, conn_st,
 | |
| 				       dflow, &l_dflow, &r_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
 | |
| 				     &l_dflow, &r_dflow, dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
 | |
| }
 | |
| 
 | |
| /* build display output data flow, the data path is:
 | |
|  * compiz -> improc -> timing_ctrlr
 | |
|  */
 | |
| int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
 | |
| 				   struct komeda_crtc_state *kcrtc_st)
 | |
| {
 | |
| 	struct komeda_pipeline *master = kcrtc->master;
 | |
| 	struct komeda_pipeline *slave  = kcrtc->slave;
 | |
| 	struct komeda_data_flow_cfg m_dflow; /* master data flow */
 | |
| 	struct komeda_data_flow_cfg s_dflow; /* slave data flow */
 | |
| 	int err;
 | |
| 
 | |
| 	memset(&m_dflow, 0, sizeof(m_dflow));
 | |
| 	memset(&s_dflow, 0, sizeof(s_dflow));
 | |
| 
 | |
| 	if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
 | |
| 		err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		/* merge the slave dflow into master pipeline */
 | |
| 		err = komeda_compiz_set_input(master->compiz, kcrtc_st,
 | |
| 					      &s_dflow);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
 | |
| 				   struct komeda_pipeline_state *new)
 | |
| {
 | |
| 	struct drm_atomic_state *drm_st = new->obj.state;
 | |
| 	struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	struct komeda_component *c;
 | |
| 	u32 disabling_comps, id;
 | |
| 
 | |
| 	WARN_ON(!old);
 | |
| 
 | |
| 	disabling_comps = (~new->active_comps) & old->active_comps;
 | |
| 
 | |
| 	/* unbound all disabling component */
 | |
| 	dp_for_each_set_bit(id, disabling_comps) {
 | |
| 		c = komeda_pipeline_get_component(pipe, id);
 | |
| 		c_st = komeda_component_get_state_and_set_user(c,
 | |
| 				drm_st, NULL, new->crtc);
 | |
| 		WARN_ON(IS_ERR(c_st));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* release unclaimed pipeline resource */
 | |
| int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
 | |
| 				       struct komeda_crtc_state *kcrtc_st)
 | |
| {
 | |
| 	struct drm_atomic_state *drm_st = kcrtc_st->base.state;
 | |
| 	struct komeda_pipeline_state *st;
 | |
| 
 | |
| 	/* ignore the pipeline which is not affected */
 | |
| 	if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (has_bit(pipe->id, kcrtc_st->active_pipes))
 | |
| 		st = komeda_pipeline_get_new_state(pipe, drm_st);
 | |
| 	else
 | |
| 		st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
 | |
| 
 | |
| 	if (WARN_ON(IS_ERR_OR_NULL(st)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	komeda_pipeline_unbound_components(pipe, st);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Since standalong disabled components must be disabled separately and in the
 | |
|  * last, So a complete disable operation may needs to call pipeline_disable
 | |
|  * twice (two phase disabling).
 | |
|  * Phase 1: disable the common components, flush it.
 | |
|  * Phase 2: disable the standalone disabled components, flush it.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * true: disable is not complete, needs a phase 2 disable.
 | |
|  * false: disable is complete.
 | |
|  */
 | |
| bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
 | |
| 			     struct drm_atomic_state *old_state)
 | |
| {
 | |
| 	struct komeda_pipeline_state *old;
 | |
| 	struct komeda_component *c;
 | |
| 	struct komeda_component_state *c_st;
 | |
| 	u32 id, disabling_comps = 0;
 | |
| 
 | |
| 	old = komeda_pipeline_get_old_state(pipe, old_state);
 | |
| 
 | |
| 	disabling_comps = old->active_comps &
 | |
| 			  (~pipe->standalone_disabled_comps);
 | |
| 	if (!disabling_comps)
 | |
| 		disabling_comps = old->active_comps &
 | |
| 				  pipe->standalone_disabled_comps;
 | |
| 
 | |
| 	DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, disabling_comps: 0x%x.\n",
 | |
| 			 pipe->id, old->active_comps, disabling_comps);
 | |
| 
 | |
| 	dp_for_each_set_bit(id, disabling_comps) {
 | |
| 		c = komeda_pipeline_get_component(pipe, id);
 | |
| 		c_st = priv_to_comp_st(c->obj.state);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we disabled a component then all active_inputs should be
 | |
| 		 * put in the list of changed_active_inputs, so they get
 | |
| 		 * re-enabled.
 | |
| 		 * This usually happens during a modeset when the pipeline is
 | |
| 		 * first disabled and then the actual state gets committed
 | |
| 		 * again.
 | |
| 		 */
 | |
| 		c_st->changed_active_inputs |= c_st->active_inputs;
 | |
| 
 | |
| 		c->funcs->disable(c);
 | |
| 	}
 | |
| 
 | |
| 	/* Update the pipeline state, if there are components that are still
 | |
| 	 * active, return true for calling the phase 2 disable.
 | |
| 	 */
 | |
| 	old->active_comps &= ~disabling_comps;
 | |
| 
 | |
| 	return old->active_comps ? true : false;
 | |
| }
 | |
| 
 | |
| void komeda_pipeline_update(struct komeda_pipeline *pipe,
 | |
| 			    struct drm_atomic_state *old_state)
 | |
| {
 | |
| 	struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
 | |
| 	struct komeda_pipeline_state *old;
 | |
| 	struct komeda_component *c;
 | |
| 	u32 id, changed_comps = 0;
 | |
| 
 | |
| 	old = komeda_pipeline_get_old_state(pipe, old_state);
 | |
| 
 | |
| 	changed_comps = new->active_comps | old->active_comps;
 | |
| 
 | |
| 	DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%x.\n",
 | |
| 			 pipe->id, new->active_comps, changed_comps);
 | |
| 
 | |
| 	dp_for_each_set_bit(id, changed_comps) {
 | |
| 		c = komeda_pipeline_get_component(pipe, id);
 | |
| 
 | |
| 		if (new->active_comps & BIT(c->id))
 | |
| 			c->funcs->update(c, priv_to_comp_st(c->obj.state));
 | |
| 		else
 | |
| 			c->funcs->disable(c);
 | |
| 	}
 | |
| }
 |